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Abstract. Arbitrary amplitude dust acoustic waves (DAWs) in a quantum dusty
plasma including the effect of the dust size distribution (DSD) are presented here.
By using the Sagdeev pseudopotential method for large amplitude waves, the energy
integral is derived which includes Sagdeev potential. The upper and lower limits of
Mach number are presented, by applying the conditions in which a solitary solution can
exist. Two cases are studied, a mono-sized dust grains case and dust grains possessing
power-law size distribution case. The result shows that, the allowed Mach number’s
range is increased for mono-sized dust grains case. Sagdeev potential is also plotted
and it is seen that in mono-sized dust grains case, solitary waves are propagated.
Whereas, for different-sized dust grains with power-law size distribution, the solitary
waves transform into cnoidal ones.

Keywords: Dust acoustic waves, Quantum dusty plasma, Sagdeev potential, Dust size
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1 Introduction
Adding dust particles to a plasma creates new wave modes that have attracted the special
attention of researchers. Specially, more practical interest have been focused on investi-
gation of nonlinear waves in a complex plasma, which contains multi species of particles.
Compared to classical plasmas, the quantum plasmas are recognized by high-plasma particle
number densities and low temperatures. In this case, dimensions of the system and the de
Broglie wavelength λB = h/

√
2mπKBT , (where m is the mass of charge particle, T is the

system temperature, and h is the Planck constant) are comparable. Therefore, dusty plasma
acts like a Fermi gas. The dusty plasma can be included with electrons, ions, and very heavy
charged dust particles. Such plasma has attracted attentions in recent years. A lot of dense
astrophysical plasmas are categorized as this type of plasmas [1]. For example, in the lab-
oratory plasmas [2,3], the interior of Jupiter, Saturn, Neptune and Saturn’s rings [4–7] and
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brown or white dwarf stars [8]. Rao et al [8] theoretically investigated DAWs in a plasma
included of electrons, ions and dust grains. These waves are confirmed experimentally in
a lot of laboratories [9,10]. The range of dust particles in laboratory plasmas are limited,
while dust patricles have different sizes in space. Although a lot of researchers investigated
quantum effects on dusty plasmas, all of them assumed the dust grains as mono-sized par-
ticles [11–14]. The DSD is associated with dusty plasma’s conditions and the environment.
In the laboratory, the DSD can be expressed as Gaussian distribution [15], while in space
plasmas, dust grains generally are polydisperse and expressed as a power-law distribution
[16]. Furthermore, the arbitrary dust size distribution function has the form of a polynomial
expansion [17]. According to the researchers, DSD influences the waves’ properties in dusty
plasmas [19–24]. El-Labany et al [18] studied the influences of the power-law DSD and the
polynomial DSD on the linear and nonlinear quantum dust ion acoustic waves (DIAWs).
The results showed that in case of power-law DSD, the wave’s velocity is smaller and the
amplitude is larger compared to polynomial DSD. Also, the influences of the power-law
DSD and the polynomial DSD on a quantum dusty plasma are studied by Feng et al. [19].
With the help of Sagdeev’s potential method, Ishak-Boushaki et al. [20] investigated the
influence of arbitrary DSD on nonlinear DAWs. Banerjee et al. [21], also applied Sagdeev’s
potential method to study double layers and nonlinear ion acoustic waves (IAWs) in a dusty
plasma with power-law DSD. Meuris [22] compared the dusty plasma frequency for the case
of mono-sized dust with that of a dusty plasma having dust distribution when the total num-
ber density is constant and obtained some corrections due to different dust distributions.
El-wakil et al. [23] studied the effects of the higher order nonlinearity on the DA solitary
waves in a dusty plasma having power law dust size distribu-tions (DSDs). El-Shewy et al.
[24] studied the effect of higher order dispersion corrections on the solitary wave properties
for both the case of having monosized dust and DSD. The effect of DSD on large amplitude
DAWs in a quantum dusty plasma has not been reported to the best of our knowledge.

In this paper, our aim is to investigate arbitrary amplitude DAWs in a quantum dusty
plasma with arbitrary DSD. We present our article as follows. The governing equations are
introduced in Section 2. Then, in Section 3, the effect of polynomial DSD on large amplitude
solitons is investigated by using sagdeev potential method. The results are concluded in
Section 4.

2 Basic Equations
Let us consider an unmagnetized plasma composed of inertialess ions and electrons and, N
different species of mobile dust grains with dust particles density ndj , mass mdj , velocity
udj , charge Qdj = eZdj , where Zdj is the number of charges residing on jth dust grain for
j = 1, 2, . . . , N . Then, we assume that ions and electrons obey the pressure law

Pα =
mαV

2
Fα

3nα0
n3
α,

in a zero-temperature Fermi gas, where nα0 is the equilibrium number density of the α th
species and

VFα =

√
2KBTFα

mα
, α = e, i,

is Fermi speed. We describe the neutrality condition as

ni0 = ne0 +

N∑
j=1

Zdjndj0.
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We now introduce the normalized variables, [25,26],

ndj → Ntotñdj , udj → V0ũdj , t → T0t̃, Zdj → ZdZ̃dj ,

mdj → mdm̃dj , φ → φ0φ̃, x → L0x̃,

where

V0 =
L0

T0
, T0 = ω−1

pd =
( md

4πe2Z
2

dNtot

)1/2
,

φ0 =
2KBTFi

e
, L0 = λd =

( 2KBTFi

4πe2ZdNtot

)1/2
.

Furthermore

σ =
TFi

TFe
, µi =

ni0

ZdNtot

, µe =
ne0

ZdNtot

, H =
√
ℏ2ω2

pe/(2KBTFe).

The dynamic of DAWs is governed by the following set of dimensionless equations in model
plasma

∂udj

∂t
+ udj

∂udj

∂x
=

Zdj

mdj

∂φ

∂x
, (1)

− ∂φ

∂x
− ni

∂ni

∂x
+

H2
i

2

∂

∂x

( ∂2

∂x2

√
ni

√
ni

)
= 0, (2)

− ∂φ

∂x
− σne

∂ne

∂x
+

H2

2

∂

∂x

( ∂2

∂x2

√
ne

√
ne

)
= 0, (3)

∂ndj

∂t
+

∂

∂x
(ndjudj) = 0, (4)

∂2φ

∂x2
= µene − µini +

N∑
j=1

Zdjndj . (5)

3 Arbitrary Amplitude DAWs
In this section, we study the effect of DSD on arbitrary amplitude DAWs in model plasma.
We will consider a quantum dusty plasma including N different species of negatively charged
dust grains with different sizes, inertialess quantum electrons and ions. The range of dust
particles are limited as [rd1, rd2], where rd1 and rd2 are the minimum and maximum radius
of dust grains, respectively. The arbitrary DSD is described by a polynomially expressed
distribution function as follows

h(rd)drd = (a0 + a1rd + a2r
2
d + · · · )drd, (6)

which satisfies the total number density

Ntot =

∫ rd2

dd1

h(rd)drd, (7)

where a0, a1, a2, . . . are constants and r is the radius of dust particle.
We consider h(rd) = 0 for the radii outside of the limited range. To study the properties
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of large amplitude DAWs, Sagdeev approach is employed to find a suitable pseudopoten-
tial which appropriately describes the propagation of these waves. To this purpose, all the
dependent variables in equations (1)–(5) are made to be depended on time and space coor-
dinate as ξ = x − Mt. From equations (1)–(5) the following expression for dust, ion, and
electron densities are obtained

ndj =
ndj0√

1 +
2Zdjφ

M2mdj

, (8)

ni =
[
1− 2φ+H2

i (1− 2φ)−1/4 ∂2

∂ξ2
(1− 2φ)1/4

]1/2
, (9)

ni =
[
1 +

2φ

σ
+

H2

σ
(1 +

2φ

σ
)−1/4 ∂2

∂ξ2
(1 +

2φ

σ
)1/4

]1/2
. (10)

Upon substituting equations (8)–(10) in equation (5) and after integrating once with suitable
boundary conditions, namely , φ → 0 and ∂φ/∂x → 0 as ξ → ±∞, The quasi particle’s
energy equation is worked out as

1

2
(
dφ

dξ
)2 + V (φ,M) = 0. (11)

In which the Sagdeev potential is

V (φ) =
[
− 1 +

µeH
2

4σ2
(1 +

2φ

σ
)−3/2 +

µiH
2
i

4
(1− 2φ)−3/2

]−1

(12)

×
[µeσ

3
(1 +

2φ

σ
)3/2 − µeσ

3
+

µi

3
(1− 2φ)3/2 − µi

3
+ Zd0MK(φ,M)

]
.

While,

K(φ,M) =
∑
j

mdjndj

(√
M2 +

2Zdj

mdj
φ−M

)
. (13)

For the continuous case, equations (6) and (7) lead to

ntot =

N∑
j=1

ndj0 =

∫ c

1

h(r)dr =

∫ c

1

(a0 + a1r + a2r
2 + · · · )dr, (14)

where r = rd/rd1, and c = rd2/rd1 shows the extent of the distribution and defined as the
maximum dust size divided by the minimum dust size. Therefore, equation (13) can take
the following form

K(φ,M) =

∫ c

1

r3

(√
M2 +

2φ

r2
−M

)
h(r)dr. (15)

If we consider h(r) = a0, then all different-sized dust grains possess the same number density.
A more complicated case would be h(r) = a0 + a1r = a0(1 + ar), where a = a1/a0. In case
of a > 0, larger dust grains possess the biggest number densities in comparison to smaller
ones. In contrast, if a < 0, then larger dust grains have smaller number densities. As we
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mentioned before, power-law distribution which satisfies a < 0, are used to describe space
plasmas. So, we can rewrite the relation (24) as follows

K(φ,M) = Ma0

{
(
ac2

5
− 14aφ

15M2
+

c

4
)(c2 +

2φ

M2
)3/2 − (

a

5
− 14aφ

15M2
+

1

4
)(1 +

2φ

M2
)3/2 (16)

1

2

φ2 ln
(
1 +

√
1 +

2φ

M2

)
4M2

− 1

2

φ2 ln
(
c2 +

√
c2 +

2φ

M2

)
4M2

+
φ

√
1 +

2φ

M2

4M2

−
cφ

√
c2 +

2φ

M2

4M2
− a(c5 − 1)

5
− (c4 − 1)

4

}
,

where a0 =
ntot

(c− 1)(1 +
1

2a(c+ 1)
)
. The possibility of solitary wave propagation relies on

the following conditions.

1) V (φ) |φ=0=
dV (φ)

dφ
|φ=0= 0,

d2V (φ)

dφ2
|φ=0< 0

2) V (φm) = 0, where φm is either the minimum or maximum value of φ and V (φ) is
negative for φm < φ < 0 (rarefactive soliton) or φm > φ > 0 (compressive soliton),
where there is no other roots

on

the range of [0, φm].

1) If V (φm) ≥ 0 at nonzero φm, then a quasi-particle with zero total energy will be
reflected at φ = φm.

The existence conditions of the solitary wave propagation relay on the Mach number M and
physical parameters of the system determine the permitted values of M. As we could see in
Figure 1 (a), from the first condition which is based on the sign of the second derivative of
V (φ) at φ = 0, a lower limit of M(Mcl) can be obtained. The fact that dust number density
should remain real leads us to the following inequality

φ ≥ −M2

2

mdj

Zdj

(
= −M2

2
(
rdj
rd0

)
)
. (17)

It is to be noted that the mass mdj and the dust grain charge Zdj are normalized by the mass
and the charge of the most probable grain’s radius having the most probable radius, viz.,
md0 = md(rd0) and Zd0 = Zd(rd0). In model plasma, it is assumed that the smaller dust

grains are more abundant. Therefore one can write φm ≥ −M2

2
as the maximum value of φ.

Then, we substitute φm into the sagdeev potential and apply the third condition. Therefore,
the upper limit of M(Mch) is determined (Figure 1 (b)) in case of a = 0, a = −0.1 and
a = −0.2. One may notice that, when different-sized dust grains do not have the same
number density, the allowed Mach number’s range is reduced. Considering Mcl = 0.85, in
case of a = −0.1, a = −0.2, and Mcl = 1.1 for a = 0, Sagdeev potential V (φ) is plotted
with respect to φ in Figure (2). It is seen that when all different-sized dust grains possess
the same number density (a = 0), solitary waves are propagated. However, considering
different number densities for different-sized dust grains leads to propagating cnoidal waves.
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Also, potential’ depth increases with increase in a. Considering a small amplitude limit,
we examine solitary wave structure for Mach number close to Mcl. For this purpose, near
φ = 0, we express V (φ) as

V (φ) = V
′

0φ+
1

2
V

′′

0 φ2 +
1

6
V

′′′

0 φ3. (18)

If V
′

0 = 0, upon substituting equation (18) in equation (11) and integrating, a solitary
solution is obtained as

φ(ξ) = −3
V

′′

0

V
′′′
0

1

cosh2(
1

2

√
−V

′′
0 ξ)

. (19)

Note that a Korteweg–de Vries (KdV) equation obtained with the help of reductive per-
turbation method has the equivalent solitary solution as (19). However, when V

′

0 ̸= 0, the
cnoidal waves are created. Cnoidal waves can be propagated only for the allowed Mach
number (Md < M < Mch). Considering φ0, φ1 and φ2 as the roots of sagdeev potential for
the allowed Mach number, V (φ) becomes negative between φ = 0 and φ = φ2. There is an
oscillatory solution between φ = 0 and φ = φ2; therefore, we can use the Taylor expansion
of V (φ) around φ = 0 to obtain equation (18). Equation (11) can be expressed otherwise as

∂φ

∂ξ
= ±(

F (φ)

3k
), (20)

where

F (φ) = φ3 − 3Bφ2 − 6Aφ = (φ− φ0)(φ− φ1)(φ− φ2), k = 1/V
′′′

0 ,

while
A = −V

′

0/V
′′

0 , B = −V
′′

0 /V
′′′

0 .

The roots of F (φ) are given by

φ1 = 0, φ0,2 =
3

2
B ±

√
(
3

2
B)2 + 6A.

So, equation (20) has an oscillatory solution may be formulated as

φ(ξ) = φ2 + (φ1 − φ2)cn
2
(√ (φ2 − φ0)φ2

12K
ξ, S

)
. (21)

Here, cn and S represents Jacobian elliptic function and modulus, respectively. The modulus
is defined as S2 = φ2/(φ2 − φ0). S = 1 is equivalent to φ0 = φ1 and shows a limit case for
soliton solution.

The phase portraits of DA solitons and cnoidal waves have been drawn in Figure 3. Two
different sets of orbits are seen in this figure, a periodic orbit and a homoclinic one. They
correspond to periodic travelling and solitary wave solutions, respectively. It means the
dashed curve represents soliton and the solid curve shows cnoidal waves. In phase portrait
diagram, the dashed curve is also called a separatrix that corresponds to soliton solution
when S → 1. In other words, cnoidal wave structure must lie inside the separatrix.

The variations of potential φ versus ξ associated to Sagdeev potential are presented in
Figure 4. it shows DA soliton and cnoidal wave structures. As it is mentioned, in mono-sized
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Figure 1: (a) the lower limit and (b) the upper limit of M for a = −0.1 (solid curve),
a = −0.2 (dashed curve) and a = 0 (dash dotted curve) with fixed values µe = 0.33,
µi = 1.33, σ = 20, H = 0.6, Hi = 3× 10−3.

Figure 2: Variation of Sagdeev potential V (φ) vs. φ for (a) a = 0, M = 1 (dash dotted
curve) and (b) for a = −0.1 (solid curve) and a = −0.2 (dashed curve), M = 0.85 with the
same fixed values as in Figure 1.

Figure 3: The phase portrait of DA soliton (dashed curve) and cnoidal wave (solid curve)
for (a) a = −0.1 and (b) a = −0.2 with the same fixed values as in Figure 1.
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dust grains case (a = 0) solitary waves are created. Moreover, if φ0 = φ1 then S = 1. In
this case V

′

0 = 0, therefore

φ(ξ) → sech2
( | φ2 |
12K

ξ
)
,

which corresponds to solitary solution when all different-sized dust grains have the same
number.

Figure 4: (a) the DA cnoidal wave structures, and (b) The DA solitons for a = −0.1 (solid
curves) and for a = −0.2 (dashed curves) with the same fixed values as in Figure 1.

4 Conclusion
In this study, using the Sagdeev pseudopotential method for large amplitude waves, arbitrary
amplitude DAWs are studied in a quantum dusty plasma, including the effect of dust size
distribution (DSD). Considering the power-law distribution which satisfies a < 0, Sagdeev
potential V (φ) is obtained. Two cases are studied, a mono-sized dust grains case (a = 0) and
a dust grains possessing power-law size distribution case (a = −0.1, a = −0.2). Applying the
conditions in which a solitary solution can be existed, the upper and lower limits of the Mach
number are plotted. The result shows that, the allowed Mach number’s range is increased
for mono-sized dust grains case. Thereafter, Sagdeev potential V (φ) versus φ is plotted
and it is seen that in mono-sized dust grains case, solitary waves are propagated. But, for
different-sized dust grains having power-law size distribution, the solitary waves transform
into cnoidal ones. The phase portrait is also plotted and comprised of Two different sets
of orbits, a periodic orbit and a homoclinic one that correspond to periodic traveling wave
solution and solitary wave solution, respectively. Finally, The variations of potential φ versus
ξ associated to Sagdeev potential are plotted and represented DA soliton and cnoidal wave
structures.
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