
Iranian Journal of Astronomy and Astrophysics
Vol. 10, No. 4, Autumn 2023, 335–356
©Available online at http://ijaa.du.ac.ir
DOI: 10.22128/ijaa.2023.694.1150
Online ISSN: 2383–403X

Iranian Journal of
Astronomy and
Astrophysics

Research Paper

Physics-Informed Deep Learning for Three Dimensional Black
Holes

Emad Yaraie1 · Hossein Ghaffarnejad∗2 · Mohammad Farsam3

1 Instituut-Lorentz for Theoretical Physics, ITP, Leiden University, Niels Bohrweg 2, Leiden
2333 CA, The Netherlands;
email: eyaraie@semnan.ac.ir

2 Faculty of Physics, Semnan University, P.C. 35131–19111, Semnan, Iran;
∗email: hghafarnejad@semnan.ac.ir

3 Instituut-Lorentz for Theoretical Physics, ITP, Leiden University, Niels Bohrweg 2, Leiden
2333 CA, The Netherlands;
email: mhdfarsam@semnan.ac.ir

Received: 27 June 2023; Accepted: 30 December 2023; Published: 30 December 2023

Abstract. In this paper, we have designed an artificial neural network architecture to
produce metric field of planar BTZ and quintessence black holes applying a data-driven
approach andleveraging holography principle (according to AdS/DL (Anti de Sitter/
Deep Learning) correspondence given by [1]). Data has been collected by choosing
minimally coupled massive scalar field with quantum fluctuations and we try to process
two emergent and ground-truth metrics versus the holographic parameter which plays
the role of depth of the neural network. Loss or error function which shows rate of
deviation of these two metrics in presence of penalty regularization term reaches to
its minimum value when values of the learning rate approach to the observed steepest
gradient point. Values of the regularization or penalty term of the quantum scalar field
has critical role to matching this two mentioned metric. Also, we design an algorithm
which helps us to find optimum value for learning parameter and finally, we understand
that loss function convergence heavily depends on the number of epochs and learning
rate.

Keywords: Machine learning, Deep learning, Black holes, Three dimensions, BTZ; Op-
timization, Loss function

1 Introduction
After prediction of black holes evaporation in presence of quantum matter field by Hawking
[2] and the black hole entropy by Bekenestein [3] which is related to surface gravity of the
black hole, Susskind and t’Hooft stated that the theory of quantum gravity within any
region is encoded on the surface of that region [4,5] which is called now as the holographic
principle. The best successful theory so far for the holographic principle is the Anti de
Sitter-conformal field theory (AdS/CFT) correspondence which is proposed by Maldacena
[6] for the first time. This correspondence has two consequences such that the quantum
gravity in each slice of AdS spacetime is explained by the data on the boundary slice and
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information which lives on the boundary evolves between the slices of the AdS spacetime
by the Hamiltonian of conformal invariant quantum fields. The study of AdS black holes
in d < 4 dimensions are conducted in a variety of ways [7,8]. For instance, one can see
[9,10] for understanding of the dual field theory in the context of AdS/CFT correspondence
and [11–16] for studying of effects of the quintessence fields in 1+2 dimensional black holes
spacetimes. Compared to 4D case, BTZ black hole has certain good theoretical properties,
e.g. this is just an example, not proposal: turning on angular momentum is simpler compared
to 4D case, and something new may be checked by utilizing it. In fact, the BTZ black hole
was introduced by Maximo Banados, Claudio Teitelboim, and Jorge Zanelli [17,18] (see also
[19]). The BTZ black hole geometry is the solution of the vacuum Einstein field equation
in 2 + 1 dimensions in presence of a negative cosmological constant. In fact, its dual field
theory is the 1+1 dimensional CFT, from the AdS/CFT viewpoint, and the presence of the
black hole corresponds to finite-temperature effects on the CFT.

Recently, deep learning is used extensively in the solution of computer vision problems.
Training of deep neural networks is in fact an optimization problem, for which a loss function
should be minimized. By according to some criteria, loss functions must be determined
based on what we need the model to learn. Although loss functions play important role
in deep learning applications, but an extensive comparison of them is not available in the
literature. There are just tree kind in the convolutional Neural Network so called as AlexNet,
VGG and GoogleNet. They are reviewed appropriately in the thesis [20]. Deep neural
network which is known as deep structured learning is part of a broader family of machine
learning methods based on artificial neural networks with representation learning. This is
shown that is extended to be applicable for more branches of physical science such as the
gravitational and the cosmological context (see [21] for a good review). For instance, one can
see some published works about application of deep learning method related with gravity as
follows: Yong Yang et al used deep learning method to determine atmospheric parameters
of white dwarf stars recently [22]. Christopher J. Shallue and Andrew Vanderburg also
used deep learning method to identify exoplanets [23]. Matsuoka et al, apply the deep
learning method to estimate parameters of atmospheric gravity wave in reanalysis data
sets [25]. In fact, neural networks that work according to the laws of physics are called
physics-informed neural networks (see [24] and references therein). This kind of learning
algorithm is inspired by information processing and it is distributed by communication nodes
in biological systems. Artificial neural networks models have been used since the 1950s [26]
and flourished in the 2000s [27]. It is composed of multiple layers to progressively extract
higher-level features from the raw input and delivering an output. With respect to the
task at hand, the output could be have discrete value or continuous value [27,28]. Recent
breakthrough results in computer vision, natural language processing speech recognition,
biomedicine and many other domains have produced a massive interest in this direction
[29–32]. Hashimoto et al in ref. [1] presented a deep neural network representation for the
AdS/CFT correspondence. They demonstrated the emergence of the bulk metric function
via the learning process for given data sets of response in boundary quantum field theories.
In this approach, the emergent radial (holographic) direction of the bulk is identified with
the depth of the layers, and the network itself is interpreted as a bulk geometry. As an
application of correspondence of deep learning with Ads/CFT correspondence they used the
scalar ϕ4 theory with unknown mass and coupling, in unknown curved spacetime contained a
black hole horizon, and investigated two properties as follows. The first, they demonstrated
their deep learning framework to determine the background metric which fit given response
data by showing from boundary data generated by the AdS Schwarzschild spacetime. The
second step, they demonstrated that the their proposed network with experimental data
as an input, can determine the bulk metric, the mass and the quadratic coupling of the
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holographic model. At last, they use the experimental data of magnetic response of a
strongly correlated material Sm0.6Sr0.4MnO3. By looking at their work one can infer
that their proposed AdS/DL correspondence not only enables gravity modeling of strongly
correlated systems, but also sheds light on a hidden mechanism of the emerging space in
both AdS and DL. Hence one can extend their approach by considering other physical effects
in production of a black hole geometry.

By according to ideas given in [1], we should provide a deep neural network representation
of a scalar field equation moving in curved spacetime where the discretized holographic AdS
radial direction is the deep layers. The weights of the neural network are identified with
metric of the curved spacetime. The input response data is at the boundary of AdS, and the
output binomial data is the black hole horizon condition. Therefore, a successful machine
learning results in a concrete metric of a holographic modeling of the system measured by the
experiment. This is all which is called as AdS/DL correspondence of a deep neural network
by Hashimoto et al. When stress tensor of scalar field has zero barotropic index w = 0 (the
dust model) then the 3D black hole reads as planar BTZ black hole. In the cosmological
regime, the dark sector of the matter/energy proposal play an important role in support
of the cosmic inflation and so considering these effects on the BTZ black hole formation
should be useful which we like to investigate in this work. For a quintessence phase of the
dark fluid which is surrounded the a BTZ black hole, the non vanishing barotropic index is
−1 < w ≤ − 1

3 for which the 3D black hole is called as quintessence black hole which we like
to produce them by using method given by [1]. The paper is organized as follows:
In section 2, we present brief review of architecturing deep neural network and developing
deep neural learning model. In section 3, we provide a brief review of 1+2 dimensional BTZ
black hole metric solution. Then, we investigate correspondence between metric components
and parameters of deep neural network for the BTZ planar black hole such that the black
hole could feed with in input layer by corresponding boundary data which is labeled with
respect to the horizon boundary conditions. Then, when data is propagating towards the
black hole horizon, the spacetime metric is being reproduced. Section 4 is dedicated to
the network architecture, training implementation and data setting. In the last section, we
investigate conclusion and outlook of the work.

2 Artificial neural network

A neural network, also sometimes is called an artificial neural network, is a kind of processing
structure which their name and structure are inspired by the human brain, mimicking the
way where the biological neurons signal to one another. Basic building block of a neural
network is made in fact by a neuron. We show schematic diagram of a simple neural network
in Figure 1. In this figure, the artificial neuron takes all the inputs x1,2, weights W (shown
with solid lines) which is a linear transformation between vector components of the neuron
as xi → ΣjWijxj , aggregates (not shown) and an activation function xi → φ(xi) which is
usually a nonlinear transformation on the vector components of the neuron xi such that
it should deliver the output of the neuron at each layer. In fact, the activation function
controls value of the output when the neuron is activated. A row of neurons is called layer
and a network can have multiple layers. Input layer receives data xi and delivers output
to next layer via two above mentioned transformations as xk → φ(Wklxl) and final layer
is responsible for delivering values which correspond to result demanded for the problems
such that regression, classification and etc. Layers located between first and last ones are
called hidden layers. In general, for N layers a deep feed-forward neural network can be
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Figure 1: Schematic diagram of a simple neural network in which activation function is
shown with the colored circle so that pink (left side), blue (middle) and violet (right side)
correspond with input, hidden and output neuron layers respectively. Weights are shown
with solid lines. Input data is x1,2 and output one is y1.

constructed as follows

y(x(1)) = fiφ(W
(N−1)
ij φ(W

(N−2)
jk · · ·φ(W (1)

lm x(1)
m ))), (1)

where fi means activation function xi → φ(xi) but at last layer which delivers to the target
y(x(1)). In the learning process, the variables of the Network (fi,W

(n)
ij ) for n = 1, 2, . . . , N−1

are updated by a gradient descent method with a given loss or error function

E =
∑
data

|y(x̄(1))− ȳ|+ Ereg(W ). (2)

Here, the sum is over the whole set of pairs {(x̄(1), ȳ)} of the input data x̄(1) and the output
data ȳ. The regularization penalty term Ereg is introduced to require expected properties
for the wight [32]. The equation (2) can be evaluated by different optimizing methods such
as gradient descent, Adam and etc which in fact is an iterative method for optimization
of a function. By moving data from input layers to final layer via feed-forward algorithm
with suitable smoothness properties it demonstrates how much predicted values are far
from values of ground truth ȳ? This error is then propagated back through the network
by applying back propagation algorithm so that the weights are updated according to the
amount that they contributed to the error [33]. Predictions are made by providing the input
to the network and by performing a forward pass and then by generating an output. In this
view the architecture means how a model can be constructed from two dimensional input
data and one dimensional output feature. With respect to the context of our problem this
architecture can be extended to more layers and neurons with various kind of activation
functions and operations of between layers [29–32].
In the following section, we investigate correspondence between the BTZ black hole metric
and neural network components.

3 Neural network for planar BTZ Black holes
In 1992 Banados, Teitelboim and Zanelli investigated and obtained a 3D planer black hole
which is called now BTZ black hole solution [17–19] (see also [7]).In absence of the cosmo-
logical constant, there is no black hole containing event horizons in 3D curved spacetimes
but thanks to the negative cosmological constant there is BTZ black hole metric solution
which provides properties similar to ones which are appeared for 4D Schwarzschild black
holes. By considering planar topology, general form of metric field in 1+2 dimensional black
hole spacetimes is

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dx2, (3)
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where x is a planar coordinate, r is the radial coordinate and f(r) stand for the blacking
functions. Einstein’s field equations can be written as

Rab −
1

2
gabR− 1

L2
gab = 8πTab, (4)

where a, b = 1, 2, 3 in 3D spacetimes and L is the AdS radius. The right side stress tensor
is assumed to be perfect non viscous fluid such that

T t
t = T r

r = −ρ, T x
x = (2w + 1)ρ, (5)

where ρ and w are energy density and the state parameter of the fluid respectively [7,11].
By substituting the stress tensor (5) and by solving the Einstein’s equations (4) with respect
to the line element (3) we obtain

ds2 = − r2

L2
f(r)dt2 +

L2

r2
f(r)−1dr2 +

r2

L2
dx2, (6)

where blacking function takes on the following form

f(r) = 1−
(r+

r

)σ
, σ = 2(1 + wq),

in which r+ is radius of the black hole event horizon and for BTZ model σ = 2 can be written
versus the ADM mass of the black hole M and the AdS radius L such that r+ =

(
ML2

)1/2
[7,11]. In fact, the BTZ 1+2 dimensional black hole in a Schwarzschild coordinates is
stationary and axially symmetric because it has two Killing vectors J t∂t and Jφ∂φ and
generically has no other symmetries for which the event horizon is determined by M,L, Jφ.
In the above planner line element, we eliminated axially symmetric property of the BTZ black
hole by using the planner symmetry and so the constant angular momentum Jφ is negligible.
The case w = 0 corresponds to the non-quintessence BTZ black hole and −1 < w < − 1

3
corresponds to quintessence black hole, which in this paper we are interested for particular
choices w = {0,− 1

2 ,−
3
4} and design artificial neural networks in order to represent scalar

field in background of them.
In order to facilitate designing neural network architecture, we use the following conformal
transformation for r coordinate.

dz = f− 1
2 dr, (7)

in which z is holographic direction and by integrating of the above transformation we have

r = r+ cosh
( z
L

)
. (8)

By substituting this into the line element (3), we obtain

ds2 = −f(z)dt2 + dz2 + g(z)dx2, (9)

where the BTZ metric components are given versus the holographic z parameter as follows

f(z) ≡
r2+
L2

(
sinh

z

L

)2
, g(z) ≡

r2+
L2

(
cosh

z

L

)2
. (10)

In this conformal frame, the boundary of the AdS is located at infinity z → ∞ for which
f(z) → g(z) ≈ (r2+/4L

2) exp(2z/L) → ∞ while the black hole horizon lives at zh = 0
for which f(z) = 0 and g(0) = (r2+/L

2). As an application of neural network model, we
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like to study interaction of a scalar field with the BTZ black hole metric as follows. We
consider a minimally coupling massive scalar field with self interaction potential V (ϕ) which
is propagated in the spacetime (9). Dynamics of this field is described by the following
Lagrangian density.

L =
√
g

{
1

2
gµν∂µϕ∂νϕ− 1

2
m2ϕ2 − V (ϕ)

}
, (11)

in which g = | det gµν | is absolute value of determinant of the metric field gµν and by varying
with respect to the field ϕ the corresponding Euler Lagrange equation reads

□ϕ+m2ϕ+
δV

δϕ
= 0, □ ≡ g−

1
2 ∂µ(g

1
2 gµν∂ν), (12)

which for (9) can be written as the following first order differential equation.

∂zπ +R(z)π +m2ϕ+
δV [ϕ]

δϕ
= 0, (13)

where π ≡ ∂ϕ(z)
∂z is canonical momenta of the field ϕ and

R(z) =
1

2

d ln(f(z)g(z))

dz
=

σ − 2 + 2 cosh
(
2z
L

)
L sinh

(
2z
L

) , (14)

is an effective potential. This potential is singular on the black hole horizon zh = 0 but has
finite value R(±∞) = ± 2

L on the AdS boundary. The equation (13) together with π ≡ ∂ϕ(z)
∂z

can be solved via neural network system by discretization method. To do so, the strategy
should be providing a manifestation of scalar field equation in deep neural network scheme
[1] where holographic direction z mimics the deep layers and the neurons are shown with
2 components vectors (ϕ(z), π(z)). Correspondence of the field equation with the neural
network system is possible by discretizing the equation of motion in holographic direction z
such that [1]

ϕ(z +∆z) = ϕ(z) + ∆zπ(z),

π(z +∆z) = π(z)−∆z

(
R(z)π(z) +m2ϕ(z) +

δV (ϕ)

δϕ(z)

)
, (15)

which can be written with matrix form as follows(
ϕ(z +∆z)
π(z +∆z)

)
=

(
1 ∆z

−m2∆z 1−R(z)∆z

)(
ϕ(z)
π(z)

)
+

(
0

− δV (ϕ(z))
δϕ(z) ∆z

)
, (16)

where ∆z is distance of adjacent points in discrete coordinate system with

z(n) ≡ (N − n+ 1)∆z,

and N is total number of neural network layers. According to the Figure 1 for the equations
(16), we can use x1 ≡ ϕ(z) and x2 = π(z) for components of the vector neurons (ϕ(z), π(z)).
Regarding these and linear affine transformation xi →

∑
j Wijxj one can obtain weights

matrix Wij for the equations (16) as

W (n) =

(
1 ∆z

−m2∆z 1−∆zR(z(n))

)
, (17)
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for n layers and by regarding the nonlinear transformations xi → ϕ(xi) for each layer one
can obtain activation function for output data on each layer as follows{

ϕ1(x1) = x1,

ϕ2(x2) → x2 −∆z δV (x1)
δx1

.
(18)

In fact, the definitions (17) and (18) bring the scalar field system in curved geometry (11)
into the form of neural network (1) [1]. Thus, one can infer that architect of a neural network
system in this paper corresponds to scalar field equation in BTZ black hole spacetime in
which the weights of network play role of the BTZ black hole metric, φ1,2 take on role
of the activation functions and holographic direction should mimic depth of the network.
For simplicity, in the rest of the paper, we set L = 1, m = 1 and V [ϕ] = λϕ4

4 (the Higgs
potential) with λ = 1 and number of hidden layers to be 8 which yields to ∆z = −0.1, zb = 1
and zh = 0.1 (the horizon cut off frequency) which is used to regularization of interacting
quantum scalar fields. In fact, input data for ϕ originates from quantum fluctuations of the
field (see equation 9 in ref. [1]) which whose frequencies approach to infinite value on the
black hole horizon and they should be regularized. In the following section, we investigate
numerical processing to produce output data or target.

4 The network architecture, training implementation
and data setting

The architectures of our neural network setup with total 10 layers is shown schematically in
Figure 2 and corresponding data are collected in the Table 1 by designing as 8 hidden layers
with two input and output layers.

Figure 2: The architectures of our neural network setup composed with 8 hidden layers
consists of two neurons in each input and hidden layers and one neuron in output layer
respectively.

The architecture is implemented via PyTorch ecosystem [34] in GPU mode. The dataset can
be randomly produced by drawing values of independent variables ϕ and π in AdS boundary
z = 1 for domains ϕ ∈ [0, 1.5] and π ∈ [−0.2, 0.2] respectively and transform them to the
black hole horizon zh = 0 by applying the equation of motion (15) for metric potential (14)
(see Figure 3). To do so, we choose 1000 positive value data which can be identified by
|F | < 0.1 as cut off on the horizon and 1000 negative value data corresponding to |F | > 0.1
which are labeled with y+ = 0 and y− = 1 respectively. In fact, the boundary condition
at the horizon can be used as a classifier to categorize generated dataset into binary classes
such that for some positive input data the output at the final layer should satisfy

0 = F ≡
[
2

η
π +m2ϕ+

δV (ϕ)

δϕ

]
zfin

, (19)
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Table 1: Architecture used in the networks with batch size 10.
Layer Transformation Output dimension
h0 affine linear (ϕ1, ϕ2) 2
h1 affine linear (ϕ1, ϕ2) 2
h2 affine linear (ϕ1, ϕ2) 2
h3 affine linear (ϕ1, ϕ2) 2
h4 affine linear (ϕ1, ϕ2) 2
h5 affine linear (ϕ1, ϕ2) 2
h6 affine linear (ϕ1, ϕ2) 2
h7 affine linear (ϕ1, ϕ2) 2
h8 affine linear (ϕ1, ϕ2) 2
h9 linear f(F) 1

in which z = zfin << 1 is the horizon cutoff. Dataset will be injected into the neural
network in 200 batches. In other words we choose 100 batches for positive and 100 batches
for negative value data respectively which they propagate through the neural network from
visible layer (zh) to the final layer (zfin) via equation of motions. Our final layer is defined by
the map F such that the output data is y+ = 0 for a positive answer response data originated
from quantum fluctuations of the field [1]. In fact, for limits zfin = 0 the condition (19) reads
π(z = 0) = 0. Now we can make the deep neural network to learn the metric component
function h(z), the mass parameter of the field m and the interaction potential V (ϕ). The
training is done by the loss function (2). In fact, experiments provide only positive answer
data with y+ = 0, while for the training we need also negative answer data which is to
generate false response data and so we assign output y− = 1 for the latter case. According
to choice given by [1] we use a function tanh |F | for the final layer rather than just F , because
tanh |F | provides y → 1 for any negative input. By regarding these choices, the final output
of the neural network is made as binary. In this view the activation function of final layer
for cases w = 0, w = − 1

2 and w = − 3
4 can respectively given by [1],

f(F ) = 1 + 0.5 tanh[100(F − 0.1)]− 0.5 tanh[100(F + 0.1)], (20)
f(F ) = 1 + 0.5 tanh[Q(F − 0.1)]− 0.5 tanh[0.6(F + 0.1)], (21)

and
f(F ) = 1 + 0.5 tanh[1.1(F − 0.1)]− 0.5 tanh[P (F + 0.1)], (22)

where Q = {0.6, 0.9, 1.1} and P = {0.6, 0.8, 0.9}. Looking at the Figures 10 and 12, one
can infer that the best fit is happened for Q = 0.6 and P = 0.9. and to choose physically
sensible metric among other learned metrics, we use lose function (2) and the penalty or
regularization term given by the discrete form of the metric potential (14) as

Ereg = 3

N−1∑
n=1

(zi)4(R(zi+1)−R(zi))2,

to plot variation of loss function versus the leaning rate in Figure 4. This diagram shows
minimum variant of the error function is happened for learning rate 0.1 approximately. In
the error function (2), the quantities (x̄i, yi(x̄)) are the training dataset and ȳ is ground-truth
y. The produced errors by loss function can be saved up across all of the training examples
and the network can be updated at the end. The hyperparameters or training parameters
which we used in this work are as follows: The batch size namely number of training samples



Physics-Informed Deep Learning for Three Dimensional Black Holes 343

Figure 3: The data generated by the discretized BTZ metric (14) to visualize how numerical
values should be used as data processing. The green points correspond to the positive data
y+ = 0 and the red points correspond to the negative data y− = 1. This diagram is produced
for non quintessence BTZ black hole w = 0 and for quintessence cases w = − 1

2 ,−
3
4 we will

have similar diagrams (not shown).

which is used to compute the gradient at each update is 10 for non-quintessence case w = 0
and 100 for quintessence cases w = − 1

2 ,−
3
4 . The optimum learning rate hyperparameter

is chosen with numeric values 0.0001 and 0.01 for non-quintessence and quintessence cases
respectively. (These values for learning rate can be detected by design an algorithm which
lead us to an optimal learning rate for making the model. In the following subsection, we will
be talking about the procedure of finding optimum learning rate). Looking at the Figure 5
one can infer that presence of an suitable penalty or regularization term is crucial to choose
well learned metric among other learned metrics. In Figures 5 and 6, by using tuned values
of learning rate and batch size, we have illustrated the impact of epochs on performance
of model. It can be seen in Figure 6 with 50,000 epochs in which the emerged metric
mimics ground-truth metric pretty well. To check how well the model is learned [36], the
optimization learning curves and the performance learning curves are plotted for epoches
10,000, 30,000 and 50,000 respectively in Figures 7, 8, and 9 respectively. In fact, these
learning curves are as diagnostic tools for plot of model learning optimization, performance
over experience or times.Looking at these diagrams one can infer that it is vivid the model
which learned with 50,000 epochs behaves better.

4.1 The dynamics of learning rate
The learning rate hyperparameter controls the speed at which the model learns. A large
learning rate allows the model to learn faster and a small learning rate may allow the model
to learn better but the price has to be paid is longer learning time. A learning rate that is too
large could result in large weight updates which causes the objective function of the model
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shows an oscillation behavior with respect to the training epochs. The source of oscillating
behavior gets back to weights that are diverging. On the other hand, a learning rate that is
too small may get stuck on a suboptimal solution. Diagnostic plots can be used to investigate
how the learning rate impacts learning dynamics of the model. This is investigated by Leslie
N. Smith in [37] in depth. He has demonstrated that if a model be trained initially by a
low learning rate and then it get increased exponentially or linearly at each iteration a good
learning rate candidate could be achieved but if we monitor the learning at each iteration
and then plot the logarithm of learning rate versus loss function, there will be spotted as
the learning rate increases and a point is appeared where the loss decreases to stop emerges
and then starts to increase again. This minimum point is the point we will be choosing as
the learning rate hyperparameter of our model. In order to find minimum value of the error
function we utilized Adam optimizer [35] with starting learning rate 0.1 and corresponding
exponential decay as β1 = 0.05. In fact, the Adam optimizer is an adaptive learning rate
optimization algorithm where momentum instead of the gradient of current step is applied
to guide the search. In other words, it is combined directly as an estimate of the first order
moment of the gradient and accumulates the gradient of the past steps to determine the
direction to go. By conducting experiment base on what explained above in order to find
optimum learning rate we obtain diagram of Figure 4-a for non quintessence case and Figure
4-b for quintessence case where in both of them a quick drop can be observed in the loss
function. In fact, increasing the learning rate further will cause an increase in the loss and
even diverge from the minimum because of the parameter updates.

5 Conclusion
In this paper, by leveraging correspondence of AdS/CFT and AdS/SL, we design deep neural
network architecture for 3D planar BTZ and quintessence black holes to learn boundary data
which lives on conformal field theory side. To do so, we saw that the weights of network play
the role of metric and holographic direction mimics the depth of network. Such that data
propagates from boundary to horizon of black hole and cause to produce the background
metric. We have considered a penalty regularization term for loss function such that to be
only sensible with respect to the reality metric to be chosen among other learned metrics.
In order to achieve a high-performing model, hyperparameters tuning has been conducted.
We have noticed loss function convergence heavily depends on the number of epochs and
learning rate. Finding faster convergence for loss function motives us to investigate the
impact of learning rate on neural network performance by performing an experiment where
we gradually increase exponentially the learning rate to observe for steepest drop in loss
function which has guided us to pick up suitable learning rate parameter. The message of
our paper is that the emerged spacetime could be a more universal phenomenon and helps
to understand emergence of spacetime in holographic three dimensions. In this case one can
infer that the ADS/DL correspondence and neural network data processing paradigm could
be an applicable model instead of the unknown pure quantum gravity theory. Such that it
can say us what is happening at Planck scale of the nature? As we saw, the error function
has an integral relationship with the emergent metric function, so the physical parameters
of the assumed black hole, such as electric charge, angular momentum, or other physical
quantities, (for instance quintessence effect which is considered here ), will play an important
role to form the loss function and so correspondence of two emergent metric and ground
truth metric. Checking of the work for angular momentum effect of the BTZ black hole
via deep learning and neural network data processing, is needed more time to produce the
numerical processing which we intend to do in the next work.
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(a)

(b)

Figure 4: Behavior of the loss function versus the learning rates: (a) is plotted for non-
quintessence (w = 0) which shows for small learning rates the iterations become large and
so minimum of the loss function is happened at long times. (b) is plotted for quintessence
(w = − 1

2 ,−
3
4 ) and it shows for large learning rates the loss function pass far from the

observed steepest gradient point (red dot) and so the ADAM optimizer does not never
obtain minimum value for the loss function. But if we choose best value for the learning
rates equal to the steepest gradient point the loss function reaches to its minimum value as
soon.
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(a)

(b)

Figure 5: The emerged metric and the ground-truth metric has been portrayed with and
without the penalty term respectively at (a) and (b) after 10000 epochs for non quintessence
case w = 0.
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(a)

(b)

Figure 6: For case of non quintessence w = 0, the emerged metric and the ground-truth
metric penalty term has been portrayed at (a) and (b) after 30000 and 50000 epochs respec-
tively.
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(a)

(b)

Figure 7: The loss and statistical R-Squared accuracy over 10000 epochs. Each iteration
corresponds to the number of epochs to be over 15. This diagrams are plotted for non
quintessence case w = 0.
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(a)

(b)

Figure 8: The loss and statistical R-Squared accuracy over 30000 epochs. Each iteration
corresponds to the number of epochs to be over 15. This diagrams are plotted for non
quintessence case w = 0.
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(a)

(b)

Figure 9: The loss and statistical R-Squared accuracy over 50000 epochs. Each iteration
corresponds to the number of epochs to be over 15. This diagrams are plotted for non
quintessence case w = 0.
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(a) (b)

(c)

Figure 10: The learned metric with 1000 epochs with learning rate 0.01 with quintessence
case w = − 1

2 for different activation functions of last neurons given by the equation (21) at
(a) for Q = 0.6, (b) for Q = 0.9 and (c) for Q = 1.1 respectively.
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(a) (b)

(c)

Figure 11: The behavior of the loss functions with confidence interval 95 percent for 1000
epochs with learning rate 0.01 and quintessence w = − 1

2 for different activation functions of
last neurons given by the equation (21): (a) for Q = 0.6, (b) for Q = 0.9 and (c) for Q = 1.1
respectively.
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(a) (b)

(c)

Figure 12: The learned metric with 1000 epochs with learning rate 0.01 for quintessence
w = − 3

4 for different activation functions of last neurons given by the equation (22) at (a)
for P = 0.6, (b) for P = 0.8 and (c) for P = 0.9 respectively.
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(a) (b)

(c)

Figure 13: The behavior of the loss functions with confidence interval 95 percent for 1000
epochs with learning rate 0.01 and quintessence w = − 3

4 for different activation functions of
last neurons given by the equation (22): (a) for P = 0.6, (b) for P = 0.8 and (c) for P = 0.9
respectively.


