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Abstract. We investigate the physical properties of quark stars with two different
equations of state in generalized hybrid metric-Palatini gravity. This theory corre-
sponds to a bi-scalar gravitational theory with two non-minimally-coupled scalar fields.
The field equations of the metric tensor and scalar fields are derived by varying the
action with respect to the dynamical fields. We obtain the field equations for static
spherically symmetric geometry interior of compact objects. The numerical solutions
for two types of quark stars, the MIT bag and CFL model are studied. The solutions
reveal the structure of the compact objects. The solutions are obtained for different
values of the model parameters. All considered cases show that compact objects are
more massive than their general relativity counterpart. The surface redshift and com-
pactness are also obtained which shows that the generalized hybrid metric-Palatini
quark stars have higher surface redshift and are more compact than general relativity
quark stars.

Keywords: Generalized hybrid metric-Palatini gravity, CFL quark star, MIT bag model,
Mass-radius relation, Compactness

1 Introduction
The study of compact objects has become the interest of many theoretical physicists in
recent years, especially after detecting the gravitational waves of merging binary systems of
these objects [1]. Investigating compact objects attracts attention from different aspects, and
opens a new window to a field in which different branches of physics should have contributed
to explain observational data. To obtain the equation of state of the compact objects, particle
physics and quantum field theory is needed. Indeed at the center of compact objects such as
neutron stars, the density is so high that one can consider the neutron star as a giant nuclei.
So, these objects can be considered as a natural laboratory of high energy physics. Also,
there are some motivations that maybe there are interactions between baryonic matter and
dark matter at the core of compact objects. In refs. [2–4], the possibility and results of such
interaction are studied. On the other hand, the strong gravitational field of these objects can
provide a new approach to test different gravity theories. The mass and radii obtained from
the recent observational data do not match with the predictions of general relativity. The
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mass obtained from observational data has a wide range relative to the masses predicted by
general relativity. The Chandrasekhar mass limit for white dwarfs mass is about 1.4M⊙ [5].
On the other hand, numerical and theoretical investigations of the Tolman-Oppenheimer-
Volkoff equation in ref [6] shows a limiting maximum mass of the neutron star of the order
of 3.2M⊙. This result obtained by using the stiff equation of state p = ρ. For a long time,
observational data showed that the neutron stars should have the mass distribution centered
on about 1.4M⊙.

However, the more accurate data obtained from astronomical observations and detecting
of the gravitational waves indicate that the mass range of neutron stars is wider from that
obtained by applying the Chandrasekhar limit. The upper limit of the neutron star mass
using gravitational and electromagnetic waves information found in [7] is Mmax < 2.17M⊙.
Also, for the pulsar PSR J1614-2230, the obtained mass is of order 1.9280.017M⊙ [8]. These
and other observations of high mass neutron stars serve as motivations to explore new
avenues for explaining this data. One possible way is to consider some exotic matters in
the core of neutron stars. At very high densities, theoretically suggested that the hadronic
matter can undergo a phase transition to unpair quark matter [9]. Study of such matters
in the core of neutron stars has captured significant attention [10,11]. Such conditions can
occur in two ways. The first is taking place in the quark-gluon phase transition in the
early Universe. The second can be seen at ultrahigh densities in neutron stars where the
neutron matter can convert into strange matter. One of the models to study the quark
matter is the MIT bag model. In the bag model, we assume that quarks are confined to a
sphere with certain radius (bag) and in this region, quarks are considered as massless free
particles [12]. At ultrahigh densities, there is a possibility that the deconfiened quarks can
form Cooper pairs near the Fermi surface. The pairing strength can be controlled by the
gape parameter ∆. This phenomena leads to the formation of Color-Flavor Locked (CFL)
quark phase [13]. The core of neutron stars is a suitable candidate to form the CFL quark
phase. Hence, this model is very attractive from the astronomical and high-energy points of
view. One can consider the neutron star as a quark matter and study the observation data
to obtain some constraints on the parameters in the equation of the state of quark stars.
There are many interesting works on the MIT and CFL quark stars in the frame work of
general relativity and modified gravity [14–16]. In [17,18], it has been shown that the CFL
stars and their equation of state can successfully satisfy the constraints from gravitational
wave observations. With these new equations of state such MIT bag model, CFL model,
one can obtain higher maximum masses in the context of general relativity.

Another way to explain observed high mass neutron stars is using modified gravity
theories. This approach also has attracted many attentions recent years. There are a
lot of works in which the mass of neutron stars are considered in different modified gravity
theories [19–21]. In this paper, we will use a modified gravity theory known as generalized
hybrid metric-Palatini gravity. In this model, the gravitational action depends on a general
function of both metric and Palatini curvature scalars [22,23]. This theory is shown to be
dynamically equivalent to the bi-scalar gravitational theory in which two scalar fields are
non-minimally coupled. In refs. [22,23] the dynamical evolution of generalized hybrid-metric
Palatini gravity is addressed. The authors studied in detail the late time acceleration of the
universe for different potentials. In the present work, we will consider the physical properties
of compact objects in the context of the generalized hybrid metric-Palatini model. We use
the MIT bag equation of state to obtain the compact object’s interior solution. The physical
conditions of the solution are considered and the results are compared with the results of
general relativity.

This paper is organized as follow. In Section 2, the action of the theory and the field
equations are obtained. In Section 3, the field equations for a static and spherically sym-
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metric compact objects are obtained. The solutions are obtained in Section 4 for the MIT
bag and CFL equations of state. In this section, the mass-radius relation for MIT bag and
CFL quark stars are obtained for different values of the parameters. The results are com-
pared with corresponding compact objects in general relativity and observational mass data.
Finally, in Section 5, we conclude and discuss the results.

2 Action and Field Equations
Let us consider the following action

S =

∫
d4x

√
−gf(R,R), (1)

which is a generalization of the hybrid metric-Palatini gravity [22,23]. In the action (1), the
function f(R,R) is an arbitrary function of the Ricci scalar R constructed by the Levi-Civita
connection and curvature scalar R, formed by an independent connection denoted by Γ̂α

µν .
In [24], the authors have shown that the action (1) is dynamically equivalent to the action
with two scalar fields in the Einstein frame as

S =

∫
d4x

√
−g

( 1

2k2
R− 1

2
(∇ϕ)2 − 1

2
e

−
√

2κϕ√
3 (∇ξ)2 −W (ϕ, ξ)

)
, (2)

where W (ϕ, ξ) is an arbitrary interaction between two scalar fields ϕ and ξ. The action (2) is
known as Brans-Dicke or two-field inflation, the Brans-Dicke field is presented by the scalar
field ϕ and the scalar field ξ is dedicated for the inflaton. Our starting point in this work
is the action (2). To investigate the physical structure of the compact objects, we want to
study the interior solution of the stars. So, we need to add the matter action Sm which is
given by

Sm =

∫
d4x

√
−gLm, (3)

to the action (2), where Lm is the matter Lagrangian. The field equation can be obtained by
varying the action with respect to the independent dynamical variables, i.e. metric tensor
and the scalar fields, ϕ and ξ. The metric field equation can be obtained as

Gµν = κ2
(
Tµν + T (ϕ)

µν + e
−

√
2κϕ√
3 T (ξ)

µν − gµνW
)
, (4)

where Tµν is the energy-momentum tensor of matter defined by

Tµν = − 2√
−g

∂
(√

−gLm

)
∂gµν

, (5)

and we have defined

T (ϕ)
µν = ∇µϕ∇νϕ− 1

2
gµν(∇ϕ)2, (6)

and

T (ξ)
µν = ∇µξ∇νξ −

1

2
gµν(∇ξ)2. (7)
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The field equations of the scalar fields are given by the following coupled equations

□ϕ+
κ√
6
e−κϕ

√
2/3 (∇ξ)

2 −Wϕ = 0, (8)

□ξ +
κ
√
2√
3
∇µξ∇µϕ− eκϕ

√
2/3Wξ = 0, (9)

where we have used the notation WX = ∂W
∂X .

In the next section, we will derive the field equations in the interior of static and spher-
ically symmetric objects. To solve these equation, we will consider two different equations
of state for the matter inside compact object.

3 Field equations for static and spherically symmetric
compact objects

To study the properties of compact objects, we will consider the static spherically symmetric
line element given by

ds2 = −A(r)dt2 +
1

1− 2m(r)/r
dr2 + r2dΩ2, (10)

where the metric components gtt and grr are functions of the radial component r that guar-
antee the static and spherical symmetry inside the compact object. The energy-momentum
tensor of the matter is

Tµν = (ρ+ p)uµuν + pgµν , (11)
where ρ = ρ(r) is the energy density and p = p(r) is the pressure which both of them are
only function of the radial coordinate due to the symmetries of the compact object. In the
following, we have used the relativistic units, i.e. c = 1 and κ2 = 8πG = 1.

With the above assumptions for the metric and energy-momentum tensors, one can
obtain the components of the field equations as

2m′

r2
= ρ+W +H1, (12)

A′

Ar

(
1− 2m

r

)
− 2m

r3
= p−W +H1, (13)

and(
1− 2m

r

)(
A′′

2A
− A′2

4A2

)
− 1

r2

(
m′ − m

r

)
− A′

2rA

(
m′ +

m

r
− 1

)
= p−W −H1, (14)

where the symbol prime is denoted the derivative with respect to the radial coordinate ,r,
and we have also defined

H1 =
1

2

(
e
√

2
3Φξ′2 +Φ′2

)(
1− 2m

r

)
. (15)

It should be noted that we have assumed that scalar fields, ϕ and ξ, are functions of the
radial coordinate. In the above field equations, the contribution of the generalized hybrid
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metric-Palatini gravity is summarized in the W and H1 terms. In the absence of these
terms, the field equations reduce to the corresponging general relativity equations. The field
equation for the scalar fields (8) and (9) in our case have the form(

1− 2m

r

)
Φ′′ +H2 Φ

′ +
e−

√
2
3Φ

√
6

(1− 2m

r
)ξ′2 −WΦ = 0, (16)

(
1− 2m

r

)
ξ′′ +H2 ξ

′ +

√
2

3
(1− 2m

r
)ξ′Φ′ − e

√
2
3ΦWξ = 0, (17)

where

H2 =
2

r
− m′

r
− 3m

r2
+

A′

2A
(1− 2m

r
). (18)

The conservation equation of the energy-momentum tensor has only one non-zero component
as

p′ +
A′

2A
(ρ+ p) +H2Φ

′2 − 2√
6
cosh

(√
2/3Φ

)
(1− 2m

r
)ξ′2Φ′ +

(
e2
√

2
3Φ − 1

)
ξ′Wξ = 0,

(19)

where we have used the scalar field equations (16) and (17). In the next sections, we will
consider the case

W (Φ, ξ) = α (κξ)
λ
e−λκΦ/

√
6, (20)

where α and λ are constant parameters. The cosmological evolution of the Universe in
generalized hybrid metric-Palatini gravity for this choice of the interaction term (20) is
studied in ref. [22,23].

The obtained field equations are coupled and complicated. Therefore, we will numerically
investigate them to determine the physical properties of the compact objects. To derive a
quantitative analysis of the field equations we will employ dimensionless parameters defined
as

p = ρc p̄, ρ = ρc ρ̄, m̄ =
√
ρc m, r̄ =

√
ρc r, α = ρcᾱ. (21)

The scalar fields Φ and ξ are dimensionless in relativistic units. In the next section, we will
derive the physical properties of two different compact objects by imposing the equation of
state for them.

4 Quark stars
The physical properties of compact objects crucially depend on the equation of state. The
core density of the neutron stars is higher than that of atomic nuclei, making the study
of compact objects a natural laboratory for exploring such high densities. On the other
hand, since we do not have access to such high densities at our laboratories, understanding
the behavior of matter under these conditions is not practical. There is significant ongoing
research to understand the equation of state of matter at high densities and temperatures. In
the following subsections, we will consider two different equations of state known as the MIT
bag and the CFL equations of state. We will use numerical methods to solve field equations.
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The boundary condition m(r = 0) = 0 implies that the mass of the star at its center is
zero, which is logically expected. Additionally, p(R) = 0 determines the radial coordinate
of the star’s surface. To solve the field equations, we will employ the shooting method.
These equations will be numerically solved for a known central pressure p(r = 0) = pc
which is in the range of the predicted central pressure of neutron stars. Solving the equation
p(r = R) = 0 will yield the radial coordinate of the star’s surface.

4.1 MIT bag quark stars
One of the models for studying quark matter is the MIT bag model. In this model, it is
assumed that quarks are confined to a sphere with a certain radius (the bag), and within this
region, quarks are considered as massless free particles. The thermodynamics of quark-gluon
plasma is described by the equation of state

3p = ρ− 4B, (22)

where B is the bag constant. To stabilize the system, there should be a vacuum pressure
on the bag surface, one can interpret the bag constant B as this pressure. The equation of
state (22) can be obtained using finite temperature quantum field theoretical methods [12].

In the following, we will consider quark stars described by the MIT bag equation of state
(22) with bag constant B = 1.05× 1014 g/cm3 and central density ρc = 1.25× 1015 g/cm3,
for four different values of the constant parameters in the frame work of the generalized
hybrid metric-Palatini gravity.

In Figure 1, variations of the mass and pressure inside of the compact object in terms
of the dimensionless radial coordinate are plotted. The mass is a monotonically increasing
function of radius, it is zero at the star’s center and reaches to its maximum value at the
surface of star. The solid curve in this figure, is devoted for general relativity. The mass
profile shows that the generalized hybrid metric-Palatini gravity can explain more massive
compact objects relative to the general relativity with the same equation of state and central
density. The pressure is a monotonically decreasing function of radius. It is maximum at the
center and is zero at the star’s surface, p(R) = 0 which determines the star’s radius, R. It
should be noted that we have used a physical equation of state and in the obtained solutions,
the pressure is positive everywhere, therefore, all relativistic energy conditions automatically
will be satisfied. Also, one can see that using the equation of state (22), the sound speed
vs = dp/dρ = 1/3 is always smaller than the light speed, so the causality preserves inside
the star.

In Figure 2, the variation of metric component A in terms of the dimensionless radial
coordinate r̄ is plotted. The qualitative behavior of this function for different values of
the constant parameters is the same. For each curve, the starting point for the solid line
is the star’s radius. Our results demonstrate the continuity of metric component at the
stellar surface. This ensures a smooth matching of the interior and exterior solutions at
this boundary. The initial conditions for exterior solutions are obtained from the interior
solutions evaluated at r = R.

Figure 3 shows the variation of scalar fields Φ and ξ, inside and outside the star. The
behavior of scalar fields are smooth and well-defined throughout, demonstrating continuity
at the surface of the star. The solid portion of the graph depicts the exterior behavior of
the scalar field.

The left panel of Figure 4 presents the mass-radius relation for MIT bag quark stars
within the framework of generalized hybrid metric-Palatini gravity compared to general
relativity (solid line). The central density range considered here is 4.75×1014 g/cm3 < ρc <
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Figure 1: The interior mass profile (left panel) and interior pressure profile (right panel) of
the MIT bag quark stars for four different values of the constants ᾱ and λ: ᾱ = 0.01 and
λ = 0.03 (dashed curve), ᾱ = 0.03 and λ = 0.03 (dot-dashed curve), and ᾱ = 0.05 and
λ = 0.01 (long dashed curve), and ᾱ = 0.02 and λ = 0.07 (dotted curve). The solid curve
represents the standard general relativistic ones for MIT bag quark stars.
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Figure 2: The variation of metric component A in terms of the dimensionless radial coordi-
nate of the MIT bag quark stars for four different values of the constants ᾱ and λ: ᾱ = 0.01
and λ = 0.03 (dashed curve), ᾱ = 0.03 and λ = 0.03 (dot-dashed curve), and ᾱ = 0.05 and
λ = 0.01 (long dashed curve), and ᾱ = 0.02 and λ = 0.07 (dotted curve).

1.05 × 1016 g/cm3. This figure clearly shows that the generalized hybrid metric-Palatini
gravity can include a wider range of masses compare to general relativity. Therefore, this
model can predict more massive compact objects. The dotted horizontal lines in this figure
represent the mass of stars from observational data. The mass obtained from GW19084
and PSR J2215+5135 are not in the range of masses predicted by MIT bag quark stars in
general relativity, however, the presented model predicts the existence of even more massive
objects than those currently observed.

The compactness of a compact object is defined as the mass-to-radius ratio (denoted by
u). Compactness is a crucial parameter that determines the strength of a compact object’s
surface gravitational field. For larger compactness values, we would expect more relativistic
effects which can affect the trajectories of photons emitted from the compact object. By
analyzing compactness, we can assess the validity of various gravitational theories in regimes
of high gravity and potentially constrain the equation of state parameters for compact
objects. In the right panel of Figure 4, the compactness of the MIT bag quark stars in
terms of their radius are plotted. The solid curve represents stars within the framework
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Figure 3: The variation of scalar fields Φ (left panel) and ξ (right panel) in terms of the
dimensionless radial coordinate of the MIT bag quark stars for four different values of the
constants ᾱ and λ: ᾱ = 0.01 and λ = 0.03 (dashed curve), ᾱ = 0.03 and λ = 0.03 (dot-
dashed curve), and ᾱ = 0.05 and λ = 0.01 (long dashed curve), and ᾱ = 0.02 and λ = 0.07
(dotted curve).
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Figure 4: The mass-radius relation (left panel) and compactness (right panel) of the MIT
bag quark stars for four different values of the constants ᾱ and λ: ᾱ = 0.01 and λ = 0.03
(dashed curve), ᾱ = 0.03 and λ = 0.03 (dot-dashed curve), and ᾱ = 0.05 and λ = 0.01 (long
dashed curve), and ᾱ = 0.02 and λ = 0.07 (dotted curve). The solid curve represents the
standard general relativistic ones for MIT bag quark stars. The dotted horizontal lines show
the mass of compact objects from observational data.

of general relativity, while the other curves depict stars under generalized hybrid metric-
Palatini gravity with varying parameters (ᾱ and λ). This figure shows that the MIT stars
in the present model are more compact in comparison to the general relativity counterparts.
Also, the compactness essentially depends on the value of model parameters.

Table 1 presents the maximum masses and corresponding radii for selected values of the
constant parameters.The value of maximum mass essentially depends on the parameters α
and λ. The central density for the maximum mass is of order 1015g/cm3. The table also
includes the surface redshift (Zs), defined as

Zs =

(
1− 2GM

c2R

)−1/2

− 1. (23)

Surface redshift is one of the possible ways to distinguish different stellar models. Also, with
the help of this parameter maybe can put some constraint on the equation of state at high
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Table 1: The maximum masses, surface redshift, the corresponding radii and central densities
for the MIT bag quark stars in generalized hybrid metric-Palatini gravity.

λ 0.03 0.03 0.01 0.02
ᾱ 0.01 0.03 0.05 0.07

Mmax/M⊙ 2.07 2.3 2.75 3.24
R (km) 10.98 11.37 12.29 13.14
Zs 0.50 0.58 0.72 0.92

ρc × 10−15 (g/cm
3
) 1.84 1.5 1.06 0.74

densities.
For a more accurate comparison of the result of generalized hybrid metric-Palatini with

general relativity, the maximum mass, radius, central density and surface redshift of the
MIT bag star in the general relativity framework are

M = 1.98M⊙, R = 10.81 km, ρc = 2.01× 1015g/cm3, Zs = 0.48.

4.2 CFL quark stars
In this section, we want to consider the CFL quark stars. The equation of state of the paired
quark matter is given by

p =
1

3
(ρ− 4B) +

3αδ2

π2
, (24)

where

δ2 = −α+

√
α2 +

4

9
π2(ρ−B), (25)

and α = −m2
s

6 + 2∆2

3 . In the case of unpaired (∆ = 0) and massless (ms = 0) quarks, the
CFL equation of state reduces to the MIT bag equation of state. We investigate cases with
different values of the model parameters α and λ but one specific set of values of parameters
of the equation of state in which ∆ = 250MeV , ms = 150MeV and B = 2× 1014g/cm3.

Figure 5 shows the variation of mass (left panel) and pressure (right panel) from center
to the surface of the CFL quark star with central density ρc = 1.25 × 1015 g/cm3. The
different curves are for different values of the parameters ᾱ and λ. The mass profile is a
monotonically increasing function of the radial coordinate which reaches to its maximum
value at the surface of the star. The pressure is maximum at the center and decreases
monotonically until zero. As one can see, the variation of mass essentially depends on the
values of the parameters. All curves in the right panel show that the predicted mass for
the CFL quark star in the generalized hybrid metric-Palatini gravity is greater than the
corresponding case in general relativity. In Figure 6, the variation of the (00) component of
the metric tensor (A) in terms of the dimensionless radial coordinate for different values of
the parameters is shown. As the radial coordinate increases, the value of A augments. The
solid part of the curves shows the exterior solution (where ρ = 0 = p) of the field equations.
One can see that this quantity is continuous at the surface of the star. Near the center of
the star, all curves almost coincide, regardless of the parameter values. In Figure 7, the
behavior of the scalar fields Φ (right panel) and ξ (left panel) inside and outside of the CFL
star are shown. Each plot contains three curves corresponding to three different values of
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Figure 5: The interior mass profile (left panel) and interior density profile (right panel)
of the CFL quark stars for three different values of the constants ᾱ and λ: ᾱ = 0.01 and
λ = 0.03 (dashed curve), ᾱ = 0.03 and λ = 0.03 (dot-dashed curve), and ᾱ = 0.05 and
λ = 0.05 (dotted curve). The solid curve represents the standard general relativistic ones
for CFL quark stars.
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Figure 6: The variation of the metric component A in terms of the dimensionless radial
coordinate of the CFL quark stars for three different values of the constants ᾱ and λ:
ᾱ = 0.01 and λ = 0.03 (dashed curve), ᾱ = 0.03 and λ = 0.03 (dot-dashed curve), and
ᾱ = 0.05 and λ = 0.05 (dotted curve).
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Figure 7: The variation of scalar fields Φ (left panel) and ξ (right panel) in terms of the
dimensionless radial coordinate of the CFL quark stars for three different values of the
constants ᾱ and λ: ᾱ = 0.01 and λ = 0.03 (dashed curve), ᾱ = 0.03 and λ = 0.03 (dot-
dashed curve), and ᾱ = 0.05 and λ = 0.05 (dotted curve).
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the parameters ᾱ and λ. The variation of scalar fields crucially depends on the value of
parameters. These scalar fields are continuous and smooth everywhere inside and outside of
the star. The scalar field Φ is a decreasing function of r̄ while ξ is an increasing function of
the radial coordinate.‘
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Figure 8: The mass-radius relation (left panel) and compactness (right panel) of the CFL
quark stars for three different values of the constants ᾱ and λ: ᾱ = 0.01 and λ = 0.03
(dashed curve), ᾱ = 0.03 and λ = 0.03 (dot-dashed curve), and ᾱ = 0.05 λ = 0.05 (dotted
curve). The solid curve represents the standard general relativistic ones for CFL quark stars.
The dotted horizontal lines show the mass of compact objects from observational data.

In Figure 8, the mass-radius (left panel) and compactness (right panel) of the CFL quark
star are shown. The right panel shows that the range of the predicted mass of CFL quark
stars in the framework of the generalized hybrid metric-Palatini is wider than the ones in
GR. Also, the maximum mass crucially depends on the value of the model parameters. The
left panel shows the compactness of the CFL stars. The CFL stars in the present model are
more compact relative to the GR ones.

Table 2: The maximum masses, surface redshift and the corresponding radii and central
densities for the CFL quark stars in generalized hybrid metric-Palatini gravity.

λ 0.03 0.03 0.05
ᾱ 0.01 0.03 0.05

Mmax/M⊙ 2.61 2.86 3.11
R (km) 12.01 12.27 12.54
Zs 0.68 0.79 0.93

ρc × 10−15 (g/cm
3
) 1.54 1.31 1.12

In Table 2, the maximum masses and other properties of the CFL quark stars for different
values of the parameters ᾱ and λ are presented. To more accurate comparison of the result
of generalized hybrid metric-Palatini with general relativity, the maximum mass, radius,
central density and surface redshift of the CFL star in the framework of general relativity
are

M = 2.51M⊙, R = 11.89 km, ρc = 1.65× 1015g/cm3, Zs = 0.63.

The surface redshift of the CFL stars depends on the value of the model parameters.
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5 Discussion
In this paper, we have studied static and spherically symmetric compact objects in the
context of a modified gravity theory known as the generalized hybrid metric-Palatini gravity.
It has been shown that this theory is dynamically equivalent to a double scalar-tensor theory.
The field equations are derived from the variational principle. In this theory, a term describes
the interaction between two scalar fields. To solve the field equations one needs to know the
interaction term and also the equation of state of matter content of the star. In the core of
neutron stars, the density is so high that a hadron-quark transition can occur. We consider
two different equations of state for the quark stars. In one of them, the quarks are considered
as free and massless particles in a bag which is known as the MIT bag model. However, at
ultra-high densities, it is shown that quarks can form the Cooper pairs. The equation of
state for this case is known as the CFL quark phase. In both cases, the physical properties
of the quark stars are studied for different values of the parameters of the generalized hybrid
metric-Palatini gravity and the results are compared to the general relativity ones. The
stars in the present model are more massive and compact relative to the general relativity.
Also, the surface redshift is higher than the ones in GR.
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