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Abstract. Applying the Markov chain Monte Carlo algorithm and using low-redshift
observational data, we put cosmological constraints on dark energy cosmologies. Our
main aim is to show the influence of each data sample on the procedure of constraining.
The main results of our analysis are as follows. In the case of the Pantheon catalog of
supernovae, one can put approximately three times tighter constraints on the cosmolog-
ical parameters compare to the early Gold dataset. Combining the Pantheon with the
Hubble data, we obtain ∼ 1.5 times tighter constraints compare to the Pantheon solely.
We show that in cluster scale due to low growth rate data with large error bars, one
cannot put tight constraints on the cosmological parameters. Combining the expan-
sion and growth rate data leads to tighter constraints on the cosmological parameters.
While the local value of Hubble constant H0 has a ∼ 3.4σ tension with Planck inferred
result, we show that by combining the expansion and growth data with local H0 data,
the tension is alleviated to a 1.7σ. Finally, jointing the Pantheon, Hubble data, growth
rate, H0 with the BAO measurements gets roughly 7 − 8% tighter constraints on the
matter density and Hubble constant parameters.
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1 Introduction
Analysis of the various observational data including those of the supernovae type Ia (SnIa)
[1–4], cosmic microwave background (CMB) [5–7], baryonic acoustic oscillation (BAO) [8]
and the large scale structure (LSS) [9–11] indicate that the current universe experiences
an accelerated expansion. From the viewpoint of SnIa, cosmologists use the observed light
curves and redshifts of SnIa to measure the cosmological parameters. SnIa is the standard
candle of cosmology because it is very luminous and very standardized [12,13]. Using the
definition of apparent and absolute magnitudes and calling the Hubble parameter from
the cosmological model, one can calculate the theoretical value of the distance modulus
in terms of redshift and compare it with the observational value. It has been shown that
the predicted value of the distance modulus in the matter-dominant universe for redshifts
above z ∼ 0.5 is less than the observational values [4]. To resolve this problem, one of the
easiest and possible solutions is adding the cosmological constant Λ to the energy budget
of the universe [14]. In this case, the cosmic acceleration of the universe changes from the
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decelerated to accelerated phase. In addition to Λ, the dynamical models of dark energy
(DE) with evolving equation of state (EoS) parameter can also eliminate the incompatibility
between the results of observations and theory [15]. It is interesting to mention that from the
total energy density of the universe, only ∼ 30% consists of the luminous and dark matter,
while the rest corresponds to DE. Despite a lot of studies on DE, its physical properties,
origin, and nature are yet unknown. The simplest candidate for DE is the cosmological
constant with constant EoS parameter equal to −1. But there is a discrepancy of some
120 orders of magnitude between the theoretical and observational values of the energy
density of DE known as the fine-tuning problem [15,16]. Also, the cosmological constant Λ
suffers from the cosmic coincidence problem [15,16]. These two problems can be solved or
at least alleviated in the context of dynamical DE models [17]. As was mentioned above,
in dynamical DE models, the EoS parameter differs from −1 and can vary with cosmic
redshift. In this work, using the latest low-redshift observational data including those of
SnIa, cosmic chronometers (CC) data (see Table 1), BAO measurements (See Tables 3 and
4), local measurement on Hubble constant H0 and the growth rate data from redshift space
distortion (RSD) (see Table 2), we obtain the observational constraints on the properties
of DE. To do this, we assume the concordance ΛCDM and wCDM cosmologies. In later
model, we adopt the constant EoS parameter of DE differs from −1 and smaller than −1/3
[17]. We also use the different catalogs of SnIa data to show that how much we put tighter
constraints on the cosmological parameters by increasing the observational data points of
SnIa at higher redshifts. The SNIa catalogs used in this work are: (i) the Gold sample
(141 distinct SnIa data points) [18–20], (ii) Union2.1 (570 data SnIa data points) [21] and
(iii) Pantheon sample (1048 data points) [22]. Notice that constraining the well-konwn
ΛCDM and wCDM model using the low-redshift observations has been widely investigated.
However, the novelty of our analysis can be stated as follows. For the first time, we compare
the results of using different catalogs of Supernova data including early Gold sample to
recent Pantheon one. We explicitly show that how much one gets better constraints on
cosmological parameters when uses the Pantheon catalog compare to previous catalogs. In
the next step, we combine the Pantheon sample with other low redshifts observational data
such as the Hubble rate and RSD data, step by step. In each step, we show that how
much one gets better results quantitatively. Notice that in many similar studies, the results
of all combined observational data are presented, for example, see [23,25–30] an references
therein. We calculate the precision of our measurement on the cosmological parameters
when we add the observational dataset to the previous ones. Moreover, we compare the
results of our analysis with and without local H0 data point with CMB value from Planck
results. While the local value of Hubble constant H0 has a big tension with Planck inferred
value, we can alleviate the tension based on the analysis which uses the combined the local
H0 data to the other low-redshift observations. Finally, by adding the BAO data point to
other datasets, we get roughly 7 − 8% tighter bounds on matter energy density Ωm0 and
Hubble constant h. In overall, we emphasize that our step by step MCMC analysis can show
the role of each observational dataset on the constraining the DE properties.
We organize the paper as follows. In Section (2), we present the DE models considered in this
work. In Section (3), we present the low-redshift observational data including those of SnIa,
CC, BAO and RSD data used in our analysis. In Section (4), the results of observational
constraints based on the SnIa, CC and RSD data are presented. In Section (5), we combine
the low-redshift observational data used in Section (4) with the local H0 and BAO data to
see the impact of these experiments on our results. Finally, we conclude this work in Section
(6).
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2 DE models
As was mentioned in introduction, our aim in this work is to study the influence of each data
sample on the constraining of the cosmological parameters. So, we consider two simple and
relevant ΛCDM and wCDM cosmological models. Here, we present the Hubble expansion
for DE models used in this work. In the case of wCDM model, one assumes that the EoS
parameter of DE is constant and less than −1/3. In this model, the Hubble parameter in
the flat low-redshift universe reads [15]

E2(z) = H2/H2
0 = Ωm0(1 + z)3 + (1− Ωm0)(1 + z)3(1+wde), (1)

where Ωm0 is the current value of dimensionless energy density of non-relativistic matter, wde

is the EoS parameter of DE and z is the cosmic redshift parameter. Notice that in the low-
redshift universe, we can ignore the contribution of radiation in the total energy budget of
the universe. In standard ΛCDM cosmology, the Hubble parameter in low redshift universe
simply reads

E2(z) = Ωm0(1 + z)3 + (1− Ωm0), (2)

In the limiting case of Einstein- de Sitter universe (EdS), the Hubble parameter in low-
redshift flat cosmology simply reads E2(z) = (1 + z)3. In the next section, using the
low-redshift observational data and in the context of the current cosmological models, we
study the properties of DE in both expansion and perturbation levels.

3 Low redshift observational data
In this section, we introduce different low-redshift observational data used to put constraints
on DE properties. At the expansion level, we use different catalogs of SnIa data, CC data,
BAO measurements and local value of Hubble constant H0. At the perturbation level, we
use the RSD data obtained from the redshift space distortion of galaxy clusters. In fact, the
RSD data can help us to study the behavior of DE in small scales where the impact of DE
on the growth of cosmic structures will be significant.

3.1 Supernova type Ia
The observations of distant SnIa at the last two decades cause a big revolution in modern
cosmology. SnIa is one of the most important objects in observational cosmology because of
their role as distance indicators. It is bright enough to observe at high redshifts and has a
uniform peak luminosity. SnIa is expected to evolve less compared to other objects such as
galaxies. In many studies, SnIa has been used as a distance indicator in order to show the
accelerating expansion of the universe [4]. Cosmologists use the observed light curves and
redshifts of SnIa to put constraints on the cosmological models. Given the apparent and
absolute magnitude, the distance modulus of supernova can be written in the form of

µ(z) = 5 log

(
1 + z)

∫ z

0

dz

E(z)

)
+ µ0, (3)

where µ0 = 42.38 − 5 log h and h is the current value of Hubble constant H0, in units of
100km/s/Mpc. By inserting E(z) from the cosmological models in equations (1 and 2),
we show the redshift evolution of the residuals of distance modulus computed for EdS and
wCDM universes with respect to standard ΛCDM cosmology and then compare it with the
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Table 1: Hubble data extracted from different cosmic chronometers used in the current
study.

z H(z) σH Reference
0.070 69.0 19.6 [31]
0.100 69.0 12.0 [32]
0.12 68.6 26.2 [31]
0.17 83.0 8.0 [32]
0.179 75.0 4.0 [33]
0.199 75.0 5.0 [33]
0.2 72.9 29.6 [31]
0.27 77.0 14. [32]
0.28 88.8 36.6 [31]
0.35 76.3 5.6 [34]
0.352 83.0 14.0 [33]
0.4 95.0 17.0 [32]
0.48 97.0 62.0 [35]
0.593 104.0 13.0 [33]
0.68 92.0 8.0 [33]
0.781 105.0 12. [33]
0.875 125.0 17.0 [33]
0.88 90.0 40.0 [35]
0.9 117.0 23.0 [32]

1.037 154.0 20.0 [33]
1.3 168.0 17.0 [32]
1.43 177.0 18.0 [32]
1.53 140.0 14.0 [32]
1.75 202.0 40.0 [32]
2.3 224.0 8.0 [36]



Low-Redshift Observational Constraints on DE 169

Table 2: The growth rate data extracted from redshift space distortion [37].

z fσ8(z) σfσ8

0.02 0.428 0.0465
0.02 0.398 0.065
0.02 0.314 0.048
0.10 0.370 0.130
0.18 0.360 0.090
0.38 0.440 0.060
0.25 0.3512 0.058
0.37 0.4602 0.0378
0.32 0.384 0.095
0.59 0.488 0.060
0.44 0.413 0.080
0.60 0.390 0.063
0.73 0.437 0.072
0.60 0.550 0.120
0.86 0.400 0.110
1.40 0.482 0.116

Table 3: BAO dataset in old format.

Survey z d σ reference
6dFGS 0.106 0.336 0.015 [38]

SDSS-LRG 0.35 0.1126 0.0022 [39]

Table 4: BAO dataset in new format.

Survey z α∗ (Mpc) σ (Mpc) rfids (Mpc)
BOSS-MGS 0.15 664 25 148.69 [40]

BOSS-LOWZ 0.32 1264 25 149.28 [41]
WiggleZ 0.44 1716 83 148.6 [42]

0.6 2221 101 148.6
0.73 2516 86 148.6

BOSS-CMASS 0.57 2056 20 149.28 [41]
BOSS-DR12 0.38 1477 16 147.78 [43]

0.51 1877 19 147.78
0.61 2140 22 147.78
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observational data in Figure (1). Notice that here we fix the current value of matter density
Ωm0 and also fix the Hubble parameter h based on the results presented in Table (6). We
simply see that the distance modulus in Einstein de-Sitter (EdS) universe without invoking
of DE (e.g., Ωm = 1) is deviated from the observational data at relatively high redshifts (e.g.,
z > 0.5). While in wCDM and concordance ΛCDM universes, the theoretical prediction of
distance modulus is well fitted to observations. Here the observational data are chosen from
the Pantheon catalog, where we use the corrected heliocentric redshifts updated by [22].
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Figure 1: The redshift evolution of the residuals of distance modulus computed for the
cosmological models: wCDM and EdS universe with respect to standard ΛCDM Universe.
The EdS model deviates from the observational data at higher redshifts while other models
are well fitted to observations equally as standard model. The observational data showed
here are from the Union Pantheon catalog [22].

3.2 CC data
The other observational sample used here are the Hubble data which include the value
of Hubble parameter, H(z), obtained from CCs at different redshifts. The independent
measurements of CC data at different redshifts with their errors and references are collected
in Table (1). Theoretically, it is very easy to obtain the Hubble parameter at any cosmic
redshift. In fact, H(z) = H0E(z) where E(z) is given by equations (1 and 2), respectively,
for wCDM and ΛCDM models and H0 = 100h is the Hubble constant. In Figure (2),
we show the evolution of the Hubble parameter calculated for our cosmological models in
this work as well as the observational data given in Table (6). Notice that we fix Ωm and h
based on their values in Table (5). For comparison, we also plot the Hubble parameter in the
context of EdS model. We see that the Hubble parameter in the EdS universe deviates from
the observational data. While wCDM and concordance ΛCDM models fit the observations.

3.3 RSD data
The data from SnIa catalogs and CC sample are geometrical because they are directly
related to cosmic distance. In other words, these experiments are valuable when we study
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Figure 2: The redshift evolution of the Hubble parameter for cosmological models: wCDM,
ΛCDM, and EdS universe. The EdS universe deviates from the observational data while
other models fit observations. The CC data points showed here are reported in Table (1).
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Figure 3: The redshift evolution of f(z)σ8(z) quantity calculated for cosmological models:
wCDM, ΛCDM, and EdS universe. As expected, the EdS universe deviates from observa-
tional data while other models fit observations. The RSD data points are presented in Table
(2).
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cosmology at the uniform large scales. However, in smaller scales, the perturbations can
grow and the universe is not homogeneous. In fact at scales which are currently smaller than
100h−1Mpc, the universe is not isotropic and homogeneous. In such scales we can explore
how DE can impact on the growth of perturbations? Fortunately, from the observational
point of view, cosmologists can extract some important data from RSD of galaxies that
are known as f(z)σ8 data [44]. Here, f(z) is the growth function of matter perturbations
and σ8 is the mass variance inside the radius of 8h−1Mpc. We present the updated f(z)σ8

data at different redshifts with their errors and references in Table (2). Using the f(z)σ8

data, we can study the DE models in the perturbation level and investigate how a given
DE model can suppress the growth of matter perturbations. In overall, one can combine
all data from background and perturbation levels to study how much a given DE model is
consistent with observations. [25,27,28,45]. Also, the RSD data can be used as a probe to
study the differences between the growth of perturbations in the modified theory of gravity
and general relativity [46]. In addition, using the RSD data, one can compare DE models
with the standard ΛCDM cosmology at the level of perturbation. In order to calculate
the theoretical value of f(z)σ8(z), we should first compute the linear evolution of matter
perturbation δm from the following equations [47]

θ′ + (
2

a
+

E′

E
)θ − 3

2a5
Ωm0δm = 0, (4)

δ′m +
θ

a
= 0, (5)

where θ is the divergence of the peculiar velocity of perturbations and prime is the derivative
with respect to the scale factor a. To solve the above equations, we adopt the following
adiabatic initial conditions at the initial scale factor ai = 10−4 [27,28,48]

δmi = 1.2× 10−5, δ′mi =
δmi

ai
. (6)

The initial scale factor ai = 10−4 refers the end of radiation dominated phase meaning that
at this scale factor the universe enters the matter dominated era. By choosing the above
value for δmi at ai = 10−4, we guaranty that the matter perturbation can not grow to the
non-linear regimes and remains in a linear phase (δm << 1). We can simply calculate the
redshift evolution of the growth function f(z) = d ln δm

d ln a on the basis of the following equation

f(z) = − 1 + z

δm(z)

dδm(z)

dz
. (7)

Since the evolution of the mass variance σ8(z) is similar to that of the matter perturbation
δm, we can write the following relation

σ8(z) = D(z)σ8(z = 0), (8)

where D(z) = δm(z)
δm(z=0) and σ8(z = 0) is the current value of the mass variance inside the

sphere with radius 8h−1Mpc. Also, the present value of the mass variance for a given DE
model is related to that of the ΛCDM universe as follows [23,24]

σ8(z = 0) = σΛ
8 (z = 0)

δm(z = 0)

δΛm(z = 0)
. (9)

Using equations (4, 7, 8 & 9), we compute the f(z)σ8(z) quantity for a given cosmological
model and compare it with observations. In Figure (3), we show the redshift evolution
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of f(z)σ8(z) for cosmological models considered in this work. The free parameters of the
models are fixed based on the values in Table (8). We see that wCDM and concordance
ΛCDM models are well fitted to observations while the traditional EdS universe deviates
from the observational data. This simple prediction shows that in the context of standard
gravity we need DE not only on large scales to interpret the cosmic acceleration but also in
small scales to justify the suppression of the growth of perturbations.
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Figure 4: The likelihood function for the energy density of pressureless matter Ωm obtained
from different SnIa catalogs in the context of ΛCDM universe. Using the Pantheon catalog,
we obtain tighter constraints compare to other catalogs.

Table 5: Best fit values of the non-relativistic matter density, Ωm0, and EoS parameter
of DE, wde, obtained from statistical MCMC analysis using different SnIa catalogs in the
context of ΛCDM and wCDM cosmologies.

Model Ωm0 wde χ2
min AIC Catalog

ΛCDM 0.294+0.041,+0.097,+0.12
−0.051,−0.085,−0.11 −1.00 167 171 Gold sample

ΛCDM 0.279+0.019,+0.038,+0.052
−0.019,−0.036,−0.048 −1.00 564 568 Union 2.1

ΛCDM 0.285+0.013,+0.025,+0.033
−0.013,−0.025,−0.032 −1.00 1037 1041 Pantheon

wCDM 0.409+0.080,+0.12,+0.13
−0.032,−0.072,−0.10 −1.58+0.17,+0.63,0.79

−0.40,−0.44,−0.49 163 169 Gold sample
wCDM 0.280+0.078,+0.14,0.16

−0.063,−0.15,−0.23 −1.04+0.23,+0.39,+0.43
−0.16,−0.45,−0.73 565 571 Union 2.1

wCDM 0.347+0.039,+0.067,+0.081
−0.032,−0.072,−0.10 −1.24+0.15,+0.28,+0.33

−0.15,−0.29,−0.42 1035 1041 Pantheon

3.4 BAO data
The BAO measurements are important data to study the present and future universe. These
data are extracted from seven different surveys including 6dFGS, SDSS-LRG, BOSS-MGS,
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Figure 5: The confidence regions and marginalized likelihood functions for cosmological
parameters Ωm0 and wde obtained from different SnIa catalogs in the context of wCDM
universe. We see that using the Pantheon data, we can put tighter constraints on the
cosmological parameters compare to union 2.1 and Gold Sample catalogs.
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BOSS-LOWZ, WiggleZ, BOSS-CMASS and BOSS-DR12. These data, errors, and corre-
sponding references are collected in Tables (3) and (4). In Table (3), the quantity d(z) is
defined as

d(z) =
rs(zd)

Dv(z)
, (10)

where rs(zd) is the comoving sound horizon at the baryon drag epoch, zd, which is given by

rs(zd) =

∫ a

0

csda

a2H(a)
. (11)

Also, the quantity Dv(z) in equation (10) is given as follows

Dv(z) = [(1 + z)2D2
A(z)

z

H(z)
]
1
3 , (12)

where DA(z) is the angular diameter distance. Notice that we adopt the fitting formula for
zd from [49] and also use the following formula for baryon sound speed

cs(a) =
1√

3(1 +
3Ω0

b

4Ω0
γ
a)

, (13)

where we fix the present value of radiation energy density as Ω0
γ = 2.469 × 10−5h−2 [50].

Notice that, in Table (4), the quantity α∗ is equal to d−1(z)× rfids .

3.5 H0 data point
Recent improvements in the process of measuring the value of Hubble constant H0 result
H0 = 73.48+1.66

−1.66 Km/s/Mpc [51]. This measurement increases the tension with respect to
the Planck-inferred value, H0 = 67.4+0.5

−0.5Km/s/Mpc [52], to roughly 3.5σ. Recent Gaia
DR1 parallax measurements of Cepheids are also confirm the high tension between the local
and Planck inferred values of H0 ([53]). Also, the time-delay cosmography measurements
of quasars which pass through the strong lenses is another approach to set the independent
constraints on H0. In this way, the efforts of ([54]) by using three strong lenses result
H0 = 71.9+2.4

−3.0 Km/s/Mpc in the context of flat ΛCDM model with free parameter of energy
density ([55]). Fixing the energy density Ωm0 = 0.32 motivated by the Planck results, yields
a value H0 = 72.8+2.4

−2.4 Km/s/Mpc. These results are in tension with 1.7σ and 2.5σ with the
Planck inferred value, while are perfectly consistent with the local measurements of H0. The
above statements motivate us to consider the local value of H0 as an another low-redshift
cosmological data point in our analysis.

4 Observational constraints
In this section, we use both the expansion and RSD data and implement a statistical MCMC
analysis for the cosmological models considered in this study. For more details regarding
the MCMC technique used in this work, we refer the reader to [23,27–29,50]. The expansion
datasets that we use in this analysis include data from SnIa, CC, BAO and local data of
H0. Here we use the SnIa data from three different catalogs including those of Gold sample
catalog (157 distinct data points) [18–20], Union 2.1 catalog (570 distinct data points)
[21] and Pantheon catalog (1048 data points) [22]. Using three different catalogs of SnIa
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sample, we want to show how increasing the data points of SnIa experiments from early Gold
sample data to current Pantheon data causes the narrower constraints on the cosmological
parameters. In addition to SnIa data, we use the CC data presented in Table (1). In
fact, by combining the SnIa data and the data from CC experiments, we can put tighter
constraints on the cosmological models. On the other hand, using the RSD data in Table
(2) and applying the MCMC analysis, we study the behavior of DE in perturbation level.
We put constraints on the cosmological models using the solely RSD data and compare it
with that of the expansion level. Finally, combining the data in expansion level (SnIa and
CC) with the RSD data and applying the overall MCMC analysis, we put constraints on the
cosmological parameters and discuss how combining the above different sets of cosmological
data gets the tighter constraints on the cosmological parameters.

4.1 SnIa data
The first dataset that we consider is the SnIa distance modulus from different SnIa samples
mentioned above. The chi-square function for a distance modulus of supernova data is given
by

χ2
S =

N∑
i=1

[µth(zi)− µobs(zi)]
2

σ2
i

, (14)

where µth and µobs are, respectively, the theoretical and observational values of distance
modulus and σi is the uncertainties corresponding to observational data. Here N is the
number of observational data. Notice that µth is given by equation (3). In MCMC analysis,
using the statistical approach based on the Metropolis-Hastings algorithm [56], we find the
confidence levels of the cosmological parameters. We also find the minimum of χ2

S for specific
values of cosmological parameters in the space parameters. We define a statistical vector p
in space parameter containing the cosmological parameters for a given DE model. Notice
that before finding the minimum value of χ2

S , we marginalize the χ2
S over the cosmological

parameter h appearing in last term of equation (3). Our marginal likelihood analysis have
also been used for Gold sample data [57].

Hence, the vector p in ΛCDM cosmology contains only Ωm0 as a free parameter and
we have p = {Ωm0, w} for wCDM model. The results of MCMC analysis are shown in
Figures (4) and (5), respectively, for standard ΛCDM cosmology and wCDM model. Also,
the numerical results are presented in Table (5). In the case of ΛCDM model (Figure 4), we
see that the constraint on the parameter Ωm0 is tighter when we use the Pantheon catalog
compare to Gold sample data. We also see that the constraint using Pantheon catalog
is tighter than that of the Union 2.1 catalog. Quantitatively speaking, 1σ, 2σ and 3σ
uncertainties of Ωm0 for Gold sample data are 0.042, 0.0775 and 0.1425, respectively. In the
case of Union 2.1 data, these values are 0.021, 0.040 and 0.053, respectively. Finally we have
0.014, 0.027 and 0.035, respectively, for 1σ, 2σ and 3σ errors using the Pantheon catalog.
In addition, we calculate the quantity 1

∆Ωm0
for different 1σ, 2σ and 3σ confidence regions.

A large value of 1
∆Ωm0

means a tighter constraint and our results show that the Pantheon
catalog provides a better constraint than both the Union 2.1 and Gold sample catalogs.
The quantity 1

∆Ωm0
calculated within 1σ, 2σ and 3σ confidence regions for Pantheon are

respectively ∼ 71, ∼ 37 and ∼ 28. While these values are ∼ 47, 25 & ∼ 18 for Union 2.1 and
∼ 23, ∼ 13 & ∼ 7 for the Gold sample catalog. In the case of wCDM model (Figure 5), we
see that for Pantheon sample the area of confidence levels in Ωm0−wde plan is much smaller
than that of the Gold sample and Union 2.1 catalogs. Hence, using the Pantheon data, we
can get more precise measurement of the cosmological parameters Ωm0 and wde compare
to other Gold sample and Union 2.1 catalogs. Quantitatively speaking, we calculate the
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Figure 6: 1σ, 2σ and 3σ confidence regions as well as marginalized likelihood functions in
Ωm0 − h plane obtained from the combination of the Pantheon Supernova data and the CC
data in ΛCDM cosmology.
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Figure 7: 1σ, 2σ and 3σ confidence regions as well as marginalized likelihood functions for
cosmological parameters obtained from the combination of the Pantheon Supernova data
and the CC data in wCDM cosmology.
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Figure 8: 1σ, 2σ and 3σ confidence regions as well as marginalized likelihood functions for
cosmological parameters σ8 and Ωm0 obtained from the MCMC analysis using the solely
RSD data in the context of ΛCDM cosmology.
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Figure 9: 1σ, 2σ and 3σ confidence regions as well as marginalized likelihood functions
for cosmological parameters σ8, wde and Ωm0 obtained from the MCMC analysis using the
solely RSD data in the context of wCDM cosmology.
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Figure 10: 1σ, 2σ and 3σ confidence regions as well as marginalized likelihood functions
for cosmological parameters σ8, h, and Ωm0 obtained from the MCMC analysis using the
combined expansion and RSD data in the context of ΛCDM cosmology.
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Figure 11: 1σ, 2σ and 3σ confidence regions as well as marginalized likelihood functions for
cosmological parameters σ8, h, wde, and Ωm0 obtained from the MCMC analysis using the
combined expansion and RSD data in the context of wCDM cosmology.
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Figure 12: 1σ, 2σ and 3σ confidence regions as well as marginalized likelihood functions for
cosmological parameters σ8 and Ωm0 obtained from the MCMC analysis using the solely RSD
(green) and combined expansion with RSD data (blue) in the context of ΛCDM cosmology.
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Figure 13: 1σ, 2σ and 3σ confidence regions as well as marginalized likelihood functions
for cosmological parameters σ8, wde and Ωm0 obtained from the MCMC analysis using the
solely RSD (green) and combined expansion with RSD data (red) in the context of wCDM
cosmology.
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Figure 14: The comparison between confidence regions and marginalized likelihood functions
of cosmological parameters σ8, h, and Ωm0 for ΛCDM cosmology obtained from the MCMC
analysis with (blue) and without (cyan) inclusion of H0 data point.
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Figure 15: The comparison between confidence regions and marginalized likelihood functions
of cosmological parameters σ8, h, wde, and Ωm0 for wCDM cosmology obtained from the
MCMC analysis with (red) and without (gray) inclusion of H0 data point.
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Figure 16: The comparison between confidence regions and marginalized likelihood functions
of cosmological parameters σ8, h, and Ωm0 for ΛCDM cosmology obtained from the MCMC
analysis with (black) and without (blue) inclusion of BAO measurements.
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Figure 17: The comparison between confidence regions and marginalized likelihood functions
of cosmological parameters σ8, h, wde, and Ωm0 for wCDM cosmology obtained from the
MCMC analysis with (black) and without (blue) inclusion of BAO measurements.
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Table 6: Best fit values of the matter density, Ωm0, EoS parameter of DE, wde, and di-
mensionless Hubble constant, h, obtained from the MCMC analysis using the Pantheon
Supernova data combined with the CC data in Table 1.

Model Ωm0 wde h

ΛCDM 0.277+0.011,+0.021,+0.028
−0.011,−0.021,−0.027 −1.00 0.687+0.011,+0.022,+0.029

−0.011,−0.021,−0.028

wCDM 0.275+0.017,+0.035,+0.046
−0.017,−0.033,−0.042 −0.991+0.056,+0.097,+0.12

−0.047,−0.11,−0.15 0.688+0.011,+0.022,0.029
−0.011,−0.022,−0.029

quantity 1
∆Ωm0∆wde

for different 1σ, 2σ and 3σ confidence regions. The results for Pantheon
sample are ∼ 50.7, ∼ 13 & ∼ 7.7, respectively for 1σ, 2σ and 3σ confidence regions . While
these values are ∼ 15.3, ∼ 4.3 & ∼ 2.5 for Union 2.1 and ∼ 18.7, ∼ 4.2 & ∼ 2.05 for the
Gold sample catalog. The best fit values of the parameters Ωm0 and wde and their 1σ, 2σ
and 3σ confidence regions are presented in Table. (5).

4.2 SnIa + CC data
In the previous section, we showed how increasing the data points of SnIa from early Gold
sample data to current Pantheon catalog can tight the confidence regions of cosmological
parameters. In this section, we combine the SnIa data with the CC data, H(z), to show
that one can get tighter regions of confidence level by using the different data from various
observational catalogs. To do this, we combine the SnIa data from Pantheon catalog with
the CC data from Table 1. We consider the standard ΛCDM and wCDM model and apply
the MCMC analysis to obtain the best fit values and confidence regions of the cosmological
parameters. The results are shown in Figures (6) and (7), respectively, for concordance
ΛCDM and wCDM models. The numerical results are also shown in Table (6). Comparing
the results from those of the Table (5), we conclude that combining the Pantheon SnIa
data with the CC data changes slightly the confidence regions for both concordance ΛCDM
and wCDM cosmologies. In fact, we expect that adding the CC data predicts more precise
measurements of the cosmological parameters. In the case of ΛCDM model, the best fit
value of Ωm0 obtained from Pantheon + CC constraint is roughly 0.8% lower than that of
the Pantheon constraint only. So that the difference, in this case, is negligible. In the case of
wCDM, the constraint value of Ωm0 obtained from Pantheon + CC sample is approximately
7% lower than that of the Pantheon constraint only. We observe that the best fit value of
EoS parameter resulted from Pantheon + CC is −0.991 confirming the concordance ΛCDM
moel even in 1σ error (see Table 6). Notice that we can not achieve this result by using
the Pantheon sample only (see Table 5). One can also observe that the confidence regions
for EoS parameter, wde resulted from Pantheon + CC constraint is tighter than that of the
Pantheon constrain only (see Tables 5 and 6). The other cosmological parameter that we
constraint using the Pantheon + CC samples is the dimensionless Hubble constant h. We
observe that, in this case, the ΛCDM and wCDM models are consistent with each other
even in 1σ level.

4.3 RSD data
We now extend our analysis in the perturbation level. We mention that up to now our
MCMC analysis is based on the expansion data including different SnIa samples and CC
data extracted from cosmic chronometers. Here we constrain the properties of DE using
the only RSD data. In the context of MCMC analysis and using the RSD data from Table
2, we constraint the cosmological parameter of both the ΛCDM and wCDM models. The
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confidence regions and the likelihood functions for ΛCDM and wCDM models are depicted
in Figures (8) and (9), respectively. The numerical results for both models are presented
in Table (7). We observe that the best fit value of matter density Ωm0 obtained from the
analysis based on RSD data is roughly 15% larger than that of the analysis based on the
Pantheon+ CC data. We also see that the uncertainties of Ωm0 is much larger than that of
the MCMC analysis based on the SnIa and SnIa + CC experiments. This result is expected,
because the number of data extracted from RSD experiments is much lower than the data
of SnIa and SnIa + CC analysis.

Table 7: Best fit values of matter density, Ωm0, EoS parameter of DE, wde, and mass variance
within 8Mpch−1, σ8, obtained from MCMC analysis using the RSD data in Table 2.

Model Ωm0 wde σ8

ΛCDM 0.327+0.060,+0.13,+0.17
−0.068,−0.12,−0.17 −1.00 0.730+0.033,+0.085,+0.17

−0.047,−0.080,−0.089

wCDM 0.328+0.073,+0.14,+0.18
−0.073,−0.15,−0.17 −1.22+0.4,+0.70,+0.86

−0.4,−0.71,−0.86 0.717+0.034,+0.17,+0.24
−0.092,−0.11,−0.12

Table 8: Best fit values of matter density, Ωm0, EoS parameter of DE, wde, dimensionless
Hubble constant, h, and mass variance within 8Mpch−1, σ8, obtained from MCMC analysis
using the combination of Pantheon + CC datasets with RSD data.

Model Ωm0 wde h σ8

ΛCDM 0.278+0.011,+0.021,+0.028
−0.011,−0.020,−0.026 −1.00 0.687+0.011,+0.021,+0.028

−0.011,−0.021,−0.028 0.755+0.021,+0.041,+0.053
−0.021,−0.041,−0.055

wCDM 0.277+0.017,+0.033,+0.043
−0.017,−0.033,−0.044 −0.994+0.054,+0.10,+0.13

−0.049,−0.11,−0.15 0.687+0.011,+0.022,0.029
−0.011,−0.021,−0.028 0.758+0.024,+0.055,+0.079

−0.029,−0.052,−0.065

Table 9: Best fit values of the matter density, Ωm0, EoS parameter of DE, wde, and dimen-
sionless Hubble constant, h, obtained from the MCMC analysis using the Pantheon + CC
+ RSD data combined with the local measurement of H0.

Model Ωm0 wde h σ8

ΛCDM 0.2682+0.0097,+0.019,+0.025
−0.0097,−0.019,−0.025 −1.00 0.7020+0.0092,+0.018,+0.024

−0.0092,−0.018,−0.024 0.763+0.021,+0.042,+0.055
−0.021,−0.042,−0.055

wCDM 0.263+0.016,+0.030,+0.040
−0.016,−0.031,−0.041 −0.979+0.050,+0.10,+0.12

−0.050,−0.10,−0.13 0.7024+0.0094,+0.018,0.024
−0.0094,−0.019,−0.025 0.770+0.026,+0.058,+0.077

−0.029,−0.052,−0.069

4.4 SnIa + CC + RSD data
Here, we combine the expansion data including those of Pantheon and CC data with the RSD
data in cluster level. The confidence regions and likelihood functions for the cosmological
parameters of ΛCDM and wCDM models are shown in Figures (10) and (11), respectively.
The best fit values and 1, 2 and 3σ errors of cosmological parameters are also reported in
Table (8). Combining the expansion and RSD data, we get tighter constraints compare to
previous analysis based on the solely RSD data. In particular, we show the confidence re-
gions of the cosmological parameters obtained from MCMC analysis using (i) the RSD data
and (ii) the Pantheon + CC + RSD data in Figures (12) and (13), respectively, for ΛCDM
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Table 10: Best fit values of the matter density, Ωm0, EoS parameter of DE, wde, and
dimensionless Hubble constant, h, obtained from the MCMC analysis using the Pantheon
+ CC + RSD + H0 data combined with the measurement of BAO dataset.

Model Ωm0 wde h σ8

ΛCDM 0.2730+0.0091,+0.018,+0.024
−0.0091,−0.017,−0.022 −1.00 0.6991+0.0087,+0.017,+0.022

−0.0087,−0.018,−0.023 0.759+0.021,+0.043,+0.056
−0.021,−0.040,−0.053

wCDM 0.265+0.015,+0.044,+0.029
−0.017,−0.029,−0.036 −0.966+0.054,+0.096,+0.10

−0.042,−0.10,−0.16 0.6997+0.0090,+0.018,+0.023
−0.0090,−0.017,−0.023 0.770+0.028,+0.054,+0.071

−0.028,−0.054,−0.072

and wCDM cosmologies. One can see that including the expansion results tighter constraint
on the cosmological parameters for both ΛCDM and wCDM cosmologies. Quantitatively,
we compute 1

∆Ωm0∆σ8
in the case of ΛCDM cosmology and 1

∆Ωm0∆σ8
, 1

∆Ωm0∆wde
, 1

∆wde∆σ8

in the case of wCDM Universe. In ΛCDM cosmology, the quantity 1
∆Ωm0∆σ8

, respectively
in 1σ, 2σ and 3σ uncertainties are roughly 390, 97 and 42, by using the solely RSD data.
While these values for Pantheon + CC + RSD data are roughly 4329, 1161 and 685, re-
spectively. We observe that the these values for 1σ, 2σ and 3σ uncertainties obtained from
Pantheon + CC + RSD data are respectively 11, 11 and 16 times larger than that of those
values using the RSD data. This result shows that we can put more tighter constraints
on the cosmological parameters using the low redshift expansion data compared to RSD
data. The data in perturbation scales are not sufficient to put reasonable constraints on the
cosmological parameters. Notice that this result is also due to the large error bars of the
RSD observational data. We now repeat our analysis for wCDM cosmology. Within 1σ, 2σ
and 3σ confidence regions and using the solely RSD data, we obtain (217, 49, 31), (34, 10,
7) and (40, 10, 6), respectively for quantities 1

∆Ωm0∆σ8
, 1

∆Ωm0∆wde
, 1

∆wde∆σ8
. While these

values for Pantheon + CC + RSD are roughly (2219, 566, 319), (1142, 288, 164) and (732,
178, 99),respectively. We observe that in the case of 1

∆Ωm0∆σ8
, the result for all 1σ, 2σ and

3σ regions obtained from Pantheon + CC + RSD data are approximately 10 times larger
than the result obtained from RSD data. In the case of 1

∆Ωm0∆wde
( 1
∆wde∆σ8

), this value for
Pantheon + CC + RSD data is approximately 30 (18) times larger than that of the RSD
data. Hence, in agreement with the results of the ΛCDM cosmology, this prediction shows
that in the case of wCDM model, we can also put tighter constraints on the cosmological
parameters using the combined low redshift expansion and RSD data.

5 Combined data with H0 and BAO measurements
In this section, we first add the local observational value of H0 data point to the observational
datasets used in the previous section to see that how including the H0 data changes the
results of our analysis. In the next step, we combine the observational datasets with that of
the BAO data points and observe the effect of BAO measurements in our results.

5.1 H0 data point
Combining the local value H0 = 73.48+1.66

−1.66 Km/s/Mpc [51] with the other low-redshift data
including Pantheon, CC and RSD, we repeat our MCMC analysis for both ΛCDM and
wCDM models. The numerical results of our statistical analysis is presented in Table(9).
We also compare the confidence regions and marginalized likelihood functions of the cosmo-
logical parameters obtained from the analysis with and without H0 in Figures (14) and (15),
respectively, for ΛCDM and wCDM cosmologies (see also Tables 8 and 9). Without includ-
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ing the H0 data point (Table 8), we observe that the best fit values of h for both ΛCDM
and wCDM models are roughly 2% larger than Planck inferred value and approximately 6%
smaller than the local value of Hubble constant H0. We see that by combining the H0 data
with other low redshift observational data (Pantheon + CC + RSD), the best fit value of
h is 0.702 which is translated to H0 = 70.2. Hence, our analysis based on Pantheon + CC
+RSD + H0 yields the lower tension between the low-redshift observational data and high
redshift CMB experiments for Hubble constant. Numerically, we observe that the tension is
alleviated from high value 3.4σ to low value ∼ 1.7σ (note that we consider 1σ = 1.66 from
H0 = 73.48+1.66

−1.66 Km/s/Mpc [51]). We would like to mention that our results presented in
Tables (8) and (9) indicate no tension even in 1σ error between the best fit values of other
cosmological parameters obtained from the analysis with and without H0 (see also Figures
14 and 15).

5.2 BAO measurements
Here, we add the BAO data to Pantheon + CC + RSD + H0 data points to perform
an overall likelihood analysis and see the effect of including the BAO experiments in our
analysis. Based on the equations (10,11,12 and 13), we can calculate the theoretical value
of d(z) and use the observational values in Table (3) to obtain the first χ2 function for BAO
as follows

χ2
bao,1 =

∑
i

[dobs(zi)− dthe(zi)]
2

σ2
i

, (15)

In the next step, we calculate the second χ2 function for BAO using the data points presented
in Table (4). Notice that these data points are uncorrelated, except for the WiggleZ subset.
The second χ2 function reads

χ2
bao,2 =

∑
i

[α∗
obs(zi)− α∗

the(zi)]
2

σ2
i

, (16)

where α∗
the = d−1(z) × rfids is calculated from equation (10.) It is emphasized that in

equation (16), we do not consider the WiggleZ data points. Also in order to calculate α∗
the

we use the values for rfids presented in the last column of Table (4). Finally, we compute
the third χ2 function for WiggleZ subset as

χ2
bao,3 = {α∗

obs(zi)− α∗
the(zi)}Σ−1

bao,ij{α
∗
obs(zj)− α∗

the(zj)} , (17)

where α∗
obs and its corresponding redshift have been shown in WiggleZ subset of Table (4).

The inverse of related covariance matrix Σ−1 is given by

Σ−1
WiggleZ =

 0.000217899 −0.000111633 0.0000469829
−0.000111633 0.000170712 −0.00007184472
0.0000469829 −0.0000718472 0.000165283

 . (18)

The total χ2
bao is then given by χ2

total = χ2
bao1 + χ2

bao2 + χ2
bao3. We now combine the BAO

observations with Pantheon + CC + RSD + H0 and perform an overall likelihood analysis
on the basis of MCMC method for ΛCDM and wCDM cosmologies. Our results are showed
in Table (10 as well as in Figures (16) and (17). As expected, adding the BAO data causes
the tighter constraints of the cosmological parameters. Specifically, in the case of ΛCDM
cosmology, tighter constraints on the cosmological parameters have been achieved (see Fig-
ure 16). Quantitatively speaking, we see that the constraint on Ωm0 and h parameters is
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approximately 7 − 8% tighter when we combine Pantheon + CC + RSD + H0 data with
BAO data points. While the differences between our analysis with and without BAO ob-
servations is negligible for the parameter σ8. Comparing the results of Tables (9) and (10)
shows that the constraints on the cosmological parameters with and without using the BAO
data are consistent with each other within 1σ error. This result is valid for both ΛCDM and
wCDM cosmologies.

6 Conclusion
In this work, we studied the properties of DE cosmologies by implementing the statistical
analysis based on the MCMC technique. We use the low-redshift observational data includ-
ing the SNIa data from the Gold sample, Union 2.1 and Pantheon catalogs as well as the
CC data extracted from cosmic chronometers, the growth rate data extracted from RSD
measurements, local measurement on H0 data point and finally BAO dataset. We assumed
the well-known ΛCDM and wCDM models as the DE cosmologies in our analysis. Our main
conclusion of this work are presented as follows:

(i) First, we compared the results of the MCMC analysis for different Gold sample, Union
2.1 and Pantheon catalogs. We showed that in the case of Pantheon catalog, one can
put tighter confidence regions on the cosmological parameters compare to the Gold
sample and Union 2.1 catalogs. In particular, the confidence regions obtained from
Pantheon sample are roughly three times smaller than those of the Gold sample data.
This result is valid for both ΛCDM and wCDM cosmologies.

(ii) In the second step, we combined the Pantheon and CC data and obtained the con-
fidence regions of the cosmological parameters. We concluded that in this case, the
tighter constraints can be achieved compare than the case of Pantheon sample alone.
While in the case of Pantheon data, the EoS parameter of DE deviates from the ΛCDM
within 1σ error (see Table 5), we showed that by combining the Pantheon and CC
data the EoS parameter of DE for wCDM model is well consistent with the ΛCDM
universe within 1σ level (see Table 6).

(iii) In the third step, we studied the properties of DE in cluster scales using the RSD
observational data. We obtained the large uncertainties of cosmological parameters
using the growth rate data alone (see Table 7). The large uncertainties obtained here
is due to this fact that the number of RSD observational data is much lower compare
to Pantheon data. The other important thing that causes the big uncertainties of
cosmological parameters is the large error bars of the RSD observational data. Then,
by combining Pantheon + CC with RSD data, we observed tighter constraints and
small uncertainties of cosmological parameters compare to results of RSD data alone
(see Table 8 and Figures 12 and 13).

(iv) In the fourth step, we combined the Pantheon + CC + RSD datasets with that
of the local measurement of Hubble constant H0. While the local value of H0 =
73.48+1.66

−1.66 Km/s/Mpc [51] has a big ∼ 3.4σ tension with CMB inferred value [52]
H0 = 67.4+0.5

−0.5Km/s/Mpc, the combination of local value H0 with other low-redshifts
Pantheon + CC + RSD data yields H0 = 70.2 (see Figures 14 and 15 as well as Table
9). This means that in our analysis the high tension ∼ 3.4σ with high redshift CMB
observations is alleviated to ∼ 1.7σ by assuming the Pantheon + CC + RSD + H0

datasets.
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(v) In the fifth step, we implemented an overall likelihood analysis by combining Pan-
theon + CC + RSD + H0 with BAO datasets. We concluded that by including
the BAO observational data into account, the constraints on the matter density Ωm0

and dimensionless Hubble constant h for ΛCDM cosmology are approximately 7− 8%
tighter than the analysis without BAO dataset (see Figure 16 and Table 10). How-
ever, the constraints with and without including the BAO data are consistent with
each other within 1σ error.
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