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Abstract. Due to the massive increase in astronomical images (such as James Web,
Solar Dynamic Observatory, and Solar Orbiter), automatic image description is es-
sential for solar and astronomical. Zernike moments (ZMs) are unique due to the
orthogonality and completeness of Zernike polynomials (ZPs); hence, ZMs are valu-
able for converting a two-dimensional image to a one-dimensional series of complex
numbers. The magnitude of ZMs is rotation invariant, and by applying image nor-
malization, scale and translation invariants can be made, which are helpful properties
for describing solar and astronomical images. The lower-order ZMs express the overall
shape of the objects of an image, and the higher-order ZMs provide more details of
the objects and delicate structures within an image. In this Python package, available
at GitHub and PyPI, we describe the characteristics of ZMs via several examples of
solar (large and small scale) features, astronomical, and human face images. These
independent and unique properties of ZMs can describe the structure and morphology
of objects in an image. Hence, ZMs are helpful in machine learning to identify and
track the features of several.
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1 Introduction
Objects recognition in images has been developed in several disciplines [1–6]. Recently, fea-
ture extraction for machine learning of object finding and tracking based on image moments
was investigated [7]. Moments are a class of image description [8,9]. Since the image data
of various fields such as biology, medicine, optics, astronomy, and solar physics are vastly
recorded, these images’ descriptions are out of manual analysis. The image moments are
quantities that describe an image’s shape, objects, and structure.
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Zernike moments (ZMs) map an image to a complex number series [10–15]. ZMs are
a family of orthogonal moments due to the property of Zernike polynomial functions [16].
Due to the exponential phase term of complex Zernike polynomials, the magnitude of ZMs
is rotation invariant. In the literature, a comprehensive review of Zernike polynomials and
applications were explained [17–28]. Recently, ZMs have been widely used for describing the
characteristics of various digital images in different disciplines [20–28]. The ZMs, as a basis of
machine learning, were applied for the identification of solar small-scale brightenings [29–32]
and small-scale (mini) dimmings [33–35]. The ZMs are valuable features for classifying solar
flaring and non-flaring active regions [36–38] that developed a tool of solar flare for casting.

The layout this paper is: Sections 2 and 3 describe the Zernike polynomials and Zernike
moments, respectively. Section 4 provides an overview of Python code. Section 5 gives the
conclusions.

2 Zernike polynomials
The ZPs are a complete set of orthogonal continuous functions in a unit disk. The even ZPs
with order n and repetition m in the polar coordinate are given by

ZPpq(r, θ) = Rpq(r) cos(q θ), (1)

and the odd ZPs function is defined by

ZPp−q(r, θ) = Rpq(r) sin(q θ), (2)

where the radial distance in a unit circle is 0 ≤ r ≤ 1 and the azimuths angle is 0 ≤ θ ≤ 2π.
The radial polynomials for a given set of p and q are defined by

Rpq(r) =

p−q
2∑

k=0

(−1)k (p− k)!

k!
(
p+q
2 − k

)
!
(
p−q
2 − k

)
!
rp−2k, (3)

in which p− q = even and |q| ≤ p. The ZPs satisfy the following orthogonality property as,∫ 2π

0

∫ 1

0

V ∗
pqVp′q′rdrdθ =

π

p+ 1
δpp′δqq′ , (4)

where δ indicates the Kronecker delta function and Vpq is the Zernike polynomials.
Figure 1 represents the radial function Rpq for a set of p and q in versus radial distance of
polar coordinate. We observe that the radial functions increase oscillations by increasing
the order number p. This property of ZPs’ radial functions is one of the main reasons for
applying the ZMs to describe an image in a polar coordinate.
Figure 2 displays Zpq for a set of order number p = 0, 1, 2, and 3 in polar coordinates. The
figure shows that each Zernike polynomials have unique radial and azimuthal structures in
polar coordinates. This essential characteristic of Zernike polynomials is the main reason
for describing an image based on the set of complex Zernike polynomials (combination of
even and odd Zernike functions in complex number plane), which maps to a unit circle.

3 Zernike Moments
The reason to describe an image by a set of functions is due to The uniqueness theorem.
This theorem explains that the moments are uniquely discriminated for a given image [8].
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Figure 1: The radial function Rpq for a set of p and q in versus radial distance of polar
coordinates.

Figure 2: The Zernike polynomial Zpq for a set of order number p = 0 (first row), p =1
(second row), p =2 (third row), and p =3 (fourth row).
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Contrariwise, we can reconstruct the original image using the set of moments. Moments can
specify the properties, such as the centroid of an image, its orientation, and the geometry
of the objects. Raw and central moments were defined by [8,39].

The Zernike moments (ZMs) express an image in a set of complex numbers using the
Zernike polynomials Vpq = ZPpq(even) + iZPpq(odd) [16]. The image coordinates (x, y)
must be transformed into the polar coordinate. The circle’s center in polar coordinates is
the centroid of an image. For an image function I(r, θ), the ZM is given by,

Zpq =
p+ 1

π

∫ 2π

0

∫ 1

0

I(r, θ)V ∗
pqrdrdθ. (5)

For a digital image with M × N pixels, the ZMs are introduced by

Zpq =
p+ 1

π

M−1∑
i=0

N−1∑
j=0

I(i, j)Rpq(rij) exp(−ipθij), (6)

where rij =
√

x2
i + y2j and θij = arctan(

yj

xi
) are the image cell mapped to a unit disk [40].

The Zernike moment array includes elements for a set of order p=0 to a maximum order
number Pmax. So, the length of Zernike moments (NZMs) is introduced by [38]

NZMs =

Pmax∑
p=0

(p+ 1). (7)

The reconstructed image (IR) is given by an inverse transformation [41] as follow,

IR(r, θ) =

Pmax∑
p=0

∑
q

ZpqVpq(r, θ). (8)

Using the original and reconstructed images, we obtain the reconstruction error as

e2(I, IR) =

∑M−1
i=0

∑N−1
j=0 (I(i, j)− IR(i, j))

2∑M−1
i=0

∑N−1
j=0 (I(i, j))2

. (9)

Figure 3 shows a full disk AIA image at 171 Å inset a solar coronal bright point and the
Zernike moments’ maximum order 25. The Zernike moments include the imaginary and real
parts (panel b). The structure of the moment series is represented by the absolute normal-
ized Zernike moments versus labels.
Figure 4 represents an original (face) image and reconstructed images with different maxi-
mum order numbers. We observe that the reconstructed image at Pmax= 10 deviated from
the original image, but the reconstructed image at 45 well matched the original image. Also,
increasing the maximum order number of the reconstructed image showed noisy image may
be due to the discrete behavior of a digital image.
Figure 5 displays a solar active region (AR) in Solar Dynamics Observatory/Atmospheric
Imaging Assembly (SDO/AIA) at 94 Å. An sigmiod event and the reconstructed images
with various maximum order numbers (Pmax) are shown. For small Pmax(< 10), the overall
shape of the sigmiod was reconstructed. We observe that with increasing the Pmax, the
reconstructed image approaches the original image at Pmax (= 31). We also see that the
reconstructed image deviates from the original for large Pmax (= 46).
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Figure 3: The full disk AIA image at 171 Å that inset a solar coronal bright point (a), the
imaginary and real parts of Zernike moments for a maximum order number of 25 (b), and
the absolute normalized Zernike moments versus labels (p, q) (c).

Original Image Pmax = 10 Pmax = 45 Pmax = 46

Figure 4: From left to right panels represent the original (face: Hossein Safari) image and
reconstructed images with the different maximum order numbers (Pmax= 10, 45, and 46),
respectively.
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Figure 5: An active region (sigmiod: left top panel) from SDO/AIA at 94 Å. The recon-
structed images for Pmax= 9, 16, 21, 31, and 46 [38].

Figure 6 shows the original and reconstructed images with the different maximum order
numbers for a spiral galaxy (top row), elliptical galaxy (middle row), and irregular galaxy
(bottom row). We find the minimum reconstruction error for Pmax= 45 for spiral, elliptical,
and irregular galaxies. For more or less value than 45, the reconstructed image deviated
from the original image. In the case of minimal reconstruction error, we expect to well match
objects, shapes, and their orientations or morphologies in reconstructed images and original
images. ZPs include orthogonal functions; hence, moments give the properties of an image.
Due to the Fourier term in the azimuthal angle function, the absolute value of moments is
independent of the objects’ rotation angle in the image. Space missions and ground base
instruments observe solar features from various perspectives and scales. The Soho was in
the first Lagrangian point of the Sun-Earth. STEREO A and B are in Earth’s orbit. Figure
7 presents the ZMs of an active region observed by two STEREO A and B. The ZMs are
similar from two different viewpoints. The block structures of the ZMs series are identical,
with slight differences. These trivial differences may be due to the digital rather than the
continuous image. Applying a transformation (to the image centre of brightness) and image
normalization, ZMs will be translation and scaling invariances, respectively see, e.g., [41]

The SoHO/EIT and SDO/AIA resolutions are 0.6 and 2.4, respectively. The ZMs for
the active region (Figure 8) with various resolutions are slightly similar. It seems the ZMs
are functions of the morphology and geometry of the objects and depend less on the object’s
size.

4 Python code for ZMs
The Python code is available at GitHub (https://github.com/hmddev1/ZEMO) and PyPI
(https://pypi.org/project/ZEMO/1.0.0/). The Python code calculates ZMs for a given
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Figure 6: From left to right, panels represent the original and reconstructed images with the
different maximum order numbers (Pmax= 10, 45, and 47), respectively, for a spiral galaxy
(top row), elliptical galaxy (middle row), and irregular galaxy (bottom row). Recorded by
SDSS survey.



274 Hossein Safari et al.

0 500 1000 1500 2000
Sun-X (Pixel)

0

500

1000

1500

2000

S
un

-Y
 (

P
ix

el
)

0 500 1000 1500 2000
0

500

1000

1500

2000
STEREO-Ahead 2014-06-29 20:14 UT

0 500 1000 1500 2000
Sun-X (Pixel)

0

500

1000

1500

2000

S
un

-Y
 (

P
ix

el
)

0 500 1000 1500 2000
0

500

1000

1500

2000
STEREO-Behind 2014-06-29 20:14 UT

0 100 200 300 400 500
pq

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 |Z
pq

|

0 100 200 300 400 500
pq

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 |Z
pq

|

Figure 7: A solar active region indicated by a white box of the EUVI images at 195
Å recorded by STEREO-A (Left top) and STEREO-B (Left bottom). The normalized
absolute values of the Zernike moments for Pmax=31 [38].
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Figure 8: The white boxes represent of an active region observed by SDO/AIA image at 193
Å (Left top panel) and SoHO/EIT (Left bottom panel).(Right) The normalized absolute
value of Zernike moments for two SDO and SoHo views [38].
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image. [42] and [38] used the primitive code for calculating ZMs of solar features. The code
includes the following functions:

• The zernike_order_list function calculates factorials, p (order numbers)-indices, and
q (repetition numbers)-indices for a given maximum order number of Zernike polyno-
mials.

• The robust_fact_quot function removes common elements from lists and calculates
product quotients.

• The zernike_bf function generates Zernike basis functions stored in a complex-valued
grid.

• The zernike_mom function calculates Zernike moments by summing the product of
the image and basis functions.

• The zernike_rec function reconstructs an image by summing the weighted Zernike
basis functions via ZMs.

The code includes checks for data validity, such as square image size matching, and prints
informative error messages.

5 Conclusion
The Zernike polynomials indicate the distance along the radius and azimuthal angle. Equa-
tion (5) shows the image function weighted by the radial part rRpq(r). We note that
|Rpq(r)| < 1 and |rRpq(r)| < r within a unit circle that shows that the edge’s pixels have
more extensive weights than the center pixels. The higher-order Zernike polynomials will
show more oscillations to extract information on the image details along the radius from the
origin to the perimeter [43].
Why are ZMs helpful in expressing an image?

• The Zernike basis is orthogonal and complete set functions, so ZMs are unique quan-
tities features.

• We may reconstruct the original image by a finite number of moments.

• ZMs are slightly sensitive to noises.

• The magnitude of ZMs is rotation invariant. Image normalization makes translation
and scale invariants for ZMs.

These reasons showed the capability of ZMs to describe an image to apply machine learning
to identify and track the features in several disciplines. We published the Python code via
GitHub and PyPI.
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