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Abstract. We aim to reconstruct a nonlinear force-free magnetic field by minimizing
the global departure of an initial field from a force-free and solenoidal state in the
presence of helicity to obtain an appropriate representation of the magnetic field com-
patible with the solar coronal condition. Following the Wheatland et al method, we
modify their functional to include the magnetic helicity using the Lagrange Multiplier
Technique. We reconstruct the magnetic field by minimizing the new functional in a
computational box whose lower side coincides with the artificial magnetogram on the
photosphere while the lateral and top sides extends up to the corona and by assuming
appropriate boundary conditions for the Lagrange multiplier. The artificial magne-
togram is obtained by Low and Lou semi-analytical solutions. A potential field as well
as a suitable ansatz is used for the initial input magnetic filed and Lagrange multiplier
for the iteration procedure, respectively. The results obtained by different optimization
methods are in agreement with those obtained by our approach.
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1 Introduction
The magnetic field governs the formation and dynamics of the structures in the solar corona.
Hence, the measurements of the magnetic field, if possible, helps us to study the physical
phenomena occurring in the corona. However, it is not possible to measure the coronal
magnetic field directly by existing tools; therefore, several methods have been proposed to
extrapolate the photospheric magnetic field up to the solar corona. These extrapolation
methods aim to estimate the magnetic field in the corona based on the measurements of the
magnetic field on the solar photosphere, known as magnetograms. The Non-Linear Force-
Free Field (NLFFF) extrapolation method is one of the commonly used techniques for this
purpose. For negligible non-magnetic forces, the force-free field is defined as vanishing the
Lorentz force

(∇⃗ × B⃗)× B⃗ = 0. (1)
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Equation (1) is nonlinear, in general, and could be rewritten as

∇⃗ × B⃗ = αB⃗. (2)

Using the solenoidal condition
∇⃗.B⃗ = 0, (3)

and taking the divergence of equation (2) one gets

B⃗.∇⃗α(r) = 0, (4)

which means that α(r) remains constant along the magnetic field lines. By the coronal
conditions, in which the non-magnetic forces may be ignored, it seems that the force free
model is applicable to the coronal magnetic field. To get a force-free magnetic field inside
the computational box in the corona, it has to fulfill the vanishing of net force and torque
on the boundary ([1–3]). A special class of force-free solutions is the potential and the linear
force-free field which are obtained when α is zero or constant along the magnetic field lines,
respectively. Due to the nonlinear behavior and complicated nature of the above equations,
the possible analytic solutions are limited. To obtain numerical solutions for the nonlinear
coronal magnetic fields, the computational codes use different methods such as the MHD
relaxation (Chodura and Schluter [4]) and Grad-Rubin (Grad and Rubin [5], Sakurai [6]),
upward integration [7], boundary-element (Yan and Sakurai [8]), Euler potentials ([9,10])
and optimization [11], methods. It is shown that important factors such as reliability of the
solutions, fulfillment of ∇×B and ∇ ·B conditions, computing and converging speed, field
connectivity, magnetic energy, alignment of field lines with currents, etc., are better satisfied
with optimization methods (see [12,13]).

We are interested in following the Wheatland (WRS) method to reconstruct a nonlin-
ear magnetic field by considering the effect of the magnetic helicity. Here, the Lagrange
Multiplier Technique is used to add the magnetic helicity to the functional previously em-
ployed by the WRS method and to reconstruct the coronal magnetic field using an artificial
photospheric magnetogram.

2 Method: Optimiztion Method in the Presence of He-
licity

The Lagrange Multiplier Method is used to reconstruct a nonlinear force-free magnetic field
dy adding the helicity term to the functional considered first by WRS optimization method.
Let us give a very short review of the Wheatland et al [11] who proposed a new optimization
method for reconstructing a force-free magnetic fields using their boundary values in the
computational box with its lower side located on the solar photosphere. They solved the
resultant equation by an iterative procedure and optimized the global departure of an initial
field from a force-free and solenoidal state by introducing the following functional

LW =

∫
v

Ω⃗2
W B⃗2dv, (5)

where
Ω⃗W = B−2[(∇⃗ × B⃗)× B⃗ − (∇⃗ · B⃗)B⃗]. (6)

By defining

F⃗W = ∇⃗ × (Ω⃗× B⃗)− Ω⃗× (∇⃗ × B⃗)− ∇⃗(Ω⃗ · B⃗) + Ω⃗(∇⃗ · B⃗) + Ω⃗2B⃗, (7)
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and
G⃗W = n̂× (Ω⃗× B⃗)− n̂(Ω⃗ · B⃗), (8)

and differentiating equation (5) with respect to t one gets

1

2

dLW

dt
= −

∫
∂B⃗

∂t
.F⃗W dv −

∫
∂B⃗

∂t
· G⃗W dS⃗. (9)

Assuming the following boundary condition

∂B⃗

∂t
|s = 0, (10)

the equation (9) becomes
dLW

dt
= −2

∫
µF⃗ 2

W dv, (11)

which is always negative. This means that LW will decrease as the iteration process goes
on. Since LW is always positive, then LW will approach to zero at the end of the iteration
giving the force-free and divergence-free magnetic field everywhere in the computational box
through the following iteration equation

∂B⃗

∂t
= µF⃗W , (12)

where µ is a positive constant.
Here, we follow the Nasiri et al [14] and Fatholahzadeh et al [15] and generalize the

functional of WRS to include the total magnetic helicity. Magnetic helicity is a measure
of the topological structure of the magnetic field. It is a measure of the twistedness or
linkage of magnetic field lines and plays a vital role in the dynamics of the solar eruptions
and occurrence of the flare phenomena. By including the helicity term in the optimization
functional, one may argue that the resulting extrapolated magnetic field can better represent
the observed coronal features. The magnetic helicity is defined as follows

H =

∫
A⃗ · B⃗dv, (13)

where A⃗ is magnetic vector potential and v is the plasma volume of the computational box.
The concept of magnetic helicity as a conserved quantity has recently become important
(especially since magnetic helicity conserves better than the magnetic energy through the
magnetic re-connection processes) (Ashwanden [16], Woltjer [17] and Buniy [18]). Under
a gauge transformation that replaces A⃗ by A⃗ + ∇⃗g, where g is an arbitrary real-valued
function, the magnetic helicity H changes as

H → H +

∫
g(n̂ · B⃗)dS⃗. (14)

Which means that H is not a gauge invariant quantity. However, in optimization procedure,
we will differentiate H with respect to iteration parameter t and get

∂H

∂t
→ ∂H

∂t
+

∫
g(n̂ · ∂B⃗

∂t
)dS⃗. (15)
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Using equation (10), the second term vanishes so H will remain as a gauge invariant quantity.
To construct our functional Lnew, we use the Lagrange multiplier, Λ, to enforce the helicity
as follows

Lnew =

∫
B⃗2Ω⃗2dv +

∫
Λ(A⃗ · B⃗)dv, (16)

here the Ω⃗ has the same form

Ω⃗W = B−2[(∇⃗ × B⃗)× B⃗ − (∇⃗ · B⃗)B⃗], (17)

as in WRS [11]. In the same manner as done by WRS [11] one may differentiate Lnew with
respect to t to get

1

2

dL

dt
= −

∫
∂B⃗

∂t
.F⃗newdv −

∫
∂B⃗

∂t
· G⃗newdS⃗ +

1

2

∫
∂Λ(r, t)

∂t
(A⃗ · B⃗)dv, (18)

where

F⃗new = ∇⃗ × (Ω⃗× B⃗)− Ω⃗× (∇⃗ × B⃗)− ∇⃗(Ω⃗ · B⃗) + Ω⃗(∇⃗ · B⃗) + Ω⃗2B⃗ − Λ(r, t)A⃗, (19)
G⃗new = n̂× (Ω⃗× B⃗)− n̂(Ω⃗ · B⃗)− n̂× Λ(r, t)A⃗. (20)

By assuming
∂B⃗

∂t
= µ1F⃗new, (21)

and
1

2

∂Λ(r, t)

∂t
= −(A⃗ · B⃗), (22)

and using the boundary conditions

∂B⃗

∂t
|s =

∂A⃗

∂t
|s = 0. (23)

One gets the decreasing condition for Lnew as follows

dLnew

dt
= −2

∫
µ1F⃗

2
newdv − 2

∫
µ2(A⃗.B⃗)

2
dv, (24)

where µ1 and µ2 are positive constants.
According to equation (19), since F⃗ depends on A⃗ it seems that F⃗ is gauge dependent,
while, having a unique magnetic field in each iteration steps of reconstruction, F⃗ must be
a gauge independent quantity. However, the appearance of Λ and A⃗ in the multiple form
in equation (19), may serve to make the combined form of Λ(r, t)A⃗ as a gauge independent
quantity, although, each one of the Λ and A⃗ are gauge dependent. This can be deduced
from boundary condition equation (23), in which

F⃗new|s = 0. (25)

Thus,
Λ(r, t)A⃗ = ∇⃗ × (Ω⃗× B⃗)− Ω⃗× (∇⃗ × B⃗)− ∇⃗(Ω⃗ · B⃗) + Ω⃗(∇⃗ · B⃗) + Ω⃗2B⃗, (26)

on the surface. By equation (7), the right hand of equation (26) is F⃗W ; thus,

Λ(r, t)A⃗ = F⃗W , (27)
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or

Λ(r, t) =
F⃗W · B⃗
A⃗ · B⃗

. (28)

By equations (22) and (28) we see that Λ depends on A⃗. Therefore, Λ and A⃗ both are
arbitrary quantities. However, by equation (27), Λ(r, t) A⃗ which is equal to F⃗W must be
gauge independent. Note that two vital prerequisites should be considered while Λ is satisfied
by equation (28): Its dimension should be consistent in equation (16), and it must be satisfied
by both equations (22) and (28). Therefore, substituting for A.B from equation (28), as a
guideline equation, in equation (22), one gets the following evolution equation for Λ.

∂Λ2(r, t)

∂t
= (F⃗W · B⃗)2. (29)

Starting with a potential field as an input and iterating the equations (21) and (29), one
may update both of the magnetic field and Lagrange Multiplier, simultaneously, needless of
input for A⃗. Finally, by making Lnew stationary, one may obtain the force-free field in the
computational box.
In the next sections, we apply the method to an artificial magnetogram and deliver the
corresponding results.

3 Results
3.1 Application to an Example Magnetogram
The magnetic field at any point in space is a vector quantity. The appropriate magnetogram
is obtained for different components of the magnetic field from the solution of the Low and
Lou semi-analytic model [19] and the results are shown in Figure 1 for Bx, By, and Bz,
as the three components of the magnetic field. We use the resulting magnetogram and
reconstruct the magnetic field lines by our model and compare them with those obtained by
the corresponding Low and Lou solutions. The results are plotted in Figure (2).

3.2 Figures of Merit
Figures of merit are numerical expressions taken to represent the quality of the performance
or efficiency of a given procedure [20]. Here, we use it to quantify the degree of agreement
between vector fields B (for the input model field) and b (the NLFF model solutions) specified
on identical sets of grid points. We use five metrics that compare either local characteristics
(e.g., vector magnitudes and directions at each grid point), or the global energy content in
addition to the force and divergence integrals as defined in Schrijver et al. [21]. The vector
correlation Cvec metric analogous the standard correlation coefficient for the scalar functions
is given by

Cvec =
ΣiBi · bi

(Σi|bi|2 · Σi|Bi|2)
1
2

, (30)

where Bi and bi are the vectors at each point i. If the vector fields are identical, then
Cvec = 1, if Bi ⊥ bi , then Cvec = −1.
The second metric, Ccs is based on the Cauchy-Schwarz inequality (| a · b |≤| a || b | for any
two vectors a and b)

Ccs =
1

M
Σi

Bi · bi
| Bi || bi |

=
1

M
Σicosθi, (31)
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Figure 1: From left to right the x, y and z components of the vector magnetogram of Low
and Lou solution. The first row shows the original vector magnetogram inferred from the
Low and Lou solution. In the second row we applied preprocessing to the original vector
magnetogram using the preprocessing scheme of Wiegelmann et al. [20]
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Table 1: Quality comparison of NLFFF field obtained by WRS and Lagrange multiplier
methods (Nasiri et al and this paper), for a computational box with grid numbers: nx = 80,
ny = 80, nz = 20

Models Low& Lou WRS Nasiri et al This paper
ϵ 1.0 1 · 5353 1 · 0853 1 · 0794

Em 0.0 ·5567 ·0539 ·0668
Cvec 1.0 ·8609 ·9452 ·920513
En 0.0 ·5836 ·0909 ·1138
Ccs 1.0 ·8988 ·9434 ·9597

where M is the total number of vectors in the volume, and θithe angle between input and
model magnetic fields at point i . This metric is mostly a measure of the angular differences
of the vector fields: Ccs = 1 when B and b are parallel and Ccs = −1 if they are anti-parallel;
Ccs = 0 if Bi⊥bi at each point.

Next, we introduce two measures for the vector errors, one by normalizing to the average
vector norm, another by averaging over relative differences. The normalized vector error En

is defined as
En =

Σi | bi −Bi |
Σi | Bi |

, (32)

The mean vector error Em is defined as

Em =
1

M
Σi

|bi −Bi|
|Bi|

. (33)

Unlike the first two metrics, the perfect agreement between the two vector fields results in
En = Em = 0.
we are also interested in determining how well the models estimate the energy contained in
the field. Thus, we use the total magnetic energy in the model field normalized to the total
magnetic energy in the input field as a global measure of the quality of the fit

ϵ =
Σi | bi |2

Σi | Bi |2
, (34)

where ϵ = 1 is for the best agreement between the model field and the nonlinear force-free
model solutions.

We calculate the above relations for 5000 iteration steps and the results are shown for
Low and Lou analytic solutions as well as for WRS and Nasiri et al [14] models for the
same number of iteration steps and the corresponding magnetic fields are reconstructed.
These parameters for different methods are tabulated in Table 1. As it is seen in the table,
all metrics of Lagrange multiplier models (both Nasiri et al and this paper) are in better
agreement with Low and Lou analytical method compared with those of WRS model.

A few magnetic field lines are reconstructed for the models given by Low and Lou,
WRS, Nasiri et al and this paper, on the artificial magnetograms obtained by using the
Low and Lou analytical solutions and the results are shown in Figure (2). The same as
numerical metrics of Table (1), the results obtained by different methods are in agreement
with analytical approach.
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Figure 2: Some field lines reconstructed on the Low and Lou artificial magnetograms: Low
and Lou analytical method (top left), WRS (top right), Nasiri et al (bottom left) and this
paper (bottom right).

4 Conclusions and Outlook
Within this work, we used a constrained optimization method using the Lagrange Multiplier
Technique to reconstruct a nonlinear force-free magnetic field. This is done by assuming
the helicity as a constraint on the force-free and the divergence free magnetic field. Due
to certain boundary conditions applied to the magnetic field and the Lagrange Multiplier
on the surface of the computational box, and by assuming an appropriate expression for
the input Lagrange Multiplier, the gauge dependence of the helicity is removed and the
nonlinear force-free magnetic field is reconstructed by iterating the evolution equations for
the magnetic field and the Lagrange multiplier. To compare the results, the values of the
different metrics such as the mean vector error, relative energy, etc., are shown in Table
(1), as well as the magnetic field lines are reconstructed and plotted for different models in
Figure (2). For the future work, the present model may be applied to a real magnetogram
and deduce the energetic and the dynamics of the flaring phenomena in the active regions
of the solar corona.
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