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Abstract. In this paper, we delve into the intricacies of the Tsallis holographic
dark energy model within the framework of a modified logarithmic f(R) gravity. This
gravity model is distinctive due to its composition, which includes both polynomial
terms and a logarithmic component. Our primary objective is to compute the equation
of state parameter for the proposed model, which is a crucial step in understanding
the behavior of dark energy in the universe. To achieve a comprehensive analysis,
we employ two distinct scale factor structures: the exponential and the hybrid. The
exponential scale factor is known for its simplicity and relevance in cosmological models
that exhibit a constant rate of expansion. On the other hand, the hybrid scale factor
offers a more nuanced approach, accommodating both early-time deceleration and late-
time acceleration phases of the universe’s expansion. Furthermore, we rigorously test
the stability of our model. One of the key methods we use is examining the sound
speed, which serves as an indicator of the propagation of perturbations through the
dark energy field. By plotting various figures, we can visually represent the stability
conditions and analyze the viability of the Tsallis holographic dark energy model in
a modified gravity context. Lastly, we meticulously document our findings, providing
detailed expressions and calculations.
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1 Introduction
Dark energy is a mysterious phenomenon that affects the universe on the largest scales.
It is the name given to the unknown cause of the ”accelerated expansion” of the universe.
Scientists do not know what dark energy is, but they have some possible explanations for it.
One is that it is a ”property of space” itself, that creates a negative pressure that stretches
the fabric of spacetime. Another is that it is a ”cosmological constant”, a term in Einstein’s
theory of gravity that represents a constant energy density filling space homogeneously. A
third possibility is that it is a ”scalar field”, a dynamic quantity that varies in time and
space and has energy density. According to the current measurements, dark energy makes
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up about 70% of the total energy in the observable universe. There are two main types of
dark energy: the ”cosmological constant” and ”scalar fields”. The cosmological constant is
a constant energy density that fills space homogeneously and does not change over time or
space. Scalar fields are dynamic quantities that have energy densities that vary in time and
space. Some examples of scalar fields are ”quintessence” and ”moduli”. Quintessence is a
scalar field that has a negative pressure and can change over time. Moduli are scalar fields
that arise from extra dimensions in string theory and can change over space [1–4].

Dark energy from the perspective of holographic structure has been the focus of re-
searchers. The holographic structure of dark energy is a hypothesis that tries to explain
the origin and nature of dark energy using the holographic principle. The holographic
principle states that the information content of a region of space can be encoded on a lower-
dimensional boundary to that region. This implies that the universe is like a hologram,
where a three-dimensional image is projected from a two-dimensional surface. One way to
apply the holographic principle to dark energy is to assume that the entropy of the universe
is proportional to its horizon area, rather than its volume. This leads to a relation between
the energy density of dark energy and the size of the horizon. If the horizon is smaller, the
energy density is higher, and vice versa. This can explain why the energy density of dark
energy is so low, because the horizon of the observable universe is very large. Another way
to apply the holographic principle to dark energy is to assume that the quantum fluctu-
ations of matter and radiation in the universe are constrained by the holographic bound,
which limits the amount of information that can be stored in a given region of space. This
leads to a relation between the energy density of dark matter and radiation and the size
of the horizon. If the horizon is smaller, the energy density is lower, and vice versa. This
can explain why the energy density of dark matter and radiation decreases as the universe
expands, while the energy density of dark energy remains constant [5,6].

The different structures of dark energy refer to how it affects the formation and evolu-
tion of cosmic structures, such as galaxies and clusters of galaxies. Depending on the type
and properties of dark energy, it can have different effects on the growth of structures and
the distribution of matter in the universe. For example, if dark energy is a cosmological
constant, it does not affect the growth of structures until very late times, when it dominates
the energy density of the universe and causes the expansion to accelerate. If dark energy
is a scalar field, it can affect the growth of structures at earlier times, depending on how it
varies over time and space. Some scalar fields can also cause the expansion to decelerate or
oscillate, rather than accelerate [7,8]. Some of the methods that scientists use to study the
different structures of dark energy are:
”Supernova observations”: Supernovae are exploding stars that can be used as standard
candles to measure the distance and expansion rate of the universe at different times. By
comparing the observed brightness and redshift of supernovae, scientists can infer how dark
energy affects the expansion history of the universe [9].
”Cosmic microwave background (CMB) observations”: The CMB is the relic radia-
tion from the early universe that fills the sky. By analyzing the temperature and polarization
fluctuations of the CMB, scientists can infer how dark energy affects the geometry and mat-
ter content of the universe [10].
”Large-scale structure (LSS) observations”: The LSS is the distribution of matter
and galaxies on large scales in the universe. By measuring the clustering and correlation
of galaxies, scientists can infer how dark energy affects the growth and evolution of cosmic
structures [11].
”Gravitational lensing observations”: Gravitational lensing is the bending of light by
gravity. By measuring how light from distant sources is distorted by intervening matter,
scientists can infer how dark energy affects the distribution and shape of matter in the
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universe.Modified gravity theories are theories that try to explain the observed phenomena
of the universe, such as the accelerated expansion, without invoking dark energy. Instead,
they modify the theory of general relativity, which is the standard theory of gravity, by in-
troducing new terms or fields in the equations that govern gravity. There are many different
types of modified gravity theories, each with its own motivations and predictions [12,13].

One type of modified gravity theory is ”f(R) gravity”, which replaces the Ricci scalar R
in the Einstein-Hilbert action with a more general function f(R). This can lead to different
effective equations of motion for gravity, which can mimic dark energy or inflation. Some
examples of f(R) gravity models are Starobinsky inflation, Hu-Sawicki model, and Palatini
formalism. Another type of modified gravity theory is ”scalar-tensor gravity”, which adds
one or more scalar fields to the gravitational action. These scalar fields can couple to mat-
ter or curvature, and can affect the dynamics of gravity and cosmology. Some examples
of scalar-tensor gravity models are Brans-Dicke theory, chameleon models, and Galileon
models. A third type of modified gravity theory is ”Einstein-Aether theory”, which intro-
duces a dynamical unit timelike vector field that breaks Lorentz invariance. This vector
field can modify the propagation of gravitational waves and light, and can affect the cos-
mological evolution. Some examples of Einstein-Aether theory models are Khronometric
theory, Hořava-Lifshitz gravity, and projectable Hořava-Lifshitz gravity. A fourth type of
modified gravity theory is ”bimetric theory”, which considers two interacting metric tensors
that describe two sectors of matter and gravity. This can lead to a massive graviton and a
cosmological constant that depend on the interaction between the two metrics. Some exam-
ples of bimetric theory models are Hassan-Rosen bimetric theory, dRGT massive gravity,
and bigravity [14–16]. The modified logarithmic gravity model is a specific example of f(R)
gravity. It is given by the action,

S =

∫
d4x

√
−g

[
R

2κ2
+

1

2κ2
ln

(
R

µ2

)
R− V0

]
+ Sm, (1)

where κ2 = 8πG, µ is a constant, V0 is a cosmological constant, and Sm is the matter action.
This model can explain the late-time acceleration of the universe without introducing dark
energy, by using the logarithmic correction to the Ricci scalar. The model can also avoid the
singularity problem of general relativity, by having a bounce solution in the early universe.
The model can also pass the solar system tests of gravity, by satisfying the chameleon
mechanism [17].

The modified logarithmic gravity model has some interesting features and predictions,
such as: The model can have a de Sitter attractor solution, which means that the universe
will asymptotically approach a constant expansion rate in the future. The model can have a
phantom phase, which means that the effective equation of state of dark energy can be less
than -1, leading to a possible future singularity known as the Big Rip. The model can have
a cyclic behavior, which means that the universe can undergo repeated cycles of expansion
and contraction, with each cycle having a longer duration than the previous one. The model
can have a graceful exit from inflation, which means that the universe can make smooth
transition from an inflationary phase to a radiation-dominated phase, without requiring
reheating or entropy production [18–20]. The above concepts motivated us to organize the
article in the following form:
In section 2, we briefly review the structure of f(R) gravity. In section 3, we introduce the
Tsallis holographic dark energy. In section 4, we fully introduce the modified logarithmic
f(R) theory of gravity. In section 5, we examine the Tsallis holographic dark energy from
the perspective of modified logarithmic f(R) theory of gravity by choosing two scale factors:
exponential and hybrid. We compare our results with other works in the literature. In
section 6, we summarize and discuss our findings.
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2 f(R) Gravity
We want to discuss one of the extended theories of general relativity. Therefore, Einstein
Hilbert’s Lagrangian is first considered for this extended theory with reference to Ricci’s
scalar in the following form [18–21],

S =
1

2κ

∫
f(R)

√
−gd4x+ SM . (2)

According to the above equation, g determines the metric, (SM ) indicates the action of the
matter, and we will also have (κ = 8π.G). with respect to the variation of Lagrange relative
to the metric tensor, f(R) gravity field equations can be obtained,

Rµνf
′(R)− 1

2
gµνf(R)−∇µ∇νf

′(R) + gµν□f ′(R) = κTµν , (3)

where prime shows differentiation of (R), (∇µ) related to covariant derivative, (□ ≡ ∇µ∇µ)
and (Tµν) the energy-momentum tensor specified as,

Tµν = − 2√
−g

∂SM

∂gµν
. (4)

In this way, Einstein’s standard field equations can be written as follows,

Gµν = κTµν . (5)

So, with respect to above equation, we will have,

Tµν =
κ

f ′(R)
(Tµν + T eff

µν ). (6)

Then
T eff
µν =

1

κ
[
1

2
gµν(f(R)− f ′(R)R) +∇µ∇µf

′(R)− gµν□f ′(R)]. (7)

The effective energy-momentum tensor includes geometrical implications, indicating that the
energy conditions cannot be created by it. Its effective energy density is not positive-definite.
To check the f(R) gravity field equations (equation 5), the FRW universe is assumed to be
flat.

ds2 = −dt2 + a2(t)[dr2 + r2dθ2 + r2 sin2 θdϕ2]. (8)

It should be noted that â(t) is considered as a scale factor. keeping in mind the absolute
fluid as the matter content, which is obtained by the energy-momentum tensor,

Tµν = (ρ+ p)uµuν + pgµν . (9)

It is possible to derive the equations of the field by having (p) and (ρ), which are sequentially
fluid pressure and energy density,

H2 =
1

3f ′(R)
(κρ+

Rf ′(R)− f(R)

2
− 3HṘf ′′(R)), (10)

2Ḣ + 3H2 = − κ

f ′(R)
(p− Rf ′(R)− f(R)

2
− 2HṘf ′′(R) + Ṙ2f ′′′(R) + Ḧf ′′(R)). (11)
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The above equations are called Friedman’s equations as (11) shows the differentiation of
time, and its structure can be written as follows,

2Ḣ +2H2 = −H2 − κ

f ′(R)
(p− Rf ′(R)− f(R)

2
− 2HṘf ′′(R) + Ṙ2f ′′′(R) + Ḧf ′′(R)). (12)

By having the equation (10), we will have,

Ḣ +H2 =
¨̂a

â
= −κ

6
ρ+ ρeff + 3(p+ peff ). (13)

Then
ρeff =

1

κf ′(R)
(
Rf ′(R)− f(R)

2
− 2HṘf ′′(R). (14)

Also,
peff =

κ

κf ′(R)
(Ṙ2f ′′′(R) + Ḧf ′′(R)− Rf ′(R)− f(R)

2
+ 2HṘf ′′(R)). (15)

We modify equation (13) for the accelerated universe as follows,

ρ+ ρeff + 3(p+ peff ) < 0 ⇒ p+ peff
ρ+ ρeff

< −1

3
. (16)

Finally, an equation of state is generated,

ωtot =
p+ Ṙ2f ′′′(R) + Ḧf ′′(R)− Rf ′(R)−f(R)

2 + 2HṘf ′′(R)

ρ+ Rf ′(R)−f(R)
2 − 3HṘf ′′(R)

. (17)

Here, ωtot describes the behavior of the system in the context of f(R) gravity and the
construction of matter. By using a specific f(R) model and the field equations, we will
study the development of the universe.

3 Tsallis holographic dark energy
First, a summary of the Holographic Dark Energy (HDE) model is provided to help us find
the solution to the dark energy. the holographic principle which states that the number of
degrees of freedom related to entropy scales directly with the surrounding area of the system
[22–24]. The energy density of holography is as follows,

ρ =
3c2M2

p

L2
. (18)

It relies on the entropy relation around the black hole, i.e. S ∝ A, where A is the area of
the black hole’s event horizon.According to (UV) and (IR) cutoffs [25], a new definition for
entropy is provided

L3Λ3 =≤ S
3
4 , (19)

where L and Λ are introduced as UV-cutoffs and IR, respectively. By generalizing the
standard Boltzmann-Gibbs entropy and converting it to a non-expansive entropy then it
can be used in Tsallis entropy. So, it was rewritten as follows,

S = γAδ. (20)
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In the manner that γ is an unknown constant and δ indicates the non-additivity parame-
ter.By taking the limit of γ = 1

4G and putting δ = 1, the Bekenstein-Hawking entropy is
restored. If we consider the equations (19) and (20), the vacuum energy density is obtained,

ρ = BL2δ−4, (21)

where B is an unknown parameter.IR cutoffs are used in various cases, such as the Hubble
horizon, event horizon, particle horizon, etc. We use the simplest IR cutoffs, that is (L =
H−1), and the energy density is written as follows

ρ = BH4−2δ. (22)

The parameter δ is related to the dimensions of the system and is defined as δ = d/d−1 and
also if we put d = 1, holographic dark energy is restored. Now this is if δ = 2 gives us the
cosmological constant. Therefore, if we consider the Friedman equation and the equation of
state, we will have the conservation of energy as follows,

ρ̇+ 3H(ρ+ p) = 0. (23)

Pressure is also calculated as,

p =
2δ − 4

3
BḢH−2δ+2 −BH−2δ+4. (24)

4 Modified logarithmic f(R) gravity model
The characteristics of the f(R) gravity model are altered due to conditions and limitations.
In this section, we want to give more information about the modified f(R) gravity model,
which has a logarithmic term [26–29] that includes logarithmic plus polynomial terms.

f(R) = R+ αR2 + βRn + γR2 ln γR. (25)

It should be noted that neutron stars, cosmic models, and gluon effects can be considered
by the logarithmic mode with respect to constant parameters n, α, β, and γ [26–29]. we
will have,

f ′(R) = 1 + (2α+ γ)R+ 2γR ln γR+ nβRn−1,

f ′′(R) = 2α+ γ + 2γ ln γR+ n(n− 1)βRn−2.
(26)

Equations (25) and (26) are very important so that the gravitational model can be introduced
by them provided that we set the parameters α, β and γ. If β = 0, it shows the Starobinski
model. γ = 0 and n = 4 studied in [26–29]. with f(0) = 0 one condition is met in f(R),
which shows a smooth spacetime without cosmic constant. as well as the stability of this
model has been fully investigated in [26–29]. So, having the above model, the quantum
stability situations is compatible with f(R) and the classical stability condition is obtained.

f ′(R) = 1 + (2α+ γ + 2γ ln γR)R+ nβRn−1 > 0. (27)

5 Discussion and results
We will study a model of dark energy that is based on two ideas: the holographic principle
and the Tsallis entropy. The holographic principle says that the information in a space is
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related to the area of its boundary, not its volume. The Tsallis entropy is a way of measuring
the disorder of a system that can deal with non-standard situations, such as long-range forces
or fractal shapes. The model assumes that the dark energy density depends on the Hubble
horizon and the Tsallis parameter, which shows how much the entropy differs from the
usual one. This model can explain why the universe is expanding faster and faster without
using a cosmological constant or a scalar field. We also used a modified version of f(R)
gravity theory, which is a way of changing Einstein’s theory of gravity by using a different
function of the Ricci scalar, R, in the action. The modified version has a polynomial and
a logarithmic term in the function. This version can describe the early inflation and the
late-time acceleration of the universe. We used two different ways of describing how the
universe grows with time. One way was exponential, which means that the growth rate is
constant. The other way was hybrid, which combines an exponential and a power-law term,
which allows for a change from slowing down to speeding up.

5.1 Exponential case
According to the above equations, we calculate the energy density and pressure for the
logarithmic model for the exponential case (â = ta), which are in the following form,

ρexp =
3a(2a− 1)

(
36a2(4a(a+ 1)− 3)γ(2α+ 3γ)− t4

)
+ aβγ6n+1(n− 1)t4(2a+ 2n− 1)

(
a(2a−1)

t2

)n

2γt2
(
β6nnt4

(
a(2a−1)

t2

)n
− 6a(2a− 1) (t2 − 6a(2a− 1)(2α+ 3γ))

) ,

(28)
and

Pexp =− 12a4(6a+ 5)(2α+ 3γ)

(2a− 1)t4
+

12a3(6a+ 5)(2α+ 3γ)

(2a− 1)t4
− 3a2(6a+ 5)(2α+ 3γ)

(2a− 1)t4

+
β2n−13n−2(n− 1)nt

(
a(2a−1)

t2

)n

(1− 2a)2a
+ β6n−1(n− 1)

(
a(2a− 1)

t2

)n

4n

 6(n− 2)t2

β6nnt4
(

a(2a−1)
t2

)n

− 6a(2a− 1) (t2 − 6a(2a− 1)(2α+ 3γ))
+

1

1− 2a

− 3


+

a(4α+ 6γ)

t3
+

1

4γ
. (29)

Using the above two equations as well as the explanations given in detail in the previous
sections, we can fully calculate some quantities such as the equation of state, which is
specified in section Appendix A. One possible method of measuring the stability of dark
energy models using the speed of sound is to study the effects of dark energy perturbations
on the cosmic microwave background (CMB) and the matter power spectrum. Dark energy
perturbations are characterized by the sound speed parameter, c2s, which determines how
fast the dark energy density and pressure fluctuations propagate in the medium. If c2s is
different from the speed of light, then dark energy perturbations can grow or decay over time
and distance, depending on the equation of state and the background expansion rate. This
can affect the CMB temperature and polarization anisotropies, as well as the clustering of
matter on large scales. To measure the sound speed parameter, one can use a combination of
CMB and large-scale structure data, such as galaxy surveys or weak lensing measurements.
By comparing the theoretical predictions of different dark energy models with different
values of c2s with the observed data, one can constrain the sound speed parameter and
test the stability of dark energy models. For example, one can use a Bayesian analysis
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to compute the likelihood function and the posterior distribution of c2s given the data and
a prior distribution. Alternatively, one can use a frequentist approach to calculate the
chi-square statistic and the confidence intervals of c2s given the data and a fiducial model.
Some previous studies have applied this method to various dark energy models, such as
quintessence, phantom, k-essence, or early dark energy models. They have found that
current data can put only weak constraints on the sound speed parameter, but future data
may be able to improve the sensitivity and distinguish between different dark energy models.
So, the sound speed is given by,

c2s =
dp/dt

dρ/dt
, (30)

According to the above explanation as well as equations (28) and (29) and with respect
to the relationship of sound speed, we can discuss the stability of the above model, the
results of which are briefly shown in the figs. As Figure 1 shows, the equation of state
as a function of time is plotted for different values of n, which is the power of the term
of logarithmic model. The equation of state is a measure of the pressure and density of
the cosmic fluid, and it can be used to describe the evolution of the universe. The figure
also displays the variation of the equation of state with respect to n in Figure (1b). This
variation shows how the equation of state changes as n increases or decreases, and how it
affects the expansion rate of the universe. Moreover, the stability of the logarithmic model
for an exponential case is illustrated in Figure (1c). The logarithmic model is a modified
gravity theory that can explain the accelerated expansion of the universe without invoking
dark energy. The figure includes different free parameters as indicated in the figures.. As
it is known, positive values imply stability and negative values imply instability of the
system. The stability and instability regions of the model are clearly marked in Figure (1c).
These regions indicate whether the model can produce consistent and realistic cosmological
solutions or not. In Figure 2, the equation of state as a function of n is drawn for different
values of the Tsallis parameter, and these variations are clearly shown in the figure. The
figure shows how different values of this parameter affect the equation of state and hence
the expansion history of the universe.
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Figure 1: The plot of the ω− t for different values of n in fig (1a), plot of the ω−n in fig (1b) and
the plot of the stability determined in fig (1c) with respect to α = 0.15, β = 0.009, γ = 0.01, and
a = 1
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Figure 2: The plot of the ω in terms of n with respect to different values of δ and a = 1

5.2 Hybrid case
Also, we proposed the same trend for the logarithmic model for the hybrid scale factor
(â = ecttb). As we explained in the previous section, we perform similar calculations for the
hybrid case of the logarithmic model. The calculations related to this section are included
in Appendix B and we discuss the results here in detail.
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Figure 3: The plot of the ω − t for different values of n in fig (3a), plot of the ω − n in fig (3b)
and the plot of the ω− t for different values of n and δ = 0.5 determined in fig (3c) with respect to
α = 0.15, β = 0.009, γ = 0.01, c = 1.5, and b = 0.5

As Figure 3 shows, the equation of state as a function of time is plotted for different
values of n, which is the power of the term of logarithmic model. The equation of state is
a measure of the pressure and density of the cosmic fluid, and it can be used to describe
the evolution of the universe. The figure also displays the variation of the equation of state
with respect to n in Figure (3b). This variation shows how the equation of state changes
as n increases or decreases, and how it affects the expansion rate of the universe. Also, the
equation of state as a function of time is plotted for different values of n and δ in Figures
(3c), (4a), and (4b). δ is a dimensionless parameter. The figures show how different values of
δ influence the equation of state and hence the acceleration or deceleration of the universe.
Moreover, the stability of the logarithmic model for a Hybrid case is illustrated in Figure
(4c). The Hybrid case is a combination of exponential and power-law scale factors that
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Figure 4: The plot of the ω− t for different values of n and δ = 1.5 and δ = 2.5 in fig (4a) and (4b)
and the plot of the stability determined in fig (4c) with respect to α = 0.15, β = 0.009, γ = 0.01
c = 1.5, and b = 0.5

can mimic different phases of the universe. The figure includes different free parameters as
indicated in the figures. As it is known, positive values imply stability and negative values
imply instability of the system. The stability and instability regions of the model are clearly
marked in Figure (4c) with respect to different values of n. These regions indicate whether
the model can produce consistent and realistic cosmological solutions or not.

6 Conclusion
The Tsallis holographic dark energy was investigated in this paper using a modified logarith-
mic f(R) gravity model that consisted of a polynomial and a logarithmic part. The Tsallis
holographic dark energy is a generalization of the standard holographic dark energy that
incorporates non-extensive statistics and non-additive entropy. The modified logarithmic
f(R) gravity model is a modified gravity theory that can explain the accelerated expansion
of the universe without invoking dark energy. The equation of state for our model was
calculated using two scale factor structures: exponential and hybrid. The scale factor is a
function that describes how the size of the universe changes with time. The exponential scale
factor represents a de Sitter phase of the universe, while the hybrid scale factor represents
a combination of exponential and power-law phases that can mimic different epochs of the
universe. The equation of state for our model shows how the pressure and density vary with
time and depend on the free parameters of the model. The stability of our model was also
checked using the sound speed and the results were plotted in figures. The sound speed can
indicate whether the model is stable or unstable. The figures show how the sound speed
changes with time and with different values of the free parameters. Finally, our results were
expressed in details. Our results show that our model can produce realistic cosmological
solutions that are consistent model and that our model can avoid some of the problems that
plague other models of dark energy.
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Appendix A: Calculation of the equation of state for the
exponential case
Therefore, according to the above two equations (28) and (29), the equation of state for the
mentioned model can be calculated as,

A1 = 2n3n+1ant6β((2(6n(n− 1)(4n− 3)β(
a(2a− 1)

t2
)n + 6p)γ + 3)t2

A2 = 4(n− 1)γt+ 48(n− 2)(n− 1)γ)(
a(2a− 1)

t2
)n + 22n+19n(n− 1)n2t9β2γ(

a(2a− 1)

t2
)2n

A3 = −746496a11γ(2α+ 3γ)2 + 1244160a10γ(2α+ 3γ)2

+ 10368a8γ(2α+ 3γ)(−7t2 + 8αt− 120α+ 12(t− 15)γ)

A4 = +62208a9γ(2α+ 3γ)(t2 − 5(2α+ 3γ)) + 432a5((2(6n(n− 1)(
a(2a− 1)

t2
)nβ − 2p)γ − 1)t6

A5 = +6(2α+ 3γ)(6n(n(4n− 9) + 6)βγ(
a(2a− 1)

t2
)n + 12pγ + 3)t4 + 12γ(2α+ 3γ)t3

− 51γ(2α+ 3γ)t2

A6 = −48γ(2α+ 3γ)2t+ 45γ(2α+ 3γ)2) + 6a2t5(−2n+13nβ(48tγn3 + 2γ((t− 78)t− 6α− 9γ)n2

A7 = +3t3n+ t(2t(6pt− 1) + 117)γn− 9tγ)(
a(2a− 1)

t2
)n

− 4n+19n(n− 1)n(2n− 3)t3β2γ(
a(2a− 1)

t2
)2n)

A8 = +9t(4pγ + 1) + 5184a7(2α+ 3γ)((−6n(3n− 2)βγ(
a(2a− 1)

t2
)n + 4pγ + 1)t4 − 2γt2

A9 = −16γ(2α+ 3γ)t+ 105γ(2α+ 3γ)) + 1728a6(2α+ 3γ)(2(−6n(n(2n− 9) + 6)

βγ(
a(2a− 1)

t2
)n − 12pγ − 3)t4

A10 = −2γt3 + 27γt2 + 36γ(2α+ 3γ)t− 99γ(2α+ 3γ)) + 36a3t3(6ntβ(nt4 + 3(n(−8n(t− 3)

− 27) + 18)γ2 + 2((n(2pt2 + 8(n− 4)n+ 33)− 9)t2

A11 = +(n(−8n(t− 3)− 27) + 18)α)γ)(
a(2a− 1)

t2
)n − 22n+19n(n− 1)nt5β2γ(

a(2a− 1)

t2
)2n

A12 = +12γ(2α+ 3γ)− 9t3(4pγ + 1) + 9t(2α+ 3γ)(4pγ + 1)) + 72a4t(2n+13nt3βγ(2t(2α+ 3γ)n2

+ (n− 1)(4n− 9)t2 − 18(n(2n− 3) + 2)(2α+ 3γ))(
a(2a− 1)

t2
)n

A13 = +9((4pγ + 1)t5 − 4(2α+ 3γ)(4pγ + 1)t3 − 4γ(2α+ 3γ)t2 + 5γ(2α+ 3γ)t+ 4γ(2α+ 3γ)2))

B1 = 18a(t− 2at)2(2n+13nt4βγ(nρt2 + 3a(n− 1)(2a+ 2n− 1))(
a(2a− 1)

t2
)n

+ 3a(2a− 1)(−((4γρ+ 1)t4)

B2 = 24a(2a− 1)γ(2α+ 3γ)ρt2 + 36a2(4a(a+ 1)− 3)γ(2α+ 3γ)))

ωexp =
A1 +A2 + · · ·+A13

B1 +B2

According to the above explanations and equations (22) and (25), the equation of state will
be calculated in the following form for an exponential case,

C1 = −144a8γ(36(2α+ 3γ)(
a

t
)2δ +B) + 48a7γ(72(2α+ 3γ)(

a

t
)2δ +B(7− 2δ))
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+ 12a6γ(216(2α+ 3γ)(
a

t
)2δ +B(8δ − 19)) + 24a5γ(12(t− 9)(2α+ 3γ)(

a

t
)2δ −B(δ − 2))

− 36a4(
a

t
)2δ(−15γ(2α+ 3γ) + t4(βγ2n+13n(n− 1)(

a(2a− 1)

t2
)n − 1) + 8γt(2α+ 3γ))

− 12a3t(
a

t
)2δ(t3(βγ2n+13n(n− 1)(2n− 3)(

a(2a− 1)

t2
)n + 3)− 6γ(2α+ 3γ))

+ 3a2t4(
a

t
)2δ(βγ2n+13n(n− 1)(4n− 3)(

a(2a− 1)

t2
)n + 3)

+ βγ(−2n+1)3n(n− 2)(n− 1)nt7(
a(2a− 1)

t2
)n(

a

t
)2δ + aβγ2n+13n(n− 1)nt5(

a(2a− 1)

t2
)n(

a

t
)2δ

D1 = 9a2(2a− 1)(4a2(2a− 1)γ(a2B + 9(2a− 1)(2a+ 3)(2α+ 3γ)(
a

t
)2δ)

+ t4(
a

t
)2δ(βγ2n+13n(n− 1)(2a+ 2n− 1)(

a(2a− 1)

t2
)n − 2a+ 1))

ωexp(Tsallis) = C1

D1

Appendix B: Calculation for the hybrid case
Therefore, according to the above explanations, the energy density and pressure for the
mentioned model are calculated in the following form

E1 =
4b2β(n− 2)(n− 1)n(2b+ 2ct− 1)2( 2(b+ct)2−b

t2 )n

(4bct + b(2b− 1) + 2ct2)3

−
(2(b+ ct)2 − b)(βn( 4bct+b(2b−1)+2ct2

t2 )n−1 + (2α+3γ)(4bct+b(2b−1)+2ct2)
t2 − 1)

2t2

−
4b( bt + c)(2b+ 2ct− 1)(2α+

β(n−1)nt4(
4bct+b(2b−1)+2ct2

t2
)n

(4bct+b(2b−1)+2ct2)2 + 3γ)

t3

+
1

4
(2β(

4bct + b(2b− 1) + 2ct2
t2

)n

+
(4bct + b(2b− 1) + 2ct2)((2α+ 3γ)(4bct + b(2b− 1) + 2ct2)− 2t2)

t4
+

1

γ
)

+
2b(2α+

β(n−1)nt4(
4bct+b(2b−1)+2ct2

t2
)n

(4bct+b(2b−1)+2ct2)2 + 3γ)

t3

F1 = βn(
4bct + b(2b− 1) + 2ct2

t2
)n−1 +

(2α+ 3γ)(4bct + b(2b− 1) + 2ct2)
t2

− 1

PH =
E1

F1

and

G1 = 6b(
b

t
+ c)(2b+ 2ct− 1)(2α+

β(n− 1)nt4( 4bct+b(2b−1)+2ct2
t2 )n

(4bct + b(2b− 1) + 2ct2)2
+ 3γ)

G2 = t3(βn(
4bct + b(2b− 1) + 2ct2

t2
)n−1 +

(2α+ 3γ)(4bct + b(2b− 1) + 2ct2)
t2

− 1)

H1 = 2β(
4bct + b(2b− 1) + 2ct2

t2
)n
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+
(4bct + b(2b− 1) + 2ct2)((2α+ 3γ)(4bct + b(2b− 1) + 2ct2)− 2t2)

t4
+

1

γ

H2 = 4(βn(
4bct + b(2b− 1) + 2ct2

t2
)n−1 +

(2α+ 3γ)(4bct + b(2b− 1) + 2ct2)
t2

− 1)

ρH =
G1

G2
− b− 2(b+ ct)2

2t2
− H1

H2

According to the above two equations, the equation of state is obtained as,

I1 =
16b2(n− 2)(n− 1)n(2b+ 2ct− 1)2β( 2(b+ct)2−b

t2 )n

(2ct2 + 4bct+ b(2b− 1))3

+ 2(
b(2b− 1)

t2
+ c(

4b

t
+ 2))nβ +

8b(
(n−1)nt4β(

b(2b−1)

t2
+c( 4b

t +2))n

(2ct2+4bct+b(2b−1))2 + 2α+ 3γ)

t3

+
(2ct2 + 4bct+ b(2b− 1))((2ct2 + 4bct+ b(2b− 1))(2α+ 3γ)− 2t2)

t4

−
2(2(b+ ct)2 − b)(nβ( b(2b−1)

t2 + c( 4bt + 2))n−1 + (2ct2+4bct+b(2b−1))(2α+3γ)
t2 − 1)

t2

−
16b( bt + c)(2b+ 2ct− 1)(

(n−1)nt4β(
b(2b−1)

t2
+c( 4b

t +2))n

(2ct2+4bct+b(2b−1))2 + 2α+ 3γ)

t3
+

1

γ

I2 = 4(nβ(
b(2b− 1)

t2
+ c(

4b

t
+ 2))n−1 +

(2ct2 + 4bct+ b(2b− 1))(2α+ 3γ)

t2
− 1)

I3 = 2β(
b(2b− 1)

t2
+ c(

4b

t
+ 2))n

+
(2ct2 + 4bct+ b(2b− 1))((2ct2 + 4bct+ b(2b− 1))(2α+ 3γ)− 2t2)

t4
+

1

γ

I4 = 4(nβ(
b(2b− 1)

t2
+ c(

4b

t
+ 2))n−1 +

(2ct2 + 4bct+ b(2b− 1))(2α+ 3γ)

t2
− 1)

I5 = 6b(
b

t
+ c)(2b+ 2ct− 1)(

(n− 1)nt4β( b(2b−1)
t2 + c( 4bt + 2))n

(2ct2 + 4bct+ b(2b− 1))2
+ 2α+ 3γ)

I6 = t3(nβ(
b(2b− 1)

t2
+ c(

4b

t
+ 2))n−1 +

(2ct2 + 4bct+ b(2b− 1))(2α+ 3γ)

t2
− 1)

ωH = p+
I1
I2

− I3
I4

+
I5
I6

+ ρ− b− 2(b+ ct)2

2t2

Similar to the previous subsection, this time also according to equations (22) and (25),
the equation of state for the model in the hybrid scale factor example is calculated in the
following form, and we also discussed the stability of the model, which is clearly shown in
the figs.

J1 =
4b2β(n− 2)(n− 1)n(2b+ 2ct− 1)2( 2(b+ct)2−b

t2 )n

(4bct+ b(2b− 1) + 2ct2)3

−
2bB(δ − 2)( bt + c)2−2δ

3t2

−B(
b

t
+ c)4−2δ +

2b(2α+
β(n−1)nt4(c( 4b

t +2)+
b(2b−1)

t2
)n

(b(2b+4ct−1)+2ct2)2 + 3γ)

t3
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+
1

4
−

2(2(b+ ct)2 − b)(βn(c( 4bt + 2) + b(2b−1)
t2 )n−1 + (2α+3γ)(4bct+b(2b−1)+2ct2)

t2 − 1)

t2

+ 2β(c(
4b

t
+ 2) +

b(2b− 1)

t2
)n

+
(4bct+ b(2b− 1) + 2ct2)((2α+ 3γ)(4bct+ b(2b− 1) + 2ct2)− 2t2)

t4

+
1

γ
−

4b( bt + c)(2b+ 2ct− 1)(2α+
β(n−1)nt4(c( 4b

t +2)+
b(2b−1)

t2
)n

(4bct+b(2b−1)+2ct2)2 + 3γ)

t3

J2 = B(
b

t
+ c)4−2δ +

1

4

2(2(b+ ct)2 − b)(βn(c( 4bt + 2) + b(2b−1)
t2 )n−1 + (2α+3γ)(4bct+b(2b−1)+2ct2)

t2 − 1)

t2

− 2β(c(
4b

t
+ 2) +

b(2b− 1)

t2
)n

− (4bct+ b(2b− 1) + 2ct2)((2α+ 3γ)(4bct+ b(2b− 1) + 2ct2)− 2t2)

t4

− 1

γ
+

4b(2b+ 2ct− 1)( bt + c)(2α+
β(n−1)nt4(c( 4b

t +2)+
b(2b−1)

t2
)n

(4bct+b(2b−1)+2ct2)2 + 3γ)

t3

ωH(Tsallis) = J1
J2
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