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Abstract. With the exponential growth in data volume, especially in recent decades,
the demand for data processing has surged across all scientific fields. Within astronom-
ical datasets, the combination of solar space missions and ground-based telescopes has
yielded high spatial and temporal resolutions for observing the Sun, thus fueling an
increase in the utilization of automatic image processing approaches. Image process-
ing methodologies play a pivotal role in analyzing solar data, a critical component in
comprehending the Sun’s behavior and its influence on Earth. This paper provides an
overview of the utilization of diverse processing techniques applied to images captured
from the solar photosphere. The introduction of our manuscript furnishes a descrip-
tion of the solar photosphere along with its primary characteristics. Subsequently, we
endeavor to outline the significance of preprocessing photospheric images, a crucial pre-
requisite before engaging in any form of analysis. The subsequent section delves into
an examination of numerous reputable sources that have employed image processing
methodologies in their research pertaining to the Sun’s surface. This section also en-
compasses discussions concerning recent advancements in image processing techniques
for solar data analysis and their potential implications for future solar research. The
final section deliberates on post-processing procedures as supplementary steps that
are essential for deriving meaningful results from raw data. Effectively, this paper
imparts vital information, offering concise explanations regarding the Sun’s surface,
the application of image processing techniques to various types of photospheric im-
ages, indispensable image preprocessing stages, and post-processing procedures aimed
at transforming raw data into coherent and comprehensive insights.

Keywords: Sun: photosphere, Sun: activity, Sun: magnetic fields, Sun: granulation,
Sun: sunspots, Techniques: image processing

1 Introduction
The solar photosphere is the visible surface of the Sun and is the layer from which most
of the Sun’s radiation is emitted. It is the layer that we observe when we look at the Sun
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using a telescope or with the naked eye using a solar filter. The photosphere is a thin layer
of gas that has a thickness of only a few hundred kilometers [44,71]. It is a highly dynamic
and complex layer, with constant convective motions that give rise to granulation, which
are small cellular structures [85]. The photosphere of the Sun is covered by granulation,
which consists of irregularly shaped convective cells. These cells are constantly forming
and disappearing in a turbulent manner. The bright center of each cell contains hot, rising
plasma that flows horizontally at a speed of 0.5 to 1.5 km s−1. The boundaries, which
are about 0.3 Mm wide and are referred to as intergranular lanes, are dark and represent
cooler, falling material. Granules typically have a diameter of 1 Mm, but their size can
range from 0.3 to 2 Mm. The turnover time for a granule with a diameter of 1 Mm and
a speed of 1 km s−1 is about 1000 sec or approximately 20 min. Granules have intensity
contrasts of 5 to 15 per cent in white light, depending on the resolution, or up to 32 per
cent in the near UV [59]. The lifetime of a granule is typically about 5 to 10 min, but it can
range from 1 to 20 min. Larger granules with smaller random horizontal velocities tend to
have longer lifetimes. The evolution of a granule is strongly influenced by its environment,
including the nearby magnetic field and its location within meso- and super-granules [122].
Granules move with both meso- and super-granules. Granules are born from the merging of
two smaller granules or the splitting of a larger one, such as an exploding granule [94]. The
characteristic feature of this layer is sunspots, which have been concerned by many ancients
for a long time. These large-scale magnetic structures are dark and cool regions on the
Sun’s surface that are associated with intense magnetic fields [22,77] and evolution in active
regions (ARs) [126]. This layer is also origin of lots of phenomena related to the small-scale
magnetic fields [38] that can be observed on the photosphere’s surface. The concentration
of magnetic fields as visible-light signatures can be studied in one of the following classes:
faculae, filigree, facular bright points (BPs), and network BPs [24]. The other fundamental
magnetohydrodynamic event is solar granulation which is explained as a process of advection-
fragmentation that occurs in the upper layers of the convection zone. The reader can refer
to [30,73,81,82,99,108,123] for more details and review about granulation, mesogranulation,
and supergranulation dynamical processes in the Sun.

Temperature is a measure of the average kinetic energy of the gas particles in the pho-
tosphere. Different theories explain that the temperature of the photosphere typically de-
creases with distance from the sun’s core, with a range of around 4500 to 6000 Kelvin.
Pressure is a measure of the force exerted by the gas particles on their surroundings and
is essential for understanding the dynamics of the photosphere. The pressure in the pho-
tosphere varies with height and temperature, with a range of around 0.1 to 100 Pa. The
density is relatively low compared to the layers above it, with a value of around 10−7 kg.m−3.
Magnetic fields in the photosphere is typically weaker than in the layers above it and are also
critical since they can influence the behavior of the plasma [112], giving rise to phenomena
such as sunspots [27], CMEs [33,133], and flares [107]. The strong magnetic fields in the so-
lar photosphere are concentrated into small magnetic elements or intense flux tubes. These
structures typically have field strengths of 1 kG, fluxes of 3 × 109 Wb (3 × 1017 Mx), and
diameters of 100 km [117]. As the flux tubes rise through the photosphere, their magnetic
field strength decreases, from 1500 to 1700 G in the deep photosphere to 1000 to 1200 G in
the middle photosphere and 200 to 500 G at the temperature minimum. The ratio of plasma
pressure to magnetic pressure (β) is small in the tubes, ranging from 0.2 to 0.4, indicating
that the magnetic field dominates the plasma. In the neighboring photosphere, β is greater
than 1, whereas in the chromosphere and corona, where the magnetic flux spreads, β is much
less than 1 in ARs and is typically less than or equal to 1 elsewhere [94].

Indeed, magnetohydrodynamics (MHD) theory can help to determine the range of pa-
rameters of the Sun [94,95], however, the exact measurement of the physical parameters of
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the photosphere is a challenging task since they cannot be measured directly. Instead, scien-
tists use various indirect methods to infer these parameters. For example, the temperature
of the photosphere can be estimated by analyzing the spectrum of the light emitted by the
Sun. Pressure can be inferred from the observed granulation patterns, and magnetic fields
can be measured using a technique called Zeeman splitting, which splits spectral lines in
the presence of a magnetic field. There are also some challenges associated with measuring
photospheric parameters, including the effects of atmospheric turbulence and instrument
calibration. Atmospheric turbulence can cause distortions in the images, making it difficult
to obtain accurate measurements, and instrument calibration is essential to ensure that the
measurements are accurate and reliable. In recent years, there have been significant advances
in photospheric observations, including the development of new instruments and techniques
that allow for more precise measurements of the physical parameters of the photosphere.
These advances have led to a better understanding of the photosphere’s behavior and its
role in the Sun’s activity cycle. Further research in this area will continue to improve our
understanding of the Sun’s behavior and its impact on our planet [40,95,142].

2 Significance of Pre-processing Procedures in Solar Im-
ages

In an excellent article presented by [7] explained that the image pre-processing procedures
in solar image analysis are essential for successful automated feature detection algorithms.
These procedures aim to remove unwanted features, correct artifacts, enhance relevant struc-
tures, and standardize images for further analysis. Here, we outline key aspects of these
procedures:

• Instrumental Effects: Solar images acquired by space-borne telescopes often contain
artifacts such as ”dark pixels” and ”hot pixels” due to the imperfections of charge-
coupled devices (CCDs). These artifacts need to be corrected through methods like
dark current subtraction or pedestal subtraction to prevent false detections. Also,
issues like vignetting, silhouetting, and instrument-induced background must be ac-
counted for to avoid incorrect measurements.

• Non-Solar Features: To isolate solar phenomena, non-solar features like cosmic rays or
high-energy particle hits must be suppressed. Despiking and destreaking algorithms,
along with mathematical morphology filters, help remove such artifacts. These meth-
ods help eliminate unwanted signals and enhance the accuracy of feature detection.

• Image Resolution: Insufficient resolution can lead to inaccurate measurements. The
spatial resolution of different instruments must be characterized, and images may need
to be deconvolved or resampled to a consistent resolution for reliable automated feature
detection.

• Image Background: Background subtraction is crucial for feature detection. The chal-
lenge lies in defining suitable background models, considering both feature-unrelated
structures and instrument-related background flux. Neglecting this step can lead to
inaccurate feature measurements and analyses.

• Coordinate System: Images from different sources need to be coaligned in identical
coordinate systems. This ensures accurate feature tracking and quantitative analysis
across various datasets. Various coordinate transformations and coalignment methods
are used to align images effectively.



80 Mohsen Javaherian∗ et al.

• Image Filtering: Image filters are employed to enhance specific features while sup-
pressing noise and unrelated structures. Fourier and wavelet filtering techniques are
common for solar image enhancement. Non-linear filters like unsharp masking can
significantly enhance morphology and geometry, aiding feature detection.

• Image Restoration and Reconstruction: Seeing effects in ground-based solar images
can distort features. Techniques like speckle imaging and phase diversity are used for
restoration. In radio and hard X-ray imaging, Fourier-type imaging is employed to
reconstruct images, accounting for wavelength-dependent effects.

For preprocessing photospheric images, some points must be carefully fulfilled. First of all,
the noise reduction procedure is applied to the data, if it needs. In some data sets taken by
different telescopes, there are routines to increase the signal-to-noise ratio (SNR) and denoise
the recorded images. Setting a particular value for SNR helps to achieve a satisfactory level
of restoration and avoiding the amplification of unwanted noise. We can point to the flat
field correction and dark current subtraction as steps of preprocessing procedures. If the
purpose of a study is tracking features in sequential frames, two main tasks must be fulfilled
before any type of processing:
Derotation: A crucial data processing technique used in solar astronomy is derotation
of solar images to compensate for the Sun’s rotation when observing solar features over an
extended period. As the Sun rotates, different parts of its surface come into view at different
times, leading to apparent motion of solar features in observational data. Derotation helps
align solar images taken at different times to a common reference frame, allowing researchers
to study and track solar phenomena with improved temporal coherence and accuracy. For
more specialized explanations of solar differential rotation and technique of derotation, see
[31,54,62] and [116,129], respectively.

Here’s some points about the derotation process and its significance in solar image anal-
ysis:

• Sun’s Rotation: The Sun is a gaseous, rotating celestial body. Its equator rotates at
a faster rate than its poles. As a result, the solar surface completes one full rotation
approximately every 25 days at the equator and around 35 days at the poles. This
rotation causes solar features, such as sunspots, prominences, and filaments, to appear
to move across the solar disk when observed over several hours or days.

• Need for Derotation: When studying solar phenomena that evolve over longer periods,
it is essential to compensate for the Sun’s rotation. Without derotation, the apparent
motion of features would introduce significant errors in measuring their properties,
trajectories, and changes over time. Derotation is particularly important for long-
term observations and time-series analysis of solar activity.

• Derotation Techniques: There are various methods to derotate solar images, depend-
ing on the data and the specific study objectives. One common approach is to use
solar tracking software, which precisely measures the Sun’s position and orientation at
different times and then applies an inverse rotation to align the images to a common
reference frame. This method requires accurate tracking of the solar limb or other
features on the solar disk.

• Differential Rotation: The Sun exhibits differential rotation, meaning that different
latitudinal bands rotate at slightly different rates. This effect further complicates the
derotation process. More sophisticated derotation techniques take into account the
differential rotation to ensure accurate alignment of features over time.
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• Advantages of Derotation: Derotation allows solar researchers to create time-lapse
movies or image sequences that show the evolution of solar phenomena with a stable
reference frame. This stability enhances the ability to analyze solar activities, track
solar features, and study long-term trends in solar behavior.

• Applications: Derotation is used in various solar studies, such as tracking sunspot
groups and magnetic fields, studying the evolution of solar flares and prominences, and
investigating solar surface dynamics and large-scale motions. It is also instrumental
in studying the solar cycle and long-term variations in solar activity.

• Limitations: While derotation greatly improves the coherence of solar image sequences,
it may introduce some artifacts or errors, especially in the presence of atmospheric
turbulence or instrumental imperfections. Advanced image processing techniques and
careful data calibration are often used to mitigate these issues. For example, see [95],
for further details.

Subsoinic filter: The term ”subsonic k − ω filter” in the context of solar physics refers to
a data processing technique used to modify or analyze 5-minute photospheric oscillations.
These oscillations are waves that propagate through the Sun’s photosphere with a char-
acteristic period of around 5 minutes correspond to a cutoff velocity of 7 km s−1. These
oscillations are commonly referred to as solar p-modes (pressure modes) and are associated
with the Sun’s acoustic and gravity waves [110,111].

The subsonic filter is applied to time-series data (cube), such as Doppler velocity or
intensity observations of the solar photosphere, obtained from ground-based or space-based
instruments. The main goal of this filtering technique is to remove or suppress high-frequency
noise and unwanted signals, revealing the underlying 5-minute oscillation signal more clearly.
This allows researchers to study the properties and behavior of these oscillations in greater
detail. The subsonic filter typically involves the following steps:

• Fourier Transform: The time-series data is transformed from the time domain to the
frequency domain using a Fourier transform. This transformation allows the data to
be analyzed in terms of its constituent frequency components.

• Frequency Filtering: The subsonic filter focuses on low-frequency components corre-
sponding to the 5-minute p-mode oscillations. It may involve the application of various
mathematical techniques, such as bandpass filtering or wavelet analysis, to isolate the
desired frequency range.

• Removal of High-frequency Noise: High-frequency noise and unwanted signals are
removed or significantly attenuated from the data using the filter. This process helps
to enhance the visibility of the 5-minute oscillation signal.

• Inverse Fourier Transform: After the filtering process, an inverse Fourier transform is
applied to convert the data back to the time domain. The filtered time-series data
now contains the modified 5-minute photospheric oscillation signal with reduced noise
and interference.

3 Image Processing Methods
As known, ”image processing methods” refer to a variety of techniques used to manipulate
and analyze digital images. These methods can be broadly categorized into four groups: im-
age enhancement, image segmentation, object recognition, and image compression. Image
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enhancement approaches aim to improve the quality of an image by adjusting its brightness,
contrast, color balance, and sharpness. Common techniques used for image enhancement in-
clude histogram equalization, contrast stretching, and spatial filtering. Image segmentation
methods involve dividing an image into multiple regions or segments based on their char-
acteristics such as color, texture, or intensity. Commonly, segmentation process is fulfilled
by region-based and/or edge-based procedures. The technique of segmentation is useful for
object detection and tracking, image compression, and data analysis. Some known image
segmentation methods include region growing, edge detection, thresholding, and clustering.
Object recognition is used to identify and classify objects within an image. It involves a series
of steps, such as feature extraction, feature matching, and classification. Object recognition
techniques are often used in computer vision applications, including robotics, autonomous
vehicles, and facial recognition. Some popular object recognition methods include template
matching, neural networks, and support vector machines. Image compression involves reduc-
ing the size of an image by removing redundant or irrelevant information without significant
loss of image quality. Image compression is essential for storing and transmitting large vol-
umes of image data efficiently. Popular image compression methods include JPEG, PNG,
and GIF. The interested reader can refer to [51,92,103,119].

First of all, we must able to segregate a solar feature from background using digital image
processing methods. So, in order to define features in photospheric images, a threshold is
typically required to separate the feature-related signal from the background. However, since
features can display a wide range of morphological and geometric structures, the background
structure can be equally diverse and not easily separated from feature of interest. A simple
flux threshold may capture bright structures such as the BPs, but may miss fainter network
BPs. On the other hand, setting the threshold very low to include faint features may result
less brighter features than individual BPs (see the caption of Figure 1). Thus, a simple
threshold-based background subtraction method is generally not sufficient for BP detection,
and more sophisticated image enhancement and filtering approaches are required to extract
the feature of interest from background [7]. We should mention that the image processing
methods that we explain here, it would lead to automatic recognition of photospheric features
or not. Roughly speaking, in so many times image processing methods are primary steps
of automatic recognition procedure. The reader can refer to [4,7,8,10,121] for review of
automatic recognition and machine learning methods in solar physics.

In 1986, Roudier and Muller conducted an analysis of the structure of solar granulation
using computer-processed broad-band images obtained at the Pic-du-Midi Observatory. To
enhance the granulation spatial scale and filter out large-scale variations, the authors applied
a Fourier-based procedure on the images. They then extracted the granular structures by
applying a single threshold [100]. Hirzberger and colleagues (1997,1999a,b) employed a
threshold on band-pass filtered images to identify granules in their series of papers [56–58].
They defined the granular cells as areas that included the related granule and half of the
surrounding intergranular lane. The chosen algorithm for detecting granules greatly impacts
their automatic definition. One approach involved using a Laplacian operator to identify
the inflection points in the intensity distribution of the images, which were then used to
define the borders of the granules. To enhance the contrast of the granular substructures,
they smoothed images before applying the operator. In paper [122], the authors tested
using single thresholding to identify granules, but found that this method was too sensitive
to low spatial frequency intensity variations and the specific spatial filter used. Instead,
they developed two procedures to detect granules: a center-finding approach that explored
the local neighborhood to locate local maxima associated with granules, and a lane-finding
method that surrounded the granules with a boundary lane. These techniques were used
to identify, measure, and analyze the properties of solar granulation observed in movies
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Figure 1: On 9 June 2009 at 14:44:03 UT, a 214 nm image was acquired using Sunrise/SuFI
(A). The outcome of the region-growing function is displayed in (B), with highlighted red
rectangular boxes marking samples of network BPs and yellow circles denoting non-BPs.
For final recognition of BPs, it needs a supervised classification technique such as support
vector machine (SVM). The results of the SVM classifier are shown as BPs in (C). For
further information, see [66]. Image reproduced with permission from [66], copyright by
Springer.
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captured by the Solar Optical Universal Polarimeter during the Spacelab 2 mission [122].
The paper [26] describes two main methods for detecting granules. The first is based

on a multi-scale Laplacian-of-Gaussian (LoG) operator. The LoG operator is a filter that
enhances structures of a specific size in an image. By applying the LoG operator at multiple
scales, the filter can detect structures of different sizes, including granules. The authors apply
the LoG operator to intensity and Doppler images of the photosphere to extract compact
structures. The multi-scale LoG operator has several advantages over other approaches for
granule detection. It is a non-subjective approach, meaning that it does not require manual
input or tuning of parameters. It also does not require assumptions about the size or shape
of granules, which can vary depending on the conditions of the solar atmosphere. The
multi-scale LoG operator can detect granules of different sizes and shapes, as well as other
compact structures in the photosphere. The paper [26] also provides a detailed description
of how the multi-scale LoG operator is applied to solar images. The authors first apply
a Gaussian filter to the image to suppress noise. They then compute the Laplacian of the
Gaussian at multiple scales, using a scale-space representation of the image. The scale-space
representation is a pyramid of images, where each level corresponds to a different scale. The
Laplacian of the Gaussian is computed at each level of the pyramid, and the resulting images
are combined to obtain a final image that highlights structures of different sizes.

One of the applicable methods in segmentation and identification methods has been
firstly introduced by [28] and then employed for extraction of granules and BPs from im-
ages [29]. They examined small-scale magnetic flux concentrations on the Sun using high-
resolution G-band images and compared them with Ca ii H enhancements. Their identifi-
cation algorithm of G-band structures operates in four steps: Firstly, a set of equidistant
detection levels is used to create a pattern of primary ”cells”. Secondly, the intrinsic inten-
sity profile of each cell is normalized to its brightest pixel. Thirdly, the cell sizes are shrunk
by a unitary single-intensity clip. Finally, features in contact at an appropriate reference
level are merged by removing the respective common dividing lines. Optionally, adjoin-
ing structures may be excluded from this merging process, referring to the parameterized
number and intensity of those pixels where enveloping feature contours overlap. All these
steps were included in the multiple level tracking (MLT) algorithm. Magnetic intergranular
structures (MIgS) are then selected from the intergranular structures (IgS) pattern based
on their local Ca ii H contrast and their mean G-band-to-continuum brightness ratio. Out
of 970 small-sized G-band IgS, 45% were found to be MIgS and co-spatial with isolated
locations of Ca ii H excess. These MIgS may be twice as frequent as the known G-band
BPs.

A new promising automatic code is improved by [66] for photospheric image segmenta-
tion and feature extraction. This approach is performed based on automatically detecting
photospheric features (BPs and granules) from ultraviolet (UV) radiation using a feature-
based classifier. This method employs images of the quiet Sun (QS) at 214 nm and 525
nm captured by Sunrise balloon-borne solar observatory [19,113] using Sunrise Filter Im-
ager (SuFI) [49] and Imaging Magnetograph eXperiment (IMaX) [79] telescope, respectively,
on 9 June 2009 (see also [25] for more information). The region growing and mean shift
procedures are utilized to segment BPs and granules, respectively, and calculate Zernike
moments of each region. The function Zernike polynomials is applied to the segmented
images to extract scale-, translation-, and rotation-invariant moments. The region growing
segmentation has applications in various fields, including computer vision, object tracking,
and image analysis. Also, the Mean Shift procedure is a powerful technique for image seg-
mentation, especially when dealing with images that contain a variety of textures and colors
without clear boundaries. So, we decided to add the explanations to discuss about about
these two segmentations in details:
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Figure 2: A Sunrise/IMaX image taken at 5250.02 nm on 9 June 2009 at 14:27:14 UT
is depicted in (A). Utilizing the mean shift procedure, the image has been segmented, as
demonstrated in (B). The results of the SVM classifier are displayed in (C). The color-coded
regions indicate granules in red and non-granular regions in green. For details, refer to [66].
Image reproduced with permission from [66], copyright by Springer.
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Region growing is a common technique used in image processing and computer vision
for image segmentation. The main idea behind region growing is to group pixels or im-
age elements that share certain common characteristics, such as intensity values or color,
into meaningful regions. This process helps to segment an image into distinct regions that
correspond to objects or structures of interest.

The region growing algorithm starts with one or more seed points that are chosen from
the image. These seed points are typically selected based on some criteria, such as user input
or initial processing steps. Once the seed points are chosen, the algorithm iteratively grows
the regions by comparing the properties of neighboring pixels or elements to the properties
of the current region. Here’s a step-by-step explanation of the region growing process:

• Seed Point Selection: One or more seed points are chosen as starting points for the
segmentation process. These seed points are often manually selected based on prior
knowledge or user input.

• Initialization: The properties of the seed points, such as intensity values, color values,
or texture characteristics, are used to define the initial region.

• Neighbor Checking: For each pixel or element adjacent to the current region, its
properties are compared to the properties of the current region. If the properties of
the neighboring pixel are similar enough to those of the region, it is added to the
region.

• Growing Criteria: The similarity or dissimilarity criteria that determine whether a
neighboring pixel is added to the region can vary depending on the application. Com-
mon criteria include comparing intensity values, color differences, gradient values, or
texture features.

• Connectivity Consideration: Depending on the connectivity criteria chosen, neighbor-
ing pixels or elements can be 4-connected (horizontally and vertically adjacent) or
8-connected (including diagonally adjacent).

• Iteration: The process of comparing neighboring pixels to the region and adding them
if they meet the criteria continues iteratively until no more pixels can be added.

• Termination: The region growing process terminates when no more pixels meet the
criteria for inclusion in the region, or when a predefined stopping condition is met
(e.g., a maximum region size).

• Post-processing: Depending on the application and the quality of the segmentation,
post-processing steps may be applied to refine the segmented regions. This could
include removing small isolated regions, merging regions that are too small, or splitting
regions that are too large.

The Mean Shift procedure is a popular technique used in image segmentation, a process of
partitioning an image into meaningful regions based on certain characteristics or criteria.
Mean Shift is particularly effective in situations where there are no well-defined edges or color
boundaries in the image, making it suitable for segmenting regions with varying textures,
colors, and gradients. Here’s how the Mean Shift procedure for image segmentation works:

• Kernel Density Estimation: The Mean Shift algorithm starts with a set of data points
in the image, which could be pixel values in the feature space (e.g., color, intensity,
texture). Each data point is associated with a kernel, which is a mathematical function
that assigns weights to neighboring points based on their distance.
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• Centroid Initialization: A window (also called a kernel or search window) is placed
around each data point. This window defines the region from which neighboring points
will influence the current data point. Initially, each data point’s window is centered
at itself.

• Shift to Local Maximum: For each data point, the mean shift procedure is applied.
The idea is to compute the mean shift vector, which indicates the direction in which
the density of neighboring points is highest. In other words, it points towards the
direction of the local maximum of the kernel density estimation.

• Updating the Data Point’s Position: The data point is then shifted in the direction
of the mean shift vector. This essentially moves the data point towards the region of
higher density, which often corresponds to a cluster of similar points in the image.

• Convergence and Clustering: Steps 3 and 4 are repeated iteratively until the data
point converges to a local maximum. As the data point moves, it gathers other nearby
data points that are part of the same cluster. When convergence is reached, the final
position of the data point becomes the representative or centroid of the cluster.

• Labeling and Segmentation: After convergence, all data points that have the same
centroid are considered part of the same cluster. This process effectively segments
the image into distinct regions based on the clusters formed during the mean shift
procedure.

Region growing is a versatile technique that can be adapted to various image segmentation
tasks, including both grayscale and color images. However, it also has some limitations,
such as sensitivity to seed point selection and the potential to get stuck in local minima if
the similarity criteria are not well-defined. Nonetheless, when used appropriately and with
careful parameter tuning, region growing can be an effective method for segmenting images
into coherent and meaningful regions (e.g., see [46,48,51,60]). On the other hand, the mean
Shift offers several advantages, including its ability to handle non-linear boundaries and
adapt to different shapes and sizes of regions. However, it might require careful tuning of
parameters like the bandwidth of the kernel, which determines the size of the search window
and influences the scale of the segmentation (e.g., see [35,61,75]).

[139] employed three different clustering methods, namely c-means, k-means, and fuzzy
c-means (FCM) algorithms, to segment solar ultra-violet (UV) images. The methods are ap-
plied to a sequence of photospheric observations of QS at 525 nm taken by the Sunrise/IMaX
on June 9, 2009 UT. The original image and segmentation results of exerted algorithms are
shown in Figure 3. While these algorithms produce slightly different results in terms of
extracting physical parameters such as filling factors, brightness fluctuations, and size dis-
tributions from the images, the FCM algorithm yields a mean granule size of approximately
1.8 arcsec2 (0.85 Mm2). They found that the smaller granules with sizes less than 2.8 arcsec2
exhibit a wide range of brightness, whereas larger granules approach a more uniform value.

Among data related to the photosphere, lots of image processing methods especially in
segmentation supergranular cells and magnetic patches were developed for magnetogram,
dopplergram, and continuum image data sets. There are several techniques used to calculate
the flow velocities to extract supergranular cell regions.

One of the methods for estimating the proper motions of tracers observed in successive
images of photosphere is called local correlation tracking (LCT), which was introduced
by [86] and later refined by [109]. The central idea behind the various LCT schemas in
use today is to calculate proper motions of intensity features in successive images, such
as G-band filtergrams, Hα images, or photospheric magnetograms, separated in time by
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Figure 3: The Sunrise/IMaX captured an image at 14:16:00 UT on 9 June 2009 (A). Subse-
quently, the segmentation process was applied using the c-means technique (B), the k-means
approach (C), and the FCM procedure (D). The reader can refer to [139]. Image reproduced
with permission from [139], copyright by IJAA.
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a given cadence. This is typically accomplished by either minimizing an error function
between subregions of the sequential images or maximizing a cross-correlation function.
In this method, a mask of 3 × 3 is employed to shift images at nine integer-pixel spatial
lags, including one null lag and eight toward nearest-neighbor pixels. At each shift, a
cross-correlation function between pixels in consecutive frames is computed. The cross-
correlation is obtained by integrating the product of a Gaussian windowing function with
the smoothed before and after images at the given shift. To achieve subpixel resolution, they
use biquadratic interpolation on the nine-point cross-correlation distribution to determine
the shift that corresponds to the maximum correlation. The velocity is then calculated by
multiplying the shift by the pixel size and dividing by the time interval (cadence) between
the two images. There is another approach for minimizing error introduced by [23] which
involves minimizing the root-mean-square (rms) error between corresponding subimages, or
tiles, as they are commonly known. In this method, each subimage from one image is shifted
until it is most closely aligned with the corresponding subimage from the other image. Once
the optimal shifts have been determined, the pattern of subimage shifts reveals the motion
that occurred over the time interval between the two images (cadence). The overall velocity
pattern can then be determined by interpolating between the shifts of the tiles. Nowadays,
LCT is widely used for various types of applications [17,70,74,127,128].

Fast Local Correlation Tracking (FLCT) is a method for estimating the correlation track-
ing error in solar differential rotation measurements. The method was developed by [42] and
employs Fourier correlation to obtain the velocity field of solar features on the solar surface.
To use FLCT, the first step is to apply a Gaussian filter to the images to be correlated.
The width of the Gaussian filter is determined by the user and corresponds to a spatial
scale over which the flow is to be tracked. For each pixel in the image array, two images
are multiplied by Gaussian filters centered at that pixel. The resulting images are then
cropped to remove the insignificant parts of the images, thereby reducing the image size
and increasing computational speed. Next, the cross-correlation function between the two
cropped images is computed using standard fast Fourier transform (FFT) techniques. The
shifts in x and y that maximize the cross-correlation function are then found using cubic-
convolution interpolation. These shifts are used along with the time difference between the
images to determine the velocities of the intensity features along the solar surface [43]. The
FLCT method is similar to other LCT methods, but it uses a Gaussian filter instead of a
rectangular filter to weight the data. This has the advantage of providing smoother and
more continuous velocity fields. Additionally, FLCT is computationally efficient, making it
well-suited for analyzing large datasets. Although FLCT was originally developed for use in
solar differential rotation measurements, it has also been used in other applications such as
tracking the motion of granules in the solar photosphere and tracking the motion of clouds
in satellite imagery (e.g., see [76,134,135]).

[134] provided a method called ILCT (Induction Local Correlation Tracking) for re-
covering photospheric velocities from magnetograms. The ILCT method is based on the
induction equation, which relates the time derivative of the magnetic field to the curl of the
electric field. By combining the induction equation with local correlation tracking (LCT),
which is a method for estimating the velocity field of solar features on the solar surface,
the ILCT method is able to obtain the velocity field from magnetograms. To use ILCT,
the first step is to compute the curl of the electric field from the magnetogram data. This
is done using the induction equation and assuming that the horizontal component of the
electric field is small compared to the vertical component. The resulting curl of the electric
field is then used as a proxy for the velocity field. Next, the ILCT method applies LCT
to the curl of the electric field to obtain a smoother and more continuous velocity field.
This involves dividing the curl of the electric field into smaller sub-images, on which LCT
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is applied separately. The resulting sub-velocity fields are then combined to obtain the full
velocity field. The ILCT method has several advantages over other methods for estimating
the velocity field from magnetograms. First, it is able to recover the full three-dimensional
velocity field using only magnetogram data, which is important for understanding the dy-
namics of the solar corona. Second, it is able to obtain a smooth and continuous velocity
field, which is important for accurately modeling the dynamics of the solar corona. Finally,
it is computationally efficient, making it well-suited for analyzing large datasets. Overall,
the ILCT method provides a powerful tool for studying the dynamics of the solar corona
and for improving our understanding of the physical processes that govern the behavior of
the Sun.

Another applicable technique is coherent structure tracking (CST), which assumes that
the granules form a thermally coherent structure that naturally defines the underlying flow
field. [98,101] used this method to determine the velocity profile of the flow. This algorithm
involves five main steps as follows: image segmentation and granules detection, velocities
measurement at the location of granule, velocity field reconstruction, computing field deriva-
tives such as the z-component of the vorticity and divergence, noise estimation. The previous
version of the algorithm was designed for a limited field of a few arcminutes, typically cen-
tered on the solar disk where solar rotation was removed through frame alignment. However,
applying the CST to Solar Dynamic Observatory (SDO)/Helioseismic and Magnetic Imager
(HMI) [105] data requires a new granule time labeling method that accounts for the motion
caused by solar rotation to avoid misidentification. In the previous version of the CST, time
labeling was processed by tracking the barycenter of the granule. However, the presence of
solar rotation in SDO/HMI data and the evolution of granules, such as the appearance of a
new (small) granule in close proximity to an existing granule between two frames, can cause
misidentification of barycenters. This results in poor temporal labeling and makes noise in
the derived velocity maps. So, the new version of CST is improved by [102] to reconstruct
the velocity field at scales larger than the sampling scale. Additionally, the updated version
of CST provides the flexibility to select structures based on their characteristics, such as
size, nature, and lifetime, thereby facilitating the study of their motion.

[91] proposed the ball-tracking (BT) method to track the flow of the solar photosphere
using Solar and Heliospheric Observatory (SOHO)/Michelson Doppler Imaging (MDI) [104]
data. The BT used in the paper is based on the LCT method, which is a technique for
estimating the velocity field of solar features on the solar surface. To use this technique, the
first step is to apply LCT to each pair of magnetogram images to obtain a velocity field. The
velocity field is then thresholded to identify regions of strong flow, which correspond to the
boundaries of supergranules. Next, the BT method applies a morphological closing opera-
tion to the thresholded image to fill in gaps and smooth the boundary of the supergranules.
The resulting image is then segmented using a watershed algorithm to identify individual su-
pergranules. Finally, the BT method tracks the motion of each supergranule over time using
a simple forward-backward tracking algorithm. This involves linking the boundaries of each
supergranule in consecutive pairs of magnetogram images and calculating the displacement
between the two boundaries. The displacement is then used to estimate the velocity of each
supergranule. The BT method has several advantages over other methods for detecting and
characterizing supergranules. First, it is able to track individual supergranules over time,
which allows for a more detailed analysis of their properties. Second, it is able to accurately
detect the boundaries of supergranules, even in the presence of noise and other artifacts.
Finally, it is computationally efficient, making it well-suited for analyzing large datasets. It
provides a powerful tool for studying the dynamics of supergranules and for improving our
understanding of the physical processes that govern the behavior of the Sun. [13] developed
BT for monitoring the evolution of individual magnetic features from magnetograms, which
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they call magnetic ball-tracking (MBT). This method enables the quantification of the flux
of the tracked features and can track the footpoints of magnetic field lines inferred from
magnetic field extrapolation. The algorithm is capable of detecting and quantifying both
flux emergence and flux cancellation. A final output of BT method is presented in Figure
4. The interested reader can refer to [11,12,14,15,84,140] for more applications of BT.

The article [39] compares four different software codes for solar magnetic feature track-
ing: CURV, MCAT, SWAMIS, and YAFTA. The authors examine the differences between
these codes in terms of their feature tracking behavior and parameterization, and make rec-
ommendations for best practices in future feature tracking work. The CURV code [118] was
the first code developed to study magnetic features in the SOHO/MDI quiet Sun data [53],
and is designed to identify and track individual magnetic features using a downhill search
algorithm. The downhill search algorithm is based on the assumption that the magnetic
features in a magnetogram are located on local minima in the magnetic field strength. The
code tracks the features by moving downhill from one magnetogram to the next, following
the features as they move and merge. The MCAT code [89] is designed to study the interac-
tion between network flux elements, and uses a curvature-based algorithm to track magnetic
features. The curvature algorithm is based on the assumption that magnetic features can
be identified by the curvature of the magnetic field lines. The algorithm tracks features
by identifying the regions of the magnetogram with the highest curvature, and following
these regions over time. The SWAMIS code [72] is intended to drive semi-empirical MHD
models of the quiet Sun, and uses a combination of the downhill and curvature tracking
algorithms. The code identifies features using a downhill search, and then tracks them us-
ing the curvature algorithm. Finally, the YAFTA code [39] was developed to study active
region dynamics, and uses a feature-based tracking algorithm that is based on the assump-
tion that magnetic features can be identified by their shape and intensity. The algorithm
tracks features by matching them to a library of templates that represent different types of
magnetic features. In subroutines of the YAFTA, there are three main approaches used to
identify structures of flux concentrations in solar magnetograms. The first algorithm is the
clumping method, which considers pixels with fluxes above a threshold as a single feature
[89]. The second algorithm is the downhill approach, which identifies one feature per local
maximum region after thresholding [136]. This method can detect more patches than the
clumping method. The third algorithm is the curvature method, which identifies the bound-
aries of features as a convex core around each local flux maximum [53]. However, the feature
sizes obtained using the curvature method are smaller than with the other two approaches.
Recent studies suggest that the downhill and clumping techniques produce more accurate
segmentation results than the curvature method [39].

The authors of the paper [39] compare the results of these approaches on a single set of
data from SOHO/MDI, and identify the interplay between desired tracking behavior and
parameterization tracking algorithms. YAFTA has certain limitations that can affect the
accuracy of its results. One of these limitations is the use of a constant threshold value
for segmenting and tracking magnetic features, which can cause some contiguous pixels to
lose their connectivity conditions when their intensities fall below the threshold. This can
result in the removal of these pixels from the segmented structures in consecutive frames,
leading to errors in analysis due to the dynamic nature of the magnetic patches and the
time lag between successive frames. Additionally, YAFTA has other potential shortcomings,
such as the incorporation of previously-created variables with new ones after running the
main program, which can lead to errors or program crashes if not renamed. Another issue
is a bug in some architectures where Interactive Data Language (IDL) cannot concatenate
newly-emerged magnetic structures with identical fields, as done in the CREATE-FEATURE
subroutine. To address these bugs, [80] modified the main program to associate the names
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Figure 4: The full-disk image of the Sun captured on 30 December 2015 (00:00–00:30 UT) us-
ing the continuum SDO/HMI instrument, specifically at a wavelength of 6173 A, is displayed
in the upper panel. Within this image, a red rectangular region is designated, encompassing
an approximate area of 350′′ × 350′′. This region is centered around longitudes approxi-
mately ± 11 degrees around the central meridian, with latitude boundaries around ± 11
degrees around the solar equator. It’s important to note that the utilization of equally-area
projections such as Lambert and Postel projections has been omitted from this analysis.
The lower panel showcases the outcome of the automated recognition technique, depicted
in green. Overlaid on this panel, the blue lines denote the borders of individual cells, which
have been derived through the application of morphological filters (further details are avail-
able in the accompanying text of the article [84].) Image reproduced with permission from
[84], copyright by Elsevier.
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Figure 5: Here, there is a sample of SDO/HMI image with different crops employed to
study the size distributions, flux distributions, and filling factors of positive and negative
polarities in the QS based on YAFTA method. The Sun’s full-disk magnetogram, as captured
by SDO/HMI, was documented on 14 February 2011 at 18:01:12 UT (a). To extract the
physical characteristics from both positive and negative elements, a cutout image from
the solar equatorial region was selected (b). This cutout encompasses an area measuring
400′′ by 400′′ and was utilized for analysis throughout the year 2011, with a regular image
acquisition rate of one image per day. For a specific investigation regarding the magnetic
elements’ physical attributes, especially their lifetimes, an image tile spanning 100′′ by 100′′
was cropped from all the acquired images (c). Related investigations focused on a three-day
period, specifically from 14 to 16 February 2011, within the QS region. There was a time
lag of 45 seconds between successive frames. More information can be find in [68]. Image
reproduced with permission from [68], copyright by Springer.

of IDL structures with the numerators of each step.
While [90] studied the flux distribution of magnetic elements, [68] focused on other

statistical parameters of patches, including size and lifetime frequencies. [68] first used the
YAFTA downhill algorithm to segment a large area of magnetograms from SDO/HMI data
in 2011 (see Figure 5, tiles A and B) and three days of quiet Sun data set (see Figure 5,
tiles B and C) including 5750 sequences. The algorithm was used for segmentation, but
not tracking, and physical parameters such as size distribution, filling factors, and magnetic
flux were extracted for both negative and positive polarities. In following, [80] applied the
YAFTA code to the constructed data cubes, which consisted of 5760 sequences of data
spanning three days. To compare the statistical parameters of magnetic patches within
flaring (Figure 6, left panel) and non-flaring ARs (Figure 6, right panel), two areas were
selected from HMI magnetogram.

Various methods have been proposed for detecting sunspots using full-disk images. One
common approach is the thresholding technique, used by several researchers like [34,36,93,
132,137,143]. They applied this technique to data acquired from different observatories with
various resolutions. [32] examined results using thresholding and mathematical morpho-
logical operations on data received by the Coimbra Observatory. Other methods, such as
Bayesian image-segmentation by [124,125], edge detection by [144,145], and level-set image-
segmentation by [50], were also used on MDI data. We attempted to explain the techniques
of image processing used in these papers in details as follows:

[93] introduced a method based on contrast and contiguity in solar images. In order to
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successfully apply the described method, high-quality images are essential. The processing of
CFDT1 images was carried out following the procedure outlined in Walton et al. (1998), with
recent enhancements. Notably, faint vertical artifacts in CFDT1 images are now eliminated
early in the processing, right after calibration and limb position fitting. This correction
involves adjusting each column of the image to align its horizontal profile with its vertical
profile’s average. Additionally, CFDT1 images exhibit very low-level ghost images near the
limb. To address this, a further correction is applied by multiplying each image with a
correction factor computed from the median of about one year’s worth of images at that
specific wavelength. The images used for feature detection are contrast images obtained by
dividing each image by an average limb darkening curve. The primary focus is on identifying
long-lived magnetic features like faculae and sunspots, which influence solar irradiance.
These features are expected to have a minimum size of a few pixels. The remainder of the
solar disk is considered ’quiet Sun’ with superimposed noise. Conventionally, the selection
of features from a contrast image at a solar observatory involves a straightforward contrast
criterion. This entails identifying pixels with contrasts that meet specific criteria for sunspots
and faculae. However, this approach is not effective for detecting faint features as it can
result in noise being mistaken for features. To address this, a novel technique has been
developed. This technique identifies isolated features by scanning the disk and locating a
pixel with a contrast exceeding a defined trigger criterion. The pixel is then used as a starting
point, and neighboring pixels are examined to identify those forming a contiguous feature.
Adjacent pixels meeting a less stringent contrast threshold criterion are considered part of
the feature. This approach allows for more accurate detection of faint features by setting a
low contrast trigger and requiring a minimum number of contiguous trigger pixels to validate
the feature’s presence. To ensure the effectiveness of this technique, probability calculations
are employed. By considering the statistical properties of the quiet-Sun pixel distribution,
suitable trigger and threshold contrast values are determined. Iteration between formal
probability calculations and visual inspection is carried out to optimize the choices for trigger
and threshold. Histogram analysis of the contrast image provides insights into quiet-Sun
pixels. The distribution of quiet-Sun pixel contrasts is estimated by analyzing the negative
contrast half of the histogram. For dark features, which are relatively scarce, a trigger
contrast that yields a low false positive identification rate is selected. Conversely, for bright
features, a slightly higher trigger contrast is chosen to accommodate the larger number of
potential features while maintaining an acceptable false positive rate. The thresholds are set
to values that ensure the selection of quiet-Sun pixels while minimizing false identifications.

The paper [125] explores image segmentation methods for extracting solar features from
MDI data. The potential of the data is demonstrated through scatter plots generated from
magnetograms and photograms taken 6 minutes apart. These plots allow distinguishing be-
tween sunspot umbra, penumbra, faculae, and quiet Sun. A focus is placed on these specific
structures due to their direct identification in sample images. The procedure for analyzing
such observations involves temporal and spatial adjustments of photograms, interpolation
of magnetograms, and inference of labeling. The notation used involves feature vectors for
pixels, which are part of images indexed by spatial coordinates. This article discusses the
need for a uniform, automated technique with objective parameter determination. The pro-
cess involves various steps, including temporal and flat-field corrections, interpolation, and
labeling inference. The study emphasizes the application of these methods to capture solar
structures in an objective and consistent manner.

The paper [144] outlines an automated technique for detecting sunspots in SOHO/MDI
white-light images. The technique employs edge detection and thresholding steps and is
applied to a continuum image of the solar disk. The process involves aligning magnetogram
data with the continuum image, identifying strong edges and high gradient regions using
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Figure 6: Here, there is another sample of SDO/HMI image with different crops employed
to study the size distributions, flux distributions, and filling factors of positive and negative
polarities inside both flaring and non-flaring ARs based on YAFTA method. An SDO/HMI
magnetogram covering the entire solar disk was recorded on November 2, 2015. Delving
into the details, the regions encompassing the ARs under scrutiny are outlined by contours
with areas of 180′′ by 180′′. Among these contours, the one marked in red designates the
flaring AR, which underwent analysis from November 3 to 5, 2015. In contrast, the green
contour outlines the non-flaring AR, subject to examination between November 4 to 6, 2015.
See more details in [80]. Image reproduced with permission from [80], copyright by Acta
Astronomica.
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Gaussian smoothing and Sobel operator, iteratively thresholding and filtering candidate
edges, detecting darker regions, and merging candidate maps. These steps produce a binary
image with candidate regions containing sunspots. These regions are then refined using
morphological operations and watershed functions. Sunspot detection within these regions
involves further thresholding, considering quiet-Sun intensity and region statistics. The ex-
tracted parameters include umbral and penumbral characteristics, magnetic flux, and various
observational data. The detected sunspots are stored in a catalog with search capabilities,
facilitating future analysis and classification. The technique’s potential for solar activity
modeling and forecasting is also highlighted. The catalog, containing over 368,000 features
from SOHO/MDI observations, is accessible online and through associated platforms.

In the context of image processing for solar images, [69] discussed various methods for
identifying and labeling specific features. These methods involve pre-processing the observa-
tions to eliminate artifacts and solar characteristics. One such method is the ”one-trigger”
(1T) approach, which applies simple thresholds to distinguish dark sunspots and bright
faculae in different types of images. Another method, the ”three-trigger” (3T) algorithm,
utilizes more sophisticated contrast thresholds to identify larger feature areas with minimal
confusion from instrumental noise. Additionally, a statistical method is employed, which
avoids threshold usage and develops class-conditional models to produce probability images
for sunspots, faculae, and QS. Another technique involves applying sequential thresholds to
separate magnetized and unmagnetized regions and extract various features such as sunspots,
ARs, and network structures. Thresholds are also applied to multidimensional histograms
to isolate interesting subdomains, and factor analysis is used to establish spatial labeling
based on the orthogonal combinations of observed subdomains. To compare the results
obtained from different instruments, spatial registration techniques are employed, and the
feature labelings are adjusted accordingly. Despite their differences, all these methods show
comparable correlations with total solar irradiance and perform better for shorter periods.

[36] presented a technique based on mathematical morphology to detect sunspots in full-
disk solar images. The procedure for identifying and analyzing sunspots on the solar surface
involves various steps aimed at image segmentation and characterization. The goal is to
detect individual sunspots and group them into clusters based on their physical properties,
contributing to determining the Wolf solar activity index. The entire process is facilitated by
a graphic interface that allows operators to monitor and control the detection and grouping
procedures. The results are published in solar bulletins and shared with the solar science
community. The approach is executed as follows:

• Image Segmentation and Detection of Individual Sunspots: The complex distribu-
tion of structures on the solar surface with varying intensity levels necessitates an
image segmentation process. Three fundamental approaches for image segmentation
are identified: boundary-based, region-based, and thresholding methods. In this con-
text, the thresholding approach is chosen due to its simplicity, speed, and suitability
for real-time processing. However, uneven brightness (limb darkening) and possible
cloud shadows can complicate the histogram, making a global threshold insufficient.
Therefore, pre-processing steps like image normalization and contrast enhancement
are often applied.

• Iterative Thresholding for Active Point Detection: The detection of individual sunspots
involves finding active points, where the critical factor is identifying the appropriate
threshold intensity level to distinguish active points from the background. An iterative
thresholding method is employed. Initially, a low-intensity threshold is used to identify
the darkest sunspot points. The threshold is then increased iteratively, counting the
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detected pixels at each step. The process continues until the detected pixel population
stabilizes, indicating the background level has been reached.

• Closing Transformation and Top Hat Operator: To identify smaller sunspots, a closing
transformation is performed over the original image using a symmetric structuring ele-
ment (SE). The SE size is iteratively increased to capture progressively larger sunspots.
Subsequently, a Top Hat operator is applied to the closed image to detect points re-
moved during the closing process. This step identifies fragments of sunspots and a sea
of noisy background points.

• Iterative Process for Sunspot Detection: The next phase involves iterative loops ap-
plied to the original image, one increasing the SE size and the other increasing the
intensity level while controlling the growing population of sunspot pixels. This itera-
tive approach captures various sizes of sunspots.

• Region Growing for Sunspot Detection: An iterative process is used to assign each
pixel belonging to the subset of true sunspot pixels to its corresponding sunspot. A
region growing procedure groups pixels or subregions into larger regions based on
neighborhood criteria. The process continues until all pixels have been assigned to
sunspots.

• Characterization of Sunspots: Characteristics of each sunspot, including position,
mean intensity, and area, are computed and stored in an associated file. Both umbra
and penumbra are considered a single unit in the sunspot, aligning with the former
manual detection method.

• Grouping of Sunspots: Sunspots are organized into groups that share physical prop-
erties. Each sunspot is assigned to a group based on criteria like proximity. This
grouping process contributes to determining the Wolf solar activity index.

• Verification and Quality Control: The results are crosschecked with synchronized so-
lar magnetograms for verification. The neighborhood criterion is typically sufficient
to classify sunspot groups. An operator supervising the process may redefine classifi-
cations in cases of very close group placements.

• Completion of the Process and Reporting: At the conclusion of the process, a com-
prehensive list of individual sunspots and their respective groups is generated. This
information is sent to a central solar data center and made available for publication
in solar bulletins.

In study by [34], the process of sunspot detection and grouping involves several stages, in-
cluding preprocessing, initial feature detection, and clustering. These steps are summarized
as follows:

• Preprocessing of MDI Images: Preprocessing is divided into two stages: ”Stage-1” pro-
cessing for both intensitygram and magnetogram images involves solar disk detection,
center/radius determination, solar coordinates calculation, and irrelevant information
filtering. ”Stage-2” processing, applicable only to magnetogram images, aligns images
for correlation by resizing and rotation.

• Initial Detection of Solar Features: Sunspots are detected using intensity filtering and
region growing methods. The threshold value (Tf) is automatically calculated using
mean and standard deviation. For active region detection, two threshold values are
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determined based on magnetic polarity. A region growing algorithm marks pixels
within a window as active region candidates.

• Deciding Active Regions and Grouping of Sunspots: Active regions and sunspots are
combined to cluster sunspots into groups. A process involving circular region marking,
neural network application, and region coloration determines coupled polarity regions
belonging to the same group.

In research provided by [132], image processing techniques are employed to automatically
detect individual sunspots and establish new distributions of their appearances. This focus
on individual spots, rather than groups recorded in existing catalogs, necessitates a simpli-
fied model of the Wilson effect. The sunspot identification algorithm leverages mathematical
morphology tools, which involve erosion and dilation operations using a structuring element
to analyze image features. The process starts by using SOHO/MDI continuum data, employ-
ing a morphological top-hat transform to enhance sunspot features. This involves eroding
and dilating the image, effectively reducing sunspot size, then subtracting and thresholding
to identify sunspot candidates. The algorithm is efficient and effective, capable of processing
an image in seconds. It’s tested against ’ground truth’ images marked by human observers,
demonstrating recovery of a significant portion of sunspot pixels while introducing a low
rate of false positives. The transform is applied to a series of MDI white-light images over a
period, and sunspot co-ordinates are determined and converted to heliographic co-ordinates.
Comparing these with co-ordinates from subsequent images allows identification of consistent
sunspots and tracking their longitudinal distribution over time. The results are compared
with prior findings, and while some differences exist, statistical tests indicate consistency
within a certain significance level.

The paper [50] discusses a level-set method, specifically the Selective Binary and Gaussian
Filtering Regularized Level Set (SBGFRLS) technique, for automated detection of sunspots
from SOHO/MDI continuum images. This method uses statistical information both inside
and outside the contours to create a region-based signed pressure force (SPF) function,
which helps accurately locate sunspot boundaries even in weak or blurred edges. The SPF
function guides the contour evolution to either shrink outside the object or expand within
it. The level-set segmentation process involves initializing the Level Set Function (LSF),
computing average intensities inside and outside the contour, evolving the LSF, regularizing
it with a Gaussian function, and checking for convergence. The choice of the Gaussian
filter’s standard deviation (σ) and the evolution equation parameter (α) significantly affects
the results. This article also emphasizes an optimal LSF initialization strategy using a
threshold intensity value. The technique was applied separately for umbra and penumbra
detection, enhancing region extraction for sunspots. The method is illustrated with results
from full-disk continuum images, demonstrating effective sunspot and pore detection.

The study [143] introduces related tools for sunspot recognition. Mathematical morphol-
ogy is employed for extracting image components based on shape and structure. Erosion
and dilation operations, along with closing, opening, and Bot-hat transformation, are ex-
ploited. The Otsu algorithm [88,106], used to find an adaptive threshold, is discussed next.
Moving on to the recognition procedure, two steps are outlined. Firstly, the solar limb is
extracted using morphological methods and Otsu algorithm. Secondly, sunspots are rec-
ognized within the solar limb using morphological Bot-hat operation and local threshold.
Over-segmentation is reduced by imposing limits on sunspot properties. A procedure for
recognizing sunspots in images with instrument noise is also presented.

The article [137] employs SDO/HMI data to develop an automated sunspot detection
method. SDO/HMI provides high-resolution solar white-light continuum images. Pre-
processing involves exposure, dark current, flat field corrections, and cosmic-ray hit removal.
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About 13,800 images were selected for analysis. Limb-darkening is corrected by centering,
creating an average radial profile, deriving a ”Quiet Sun” background image, and obtaining
a flat solar image. Sunspot detection employs normalized and smoothed images, followed
by dual thresholds for umbra and penumbra segmentation. The process involves initializing
parameters, evaluating fitness values, and performing genetic evolution with crossover and
mutation. The final individual with the best fitness yields the optimal dual thresholds for
distinguishing different solar regions.

The paper [32] introduces an algorithm for automated sunspot detection using mathemat-
ical morphological transforms. The approach originated from attempts to describe geometric
features in porous media and led to the development of mathematical morphology in image
analysis. The technique involves comparing features to a structuring element, and it can be
applied to both binary and grayscale images, offering versatility and quantitative measure-
ments for complex shapes. The algorithm begins with pre-processing, involving operations
like closing and opening to enhance the image. The process includes morphological recon-
struction, adaptive threshold filtering, and addressing the circular nature of the solar disk.
The algorithm then employs black top-hat transforms, adaptive thresholding, erosion, and
reconstruction to identify sunspots and suppress noise. Umbra-penumbra segmentation is
performed by analyzing histograms and applying thresholds. A comprehensive comparison
with another method based on pixel intensity is also discussed. The morphological approach
offers an automatic method for detecting sunspots and segmenting umbra-penumbra regions.

4 Post-processing Procedures as Complementary Steps
Post-processing procedures in solar image analysis play a crucial role in transforming the raw
data and automated feature recognition results into meaningful and scientifically valuable
insights. This stage involves converting numerical outputs, segmented images, datacubes,
and movies into formats that are suitable for communication, further analysis, and theoret-
ical modeling. This explanation will delve into the various post-processing tasks outlined in
the provided text and provide extended insights, along with relevant references.

Visualization of Solar Imagery: Visual representation of solar data has evolved from
simple drawings to complex multi-dimensional displays. As solar observations have become
more sophisticated, the need for advanced visualization techniques has increased. Software
tools have emerged to meet these needs, offering capabilities such as overlaying images, cre-
ating composite images, generating movies, and constructing 3D reconstructions. Examples
of such software include SolarSoft (SSW) [45], SolarMonitor, SolarWeather Browser (SWB)
[16], and FESTIVAL [83]. Each software package has specific advantages and specialties,
contributing to the overall visualization landscape.

Cataloguing of Solar Features: The vast amount of solar data necessitates efficient cat-
aloging and metadata organization. Feature and event catalogs facilitate data analysis by
enabling searches based on well-defined parameters. Various virtual solar observatories,
such as the Virtual Solar Observatory (VSO) [55], SDO Heliophysics Event Knowledgebase
(HEK) [64,114], and European Grid of Solar Observatory (EGSO) [20,21], provide tools to
interconnect databases and enable user-friendly queries.

Statistics of Solar Events: Statistical analysis of solar events, such as sunspots [65,131],
photospheric granules [66] and BPs [41], coronal BPs [3], CHs [121], ARs [4], solar flares, mi-
croflares, and nanoflares (see [63,120,138] and references therein) is crucial for understanding
their occurrence and behavior. Image processing techniques play a pivotal role in ensuring
unbiased and accurate event segregation and measurement. Various statistical studies rely
on automated algorithms to detect events across different scales, eliminating human subjec-
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tivity and bias. For instance, the power-law distribution of flare energies and the correlation
between flare and CME energies require accurate and objective event detection.

Theoretical Modeling: Theoretical modeling of solar physical processes often relies on
automated feature detection, as these models require precise measurements of features in
both space and time. Automated detection of features, such as EUV loops, is essential for 3D
reconstruction modeling [6], magnetic field extrapolation [9], stereoscopy-based tomography
[18], and other advanced techniques (e.g., [37]). Automated pattern recognition ensures high
precision and objectivity, which are critical for accurate modeling.

Prediction and Forecasting: Real-time forecasting in solar physics heavily relies on au-
tomated pattern recognition due to the need for rapid analysis and decision-making. Auto-
mated detection of features, combined with probabilistic prediction algorithms and machine
learning, forms the basis of automated forecasting systems. These systems are employed
for predicting various solar events, such as flares, CMEs, and filament eruptions (e.g., see
[2,47,87,96] and references therein).

Confirmation or Rejection of Previous Results: In the scientific process, the confirmation
or rejection of previous results or theories often hinges on the acquisition of new data and
evidence. This process is fundamental to the advancement of scientific understanding and
knowledge. Here’s how new results obtained from data can lead to the confirmation or
rejection of previous results or theories in science. For this purpose, we itemized the scientific
process as follows:

• Hypotheses and Theories: Scientific research begins with hypotheses or theories that
attempt to explain natural phenomena. These hypotheses are based on existing knowl-
edge and observations.

• Data Collection and Experimentation: To test these hypotheses, scientists design ex-
periments, observations, or gather data through various methods. These methods
are chosen to be as unbiased and controlled as possible to ensure the accuracy and
reliability of the data collected.

• Comparison with Existing Knowledge: The newly acquired data is then compared
to existing knowledge, theories, and predictions. If the data aligns well with the
predictions made by the existing theory, it provides confirmation of those theories.
This doesn’t necessarily prove the theory true, but it does provide stronger support
for its validity.

• Consistency and Reproducibility: Confirmation of previous results occurs when other
scientists can reproduce the same results independently using the same methods. This
adds to the reliability of the findings.

• Deviation and Inconsistencies: Sometimes, new data might show inconsistencies with
existing theories or predictions. These inconsistencies can lead to further investigation
to understand why the observed results deviate from expectations.

• Re-evaluation and Modification: When new data contradicts existing theories, scien-
tists might re-evaluate the theories. They might modify the theories to accommodate
the new data or revise them entirely. This process of revising theories in response to
new evidence is a cornerstone of scientific progress.

• Rejection of Hypotheses or Theories: If new data consistently and robustly contradicts
the predictions of a theory, it might lead to the rejection of that theory. However, this
rejection is not taken lightly; it requires a substantial body of evidence that consistently
undermines the theory.
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• Iterative Process: Science is an iterative process. New data can lead to adjustments
in theories, which in turn generate new hypotheses to test. This cycle of proposing,
testing, and refining theories drives the advancement of knowledge. So, the acquisition
of new data is a crucial element in the confirmation or rejection of previous results or
theories in science and solar physics. Data that aligns with existing theories provides
confirmation, while data that deviates can lead to modifications or rejections of the-
ories. This constant interplay between theory and data drives scientific progress by
refining our understanding of the natural world. In recent works of solar physics, the
graph-based approaches in a framework of complex system were introduced to confirm
the previous results obtained by the other methods. As an example, [78] exploited the
unsupervised method in a framework of complex network to provide a nw approach for
diagnosis of flares in ultraviolet emission band (1600 Å). The obtained results had con-
sistency with events detected by Geostationary Operational Environmental Satellite
(GOES).

Comparison with Simulation: In solar physics, two common types of simulations used to
study the behavior of the Sun are N -body simulations and grid-based simulations. Here are
the key differences between these two approaches:

• Particle Representation: N -body simulations model individual particles, such as elec-
trons, protons, or dust grains, as discrete entities that interact with each other through
gravitational or electromagnetic forces. In contrast, grid-based simulations divide the
simulated region into a grid or mesh, where physical properties like density, tempera-
ture, and velocity are assigned to each grid cell.

• Spatial Resolution: N -body simulations typically have higher spatial resolution com-
pared to grid-based simulations. Since N -body simulations directly model individual
particles, they can capture fine-scale details and interactions. On the other hand,
grid-based simulations sacrifice some spatial resolution due to the discretization of the
simulated region into grid cells.

• Complexity and Flexibility: Grid-based simulations are more versatile and can handle
a wider range of physical processes. They can incorporate complex physics, such as
radiative transfer, magnetohydrodynamics, and energy transport mechanisms. N-body
simulations, while simpler in terms of their particle interactions, may not be able to
capture these additional physical processes.

• Computational Efficiency: N -body simulations can be computationally expensive, es-
pecially when simulating a large number of particles or when including complex inter-
actions. On the other hand, grid-based simulations are generally more computationally
efficient since they operate on a fixed grid structure, allowing for faster calculations
and easier parallelization.

• Applicability: N -body simulations are commonly used in scenarios where individual
particle interactions are crucial, such as modeling the dynamics of charged particles
in the solar wind or the motion of dust grains in the Sun’s environment. Grid-based
simulations, on the other hand, are well-suited for studying large-scale phenomena
like the behavior of the Sun’s magnetic field, convective motion, or the propagation of
waves through the solar atmosphere.

In fact, N -body simulations focus on modeling individual particle interactions and are suit-
able for scenarios where detailed particle-level dynamics are important (e.g., see [1,97,115,
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141]. Grid-based simulations, on the other hand, provide a more versatile and computa-
tionally efficient approach for studying large-scale phenomena and incorporating complex
physical processes in solar physics (e.g., see [5,52,67,130]. Both simulation methods have
their strengths and limitations, and the choice between them depends on the specific research
question and the level of detail required.

There are so many comparisons between different types of simulations used in solar
physics and data. As a note, we list some of the few examples of simulations compared with
results extracted from data:

• MHD Simulations: MHD simulations are widely used in solar physics to study the
behavior of the Sun’s plasma, which is a combination of charged particles and mag-
netic fields. These simulations help model phenomena like solar flares, coronal mass
ejections (CMEs), and the generation and evolution of the Sun’s magnetic field. MHD
simulations allow scientists to investigate the complex interplay between plasma dy-
namics and magnetic fields in the Sun’s atmosphere.

• Radiative Transfer Simulations: They are used to understand the interaction of radi-
ation with the Sun’s atmosphere. These simulations help model how energy is trans-
ported through the layers of the Sun, including the photosphere, chromosphere, and
corona. By simulating the absorption, emission, and scattering of radiation, scientists
can study the temperature, density, and composition of different solar atmospheric
layers.

• Solar Interior Simulations: Simulations of the solar interior aim to model the physical
processes occurring within the Sun’s core and radiative and convective zones. These
simulations help understand how energy is generated and transported within the Sun,
as well as the dynamics of convection and the formation of sunspots. By simulating
the interior of the Sun, scientists can gain insights into its structure, evolution, and
the mechanisms driving solar activity.

• Solar Dynamo Simulations: Dynamo simulations focus on modeling the generation
and evolution of the Sun’s magnetic field. These simulations help understand the pro-
cesses that give rise to the Sun’s magnetic activity, such as the formation of sunspots,
solar cycles, and the reversal of the Sun’s magnetic poles. By simulating the dynamo
processes, scientists can investigate the mechanisms responsible for the Sun’s magnetic
behavior.

• Solar Wind Simulations: Solar wind simulations aim to model the flow of charged
particles from the Sun into space. These simulations help study the properties and
dynamics of the solar wind, including its speed, density, and magnetic field structure.
By simulating the solar wind, scientists can gain insights into its impact on space
weather and its interaction with planetary magnetospheres. These are just a few
examples of the different types of simulations used in solar physics.

Post-processing procedures in solar image analysis encompass a wide range of tasks that
transform raw data and automated feature recognition results into valuable scientific in-
sights. These tasks include visualization, cataloging, statistical analysis, theoretical model-
ing, prediction, confirmation of previous results, and comparison with simulations. Image
processing methods plays a critical role in ensuring objectivity and accuracy throughout
these post-processing stages, ultimately contributing to a more comprehensive understand-
ing of solar phenomena and their impacts on space weather and astrophysical processes (e.g.,
see [7,8] and references therein).
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5 Conclusion
The rapid growth of data, especially in recent years, has led to a greater need for processing
data in all areas of science. Owing to the continuous recording of data in the field of astron-
omy, and subsequently in its sub-branches such as solar physics, data processing assumes
a crucial role in comprehending interconnected concepts. This is largely due to the com-
bination of space missions and telescopes that observe the Sun, which provide high-quality
images and data. These efforts have improved our understanding of the Sun’s behavior and
its effects on Earth. This paper serves as a source of knowledge about solar photospheric ob-
servations, image processing, and the journey from raw data to meaningful results. It shows
how science and tools work together to uncover the Sun’s mysteries and its relationship with
Earth.

This paper has highlighted various ways to analyze images of the Sun’s surface. We
started by explaining what the Sun’s surface is like, which helps set the stage for the rest
of the paper. We then looked into preparing the images before analysis, an important
step. Additionally, we reviewed studies that used image processing techniques to study
the Sun, both in the past and with new methods. This shows how technology is shaping
future research. Lastly, we explored how to enhance results from raw data through post-
processing. These steps, though less obvious, are vital for turning data into useful insights.
By explaining these processes, this paper aims to be a comprehensive guide for researchers,
helping them make sense of raw data and draw meaningful conclusions.
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