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Abstract. Exploring the consistency of a dataset with the ACDM model across low
and high redshifts stands as a compelling topic in cosmology. Given the capability
of neural networks to reconstruct an unknown function, we employed an ensemble of
neural networks to reconstruct the luminosity distance based on the Pantheon+ dataset.
Each network in the ensemble consists of various numbers of layers and neurons. Since,
the neural network can easily provide a reconstruction with a small value of x2, it
is possible to find a reconstruction with x? smaller than the standard ACDM. We
selectively choose those reconstructions with a x? value smaller than the best-fit ACDM
model. Our findings reveal that all reconstructions yield a smaller luminosity distance
at high redshifts compared to the best ACDM. Assuming a flat universe, we transformed
the reconstructions into the Hubble parameter as a function of redshifts and compared
the results with predictions of the ACDM model.
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1 Introduction

The most well-known model in cosmology is the ACDM which describes most cosmological
data very well. The A stands for the cosmological constant and CDM for the cold dark
matter. The model generally is very good at describing the cosmological data including
SNIa [1-3], baryon acoustic oscillation (BAO) [4-8], cosmic microwave background (CMB)
[9-11] and large scale structure (LSS) [12-14]. However, there are some problems not only
from theoretical points of view [15-17] but also from observation at small scale [18]. There
are a lot of efforts to understand consistency of the cosmological data with the model and also
all of its drawbacks. In addition, recent works show a > 4o deviation from the ACDM at high
redshift when considering quasars as high redshift standard candles [19-21]. In this direction,
[22] also investigated the tension by considering a combination of SNIa, quasars and gamma-
ray bursts in a model-independent approach. The results also confirm a deviation at high
redshifts. Furthermore, the authors of [23,24] studied how MCMC marginalization and data
binning can affect the final results and the potential contributions of these factors to the
ACDM tensions.
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On the other hand, as it is emphasized in [25,26], a model-independent method can help
to understand any possible bias from a model. There are various scenarios for investigating
of a dataset in a model-independent manner. Gaussian process (GP) is a collection of normal
random variables such that every finite set of them has a multivariate normal distribution
[27]. The method has been widely used in cosmology to investigate cosmological data [25,
28-31]. On the other hand, the genetic algorithm (GA) is inspired by the process of natural
selection, and given some base functions and a dataset, it is able to reconstruct an unknown
function (see [32-34] for some works in cosmology). Moreover, in [35,36], it has been shown
that neural networks can be utilized to reconstruct an underlying function and estimate
cosmological parameters. A neural network (NN) consists of an input layer, some hidden
layers, and an output layer. Each layer has some neurons, and the network is able to
reconstruct any unknown function. An NN has been used to investigate cosmological dataset
and estimate cosmological parameters model-independently in [37,38]. In these works, the
NN not only estimates the cosmological parameters but also provides an estimation of their
uncertainty. In addition, in [39], an NN is combined with linear Gaussian model to introduce
a new approach to investigate cosmological data.

In current work, we consider an NN for a different purpose. Given the SNIa data, the
NN has been used to reconstruct the luminosity distance as a function of redshift. In such a
scenario, we are able to find functions with smaller value of x? compared to the best ACDM.
Finally, it is straightforward to compute the Hubble parameter as a function of redshift from
those reconstructions.

The structure of the paper is as follows. In Section 2, details of a typical NN have been
given and the roles of hyper-parameters in an NN have been discussed. Additionally, Sec-
tion 3 covers in-depth details about the dataset and outlines our methodological approach.
Subsequently, in Section 4, we comprehensively present and discuss our results. Finally, in
Section 5, we summarize our findings and discuss the results.

2 Neural Networks

An NN is a tool in machine learning and has been widely used in regression and classification
problems. The network is able to estimate an unknown function and is sometimes called
a “universal approximator” [40]. An NN consists of an input layer, some hidden layers,
and an output layer. A network with several hidden layers is usually called a deep NN.
With advancements in computer hardware, an NN with a large number of hidden layers can
now be trained with large amounts of data. In recent years, methods based on NNs have
demonstrated exceptional performance in solving cosmological problems with high accuracy
and efficiency. For instance, NNs have shown excellent performance in analyzing gravita-
tional waves[41], estimating parameters of the 21 cm signal [42], estimating cosmological
parameters [43] and classifying the large-scale structure of the universe [44].

The NNs are designed to identify underlying relationships between input and output data
and are purely data-driven methods. Based on this property, we can study a cosmological
dataset in a model-independent manner. In this study, we use an NN to reconstruct the
luminosity distance of the SNIa pantheon+ data and then find the Hubble parameter from
the reconstructions. To implement an NN, we use the PyTorch library in Python and develop
a simple code to reconstruct the luminosity distance. In such a scenario, the input data
is propagated through the hidden layers, undergoes linear transformations and nonlinear
activations, and finally produces an output. Using the given output and targets, one can
define a cost function and consider an optimization method to decrease it and adjust the
weights and biases of the network.
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In each layer, a vector containing neurons is fed as input, which undergoes a linear
transformation and then a nonlinear activation. The resulting output is then passed on to
the next layer. Formally, this process can be represented in a vectorized style.

Zig1 = T Wig1 + biga, (1)

Tiy1 = f(2i+1)~ (2)

In this context, x; represents the input row vector of the ith layer. W; 1 and b;41 correspond
to the linear weights and biases that should be adjusted during the learning process. z;41
denotes the intermediate vector obtained after applying the linear transformation, while f
represents the element-wise nonlinear activation function. Notably, the output layer solely
performs linear transformations. In practical implementations, when there are n inputs of
x with a shape of 1 X n and m neurons, the matrix W has a shape of n x m, and b has a
shape of 1 x m. Consequently, the intermediate vector z has a shape of 1 x m. In Figure 1,
a simple NN with two hidden layers has been shown. The network takes a vector of x; as
input and provides two outputs g; and s.
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Figure 1: A schematic of an NN with two hidden layers: The network takes a 4D vector and
produces two outputs.

An NN can be understood as a function fi, that takes input X. In supervised learning
tasks, each input data is paired with a corresponding ground-truth target, Y. The objective
of training a network is to minimize the difference between the predicted result Y = fwp(X)
and the ground truth. This difference is measured quantitatively using a function called loss
function L(W,b). The network’s parameters W and b are then optimized to minimize the
loss function. In our procedure, we use the x? as the loss function, and the network tries to
find the minimum of the x? during the training phase.

In summary, given a dataset, NNs have proven to be powerful tools for reconstructing
a function that describes the data very well. In the current study, we introduce a new
nonparametric method based on NNs to reconstruct the luminosity distance from the SNIa
data. These reconstructions can then be utilized to obtain the Hubble parameter as a
function of redshift.
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3 Dataset and method

In the current study, we use the Pantheon+, the latest SNIa sample. The dataset consists
of 1701 SNIa light curves observed from 1550 distinct SN. The redshifts of these SN range
from a low redshift of z = 0.001 up to a maximum redshift of z,,4, = 2.26 [3]. Compared
to the Pantheon sample, the new sample includes more than 700 additional SN in the range
z < 0.8, but there is also a significant deletion in the range 0.8 < z < 1. We consider the
full covariance as C' = Ciyqt + Csyst, where Cyyq¢ mainly includes the statistical uncertainty,
such as the full distance error and measurement noise, and Csys; includes the systematic
uncertainty as described in [45]. Since, those supernovae with z < 0.01 are highly affected
by peculiar velocity, we exclude them from our analysis (The dataset and the full covariance
matrix can be obtained from this link).

First of all, we perform an MCMC analysis to find the best value of the ACDM parameters
namely Q,, and Hy. We found a minimum x? = 1394.5 and ©,, = 0.332 & 0.018 and
Hy =73.84 + 0.25 considering the Pantheon+ dataset.

Now, we will describe the details of our approach to find the Hubble parameter. The
module distance is converted to the luminosity distance by

Dy(z) = 10=20)/5, (3)

the dataset is subsequently normalized by a constant to achieve a luminosity distance of
order ~ 1 (this normalization is necessary for the neural network). The normalized data is
then input into an NN to reconstruct the luminosity distance. The loss function employed
by the NN is defined as

X =ApC  ApT, (4)

where Ap = pops — UNN- NN is the module distance at observational points provided by
the NN. The input layer is the redshift and the output layer provides the module distance.
As for the hidden layers, we have the flexibility to determine their quantity and the number
of neurons within each. Upon establishing an NN, the network’s weights and biases are ini-
tialized randomly, initially resulting in a high y2. Through subsequent epochs, the network
minimizes this value, ultimately achieving a smaller x2. Our investigation into the impact of
hyper-parameters (number of layers, number of neurons, activation function and ...) reveals
that the final outcomes remain consistent regardless of these parameters, mainly affecting
the training speed.

It becomes evident that an NN with more layers and neurons can give a reconstruction
with a smaller x? at a faster rate compared to a smaller NN. To enhance the reliability of
our approach, we opt for an ensemble of NNs. We employ a random selection method for
determining the number of hidden layers and neurons. Each NN’s hidden layer count is
randomly chosen from 2, 3, or 4, and within each layer, the number of neurons is randomly
selected within the range of 4 to 12. Since, each NN has a large number of free parameters,
the over-fitting might happen easily. To prevent over-fitting, we adopt a similar procedure
like frequntist model selection. In this scenario, we estimate the number of degree of freedom
for each NN and exclude all reconstructions with x? < x2,,,,, where x?2 ., is given by the x?
distribution setting p-value p = 0.05.

We generate a set of 50 NNs using the aforementioned criteria and proceed to train
them utilizing the Pantheon+ dataset. During this process, reconstructions yielding a x?
smaller than the best-fit ACDM model are selectively retained, forming a sample set of
reconstructions. Finally, we compute the Hubble parameter from

C

HE) = mraray

(5)
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for each reconstruction in the sample. Given a sample of reconstructions, it is straightforward
to compute the mean and standard deviation at each point. Similar to the GP method, the
standard deviation provides an estimation of uncertainty at each point.

4 Results

In this section, we present and discuss the main results of our analysis. In order to make it
as transparent as possible, we present the procedure again.

¢ The module distances of the Pantheon+ data are converted to the luminosity distances
as a function of redshift

o The full covariance matrix including all systematics has been used to compute the 2

o The luminosity distances are normalized to have number of order ~ 1 (This is required
for feeding data to an NN).

e In the context of the NN approach, we obtain reconstructions from an ensemble of
NN, ensuring independence from the specific network architecture. Furthermore, we
select all reconstructions that exhibit a smaller x? than the ACDM.

e The reconstructed luminosity distance is converted to the Hubble parameter as a
function of redshift

4.1 Neural Networks and ACDM

In order to validate our method, we first apply it to a sample of mock data. The dataset is
consisted of 500 SN that are simulated in the redshift range of 0.001 — 2.5 using the ACDM
model. The uncertainty of each SN is given by a normal distribution with 5% error. For
this dataset, we perform above mentioned steps to find the Hubble reconstructions. The
simulated data and the luminosity distance reconstructions are shown in Figure 2. The
NN provides reconstructions very close to the true one (the reconstructions are very close
to each other and provide very narrow area). The Hubble reconstructions and the best fit
ACDM are presented in Figure 3. The green (red) area shows 95% CI for the ACDM (NN
reconstructions sample). The results indicate that the NN sample reconstructions are in
agreement with the true one.

Considering the NN approach, we follow the aforementioned steps to find the reconstruc-
tion of the luminosity distance. The results are shown in Figure 4. The green area (green
solid line) represents the 95% confidence interval (CI) (the best fit) for the ACDM model.
The red one shows the same for the reconstructions from the NN approach. The black points
and their bars depict the Pantheon+ data and their uncertainties. As it is clear, since we
have a high cadence of data up to redshift ~ 1, both results are almost the same and no
significant difference is observed. For higher redshifts, the NN results yield a smaller value
for the luminosity distance and the deviation from ACDM is significant at redshifts z > 2.
It is worth noting that in the NN scenario, we select all reconstructions with a y? smaller
than the best ACDM. Based on this result, all reconstructions that are better than ACDM
provide a smaller luminosity distance at high redshifts.

Furthermore, we compute the Hubble parameter for all reconstructions and depict the
results in Figure 5. The findings indicate a strong agreement between the NN and ACDM
models up to redshift z ~ 1 but at higher redshifts, a significant difference is observed. The
NN exhibits a higher expansion rate at high redshifts, which directly stems from the smaller
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Figure 2: Simulated data and the NN reconstructions sample. NN provides reconstructions
very close to the true one.
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Figure 3: The Hubble reconstruction from the simulated data. The 95% CI for ACDM is
shown by the green area.

luminosity distance observed at such distances. Additionally, we can readily determine
the current expansion rate denoted as Hy, from these reconstructions. The NN provides
Hy = 75.16 £ 0.69 whereas the best fit for ACDM is Hy = 73.84 £+ 0.25.

5 Conclusion

Some recent works have demonstrated a deviation from the ACDM model to some extent.
In this line of research, we investigate the Pantheon+ dataset using two model-independent
methods. The distance module is converted into the luminosity distance, which is then
inputted into the algorithm to reconstruct the luminosity distance as a function of redshift.
Finally, the Hubble parameter is derived from the derivative of the luminosity distance.
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Figure 4: The luminosity distance reconstruction through the NN approach. The red interval

shows the 95% CI. The black points show the Pantheon+ data and their uncertainties. The
green area indicates the 95% CI for the ACDM model.
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Figure 5: The reconstructed Hubble parameter as a function of redshift in the NN scenario.
The red (green) area shows the 95% CI for the NN (ACDM).

In the first approach, we utilize an ensemble of NNs to generate the reconstructions.
Each network consists of several hidden layers with multiple neurons. The loss function
employed is the x? of the dataset, encompassing all systematic uncertainties. We select
reconstructions with a y? smaller than that of ACDM model. Indeed, the NN approach offers
a unique and straightforward method to identify reconstructions with x? values smaller than
a specified threshold. Our findings indicate that all reconstructions demonstrate smaller
luminosity distance at higher redshifts. Assuming a flat universe, it is simple to convert
each reconstruction into the Hubble parameter. From the NN reconstructions, we derived
a current expansion rate of Hy = 75.16 &+ 0.69, which is consistent with ACDM (H, =
73.84 £+ 0.25). While the Hubble parameter derived from the NN approach aligns well
with ACDM up to a redshift of z ~ 1, a notable deviation becomes evident at higher
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redshifts. This suggests that all reconstructions with smaller x? values provide a larger
Hubble parameter compared to ACDM at higher redshifts.

Our analysis also indicates that NNs are able to easily give reconstruction with smaller
x? value compere to the best ACDM. An ensemble of such reconstructions can be used to
investigate possible deviation from the ACDM.
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