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Abstract. An array of five scintillation detectors has been installed in Sharif Uni-
versity of Technology to record extensive air showers. By using the time lags of the
secondary particles of air showers relative to each other and the location of each of these
particles relative to the core of the shower, the arrival direction of the primary particle
producing each air shower has been obtained. These data show that the distribution of
time intervals of successive events in all directions of arrival into the atmosphere is a
random distribution. The distribution of the time intervals between successive events in
different seasons has also been obtained and the seasonal effect has been investigated.
The effects of the environment, including temperature and pressure, on the cosmic ray
count rate have been investigated. The distribution of zenith and azimuth angles, as
well as the solar, sidereal, and antisidereal time distributions of cosmic rays, have been
obtained.
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1 Introduction
Cosmic rays are energetic particles and nuclei of various elements whose energy spectrum
falls sharply with a power law, ranging from a few Megaelectron-volts (MeV) to about
Zettaelectron-volts (1021eV) per particle. Low-energy primary cosmic rays due to their high
flux can be directly measured by satellite or balloon experiments. Primary cosmic rays
interact with atmospheric molecules to produce secondary particles that can be detected on
Earth’s surface. At high energies, secondary particles produced (extensive air shower) by a
single primary particle can be detected. These showers can be reconstructed to determine
the energy, direction and composition of the incident particles. In this paper, by recording
cosmic rays with an array of 5 scintillator detectors, we have investigated in detail the
statistical distribution of their counting with the theory of random events. The effects of
weather, including temperature and air pressure, on cosmic ray count rate are studied. Their
zenith and azimuth distributions, and also solar, sidereal, and antisidereal time distributions
are investigated.

2 Array layout
Figure 1 shows a demonstration of a small array including 5 scintillation detectors which
is considered as experimental setup. The geometry of this array is arranged as a regular
pentagon with a side length of 5 meters. As shown in Figure 1, the detectors are numbered
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from 1 to 5, respectively. The direction of the magnetic north relative to the detectors is
indicated by the letter N. Each detector consists of a 50cm×50cm×2cm scintillation slab
which is housed in a light enclosure with a shape of a regular pyramid and a height of 20 cm.
This height has been optimized for the light enclosure in our previous work [1]. At the top
of each pyramidal light enclosure is installed a photomultiplier tube with a diameter of 5 cm
(PMT, 9813B). The details of each detector are demonstrated on the left side of Figure 1.
An event is recorded when different particles of an air shower pass through the five detectors.
The electronic circuit used (Figure 1) is such that the time difference of the particles passing
through the detectors 2 to 5 from the detector 1 are measured. The passage of each particle
through each detector generates a signal in the respective photomultiplier. Signal of each
PMT is connected to the input of one of the channels of an 8-channel fast discriminator
(CAEN N413A). All channels of the fast discriminator are in a -20 mV threshold level. The
output of the discriminator channel associated with the detector #1 is connected to the start
inputs of the four Time to Amplitude Conveter (TAC) modules. The outputs of the other
discriminator channels which are related the detectors #2 to #5 connect to the stop inputs
of the same four TACs. The stop inputs are accompanied by a time delay using additional
cables. And in the final step, the outputs of the four TACs (which all are set with a time
window 200 ns) are connected to a Multi-Channel Analyzer (MCA) through an Analog to
Digital Converter (ADC, KIAN AFROUZ Inc.) unit. Meanwhile, the output of TAC #1
acts as a gate signal for data recording.

3 Analysis of recorded time data
Our air shower array is located at Sharif University of Technology, Tehran, Iran (latitude
35◦43′ N, longitude 51◦20′E) at an altitude of 1200 m = 897 gcm−2. During almost one year,
564763 EAS events in zenith angle between 0◦ and 60◦ and all azimuth angles, and in the
energy range between 30 TeV and 3000 TeV [2] were collected. The total observation time
was 5133 hours and hence the trigger rate was approximately r ≃ 1.8 events/min. Two sets
of time data are available from the array. One is the time difference between the secondary
particles of each shower passing through the different detectors, and another is the recording
time of each air shower by the array. We study each of these two time datasets which contain
some of the characteristics of the cosmic rays and the related air showers parameters. We
use the first data to determine the arrival direction of cosmic rays into the atmosphere, and
the second data to determine the distribution of time intervals between them, and also the
distributions of solar and sidereal times.

3.1 Method of obtaining air shower direction and analysis
We assume that the air shower front is a plane surface with a normal vector along the shower
axis, and direction of each air shower, using the time lags between the detector No.1 and
the rest of the detectors is calculated. As shown in Figure 2, when the shower axis (which is
perpendicular to the shower plane) hits the ground along -n̂, the time difference between the
arrival of the shower front at point x⃗i (on the ground) and the reference point x⃗r (detector
No.1) is as follows

ti − tr = −1

c
n̂.(x⃗i − x⃗r), (1)

where it is assumed that all particles move at the speed of light, c, and the unit vector n̂ in
terms of the zenith, θ, and azimuth, φ, angles is (sinθcosφ, sinθsinφ, cosθ).
The azimuth angle, φ, is measured in the direction of movement from the magnetic north
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Figure 1: Array layout and electronic circuits.
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Figure 2: Schematic of shower front geometry, shower axis, and arrival angle of shower.

counter-clockwise. In other words, φ = 0 points to the magnetic north, and the direction of
movement is to the west. To find the directional angles (θ, φ) of a shower, we minimize the
sum of squares of the time differences between the measured data and the model (Equation
1) time prediction, that is, the following function, χ2, is minimized.

χ2 =
∑
i

[c(ti − tr) + n̂.(x⃗i − x⃗r)]
2. (2)

By writing the station coordinates as x⃗i = (xi, yi, zi=0), and the reference coordinates
(detector No.1) as x⃗r= (0, 0, 0), we have

χ2 =
∑
i

[c(ti − tr) + xi sin θ cosφ+ yi sin θ sinφ]
2. (3)

To minimize χ2, we define u = sin θ cosφ and v = sin θ sinφ and have

∂χ2

∂u
= 2

∑
i

xi[c(ti − tr) + xiu+ yiv] = 0,

∂χ2

∂v
= 2

∑
i

yi[c(ti − tr) + xiu+ yiv] = 0.

(4)

So u and v are solved as follows

u =
w3w5 − w2w4

w1w2 − w2
3

, v =
w3w4 − w1w5

w1w2 − w2
3

, (5)
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where

w1 =
∑
i

x2
i , w2 =

∑
i

y2i , w3 =
∑
i

xiyi,

w4 = c
∑
i

xi(ti − tr), w5 = c
∑
i

yi(ti − tr).

Finally, θ and φ are obtained from the following relations

sin θ =
√

u2 + v2, tanφ =
v

u
. (6)

Using this method, the direction of each shower, θ and φ, is calculated with the data of the
pentagon array in Figure 1. In fact, the time delays between four detectors (No.2, 3, 4, and
5) and the detector No.1, along with the location coordinates of the four detectors relative
to the detector No.1 are used to determine the values of w1 to w5. Then, using equation (6),
θ and φ values were obtained. The distribution function of the zenith angle, theta, is shown
in Figure 3. This distribution can be represented by the function dN= N0 sinθ cosmθ dθ.
By fitting this function on the distribution obtained from the array data, the value of m =
7.2±0.1 is obtained, which is in good agreement with the performed simulation [3].

Figure 3: Distribution of zenith angle of air showers, θ.

The azimuth distributions of recorded air showers is also shown in Figure 4. These dis-
tributions were obtained in three zenith angle intervals, 0◦ −15◦, 15◦ −30◦, 30◦ −45◦, and
θ ≤ 45◦. These distributions are represented by Fourier analysis (up to the first harmonic)
as

N(φi) = N0 +N1 cos(φi − φ) = N0 +N1 cosφ cosφi +N1 sinφ sinφi. (7)

The azimuth angle is divided by the bin width of 20 degrees. Hence, N(φi) is the number
of cosmic rays in the interval (20i − 20)◦ ≤ φi < (20i)◦; i = 1, 2, 3, . . . , 18. The Fourier
coefficients a = N1 cosφ and b = N1sinφ with first harmonic analysis in terms of azimuth
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Figure 4: Distribution of the number of air showers in azimuth angles, in different zenith
angle intervals. In each bin, the boxes from left to right show the number of events in the
zenith angle intervals 0◦-15◦, 15◦-30◦, 30◦-45◦ and θ ≤ 45◦ respectively.

angle are as follows

a =
2

k
Σk

i=1N(φi) cosφi, b =
2

k
Σk

i=1N(φi) sinφi. (8)

Here, k=18 and φi = (20i− 10)◦. The mean value of N(φi), and the amplitude and phase
of the first-harmonic modulation are given by N0 = 1

kΣ
k
i=1N(φi), N1 =

√
a2 + b2, and

φ = arctan(b/a) respectively. Nonuniformities effects are accounted with the normalization
factor N0, that is, with the fractional amplitude f = N1/N0 =

√
a2 + b2/N0. The Rayleigh

analysis for the probability to obtain an amplitude larger than the one measured as a result
of a fluctuation from an isotropic distribution is given by P (≥ f)=exp(−N f2/4). Where N
is the number of events used in the data set. For each zenith bin, we report in Table 1 the
number of events N , the amplitudes N0, and N1, the first harmonic phase φ, and the chance
probability P (≥ f). One can see that the first harmonic modulation in the azimuth angle
leads to the fractional amplitude of f=0.082 ±0.001 for θ ≤ 45◦, which can be generated
by Rayleigh analysis with probability almost zero from an isotropic distribution. The phase
of the maximum of this modulation is a ϕ=171◦±10◦, indicating an effect of north–south
anisotropy. The anisotropy in the azimuth angle distribution depends on the geomagnetic
location of the observatory, the energy and electric charge of the primary particles. Particles
coming from the north, due to being perpendicular to the magnetic field lines, suffer more
deviation than the particles coming from the south. Therefore, the efficiency of recording
showers from the south is greater than from the north. To estimate this anisotropy, the total
number of event counts from the southern half-space, Ns, is compared with the northern
half-space, Nn. By defining the amplitude of anisotropy as 2(Ns −Nn)/(Ns +Nn), and its
error as 4(NsNn)

0.5/(Ns + Nn)
1.5, the values of (6.4 ± 0.3)%, (8.6 ± 0.2)%, (16.0 ± 0.3)%,

and (9.9 ± 0.1)% are obtained for zenith angle intervals of 0◦ − 15◦, 15◦ − 30◦, 30◦ − 45◦,
and θ ≤ 45◦ respectively. One can see that as the zenith angle increases, the anisotropy
increases, indicating a larger effect of the geomagnetic field on the longer path of charged
particles in the atmosphere.
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Table 1: Fourier amplitudes and phases at the azimuth angles, and the Probabilities to get
larger values from statistical fluctuations of an isotropic distribution for three zenith angle
intervals.

zenith angle N N0 N1 f(%) φ(◦) P ≥ f
0◦ − 15◦ 140415 7801 367 4.7± 0.2 188± 10 2.1× 10−34

15◦ − 30◦ 252801 14045 1008 7.2± 0.2 170± 10 5.0× 10−142

30◦ − 45◦ 139578 7754 1048 13.5± 0.4 173± 10 1.8× 10−277

θ ≤ 45◦ 532794 29600 2423 8.2± 0.1 171± 10 ≈ 0

3.2 Distribution of arrival time intervals of recorded air showers
The electronic system installed in the array described can record the arrival time interval
between successive air showers. If the arrival time of primary cosmic rays, initiating the
air showers, is random, the arrival time of the air showers at the array level should also be
random. In this case, the distribution of n-event arrival time intervals for air showers follows
the Gamma distribution (Poissonian of order n) [4]. This distribution was invented to predict
the waiting time until future events. This is also known as the Erlang(ian) distribution (after
the Danish engineer A.K. Erlang, who used it to describe telephone networks).

G(t; r, n) = r
(rt)n−1e−rt

(n− 1)!
. (9)

Where r is the inverse of the mean value of arrival time interval between two consecutive air
shwers (or mean rate of events), and n is the order of the distribution. In case n = 1, Equa-
tion (9) becomes an exponential function as G(t; r, 1) = re−rt. Bhat ([5]) reported that the
arrival time interval between air showers did not follow an exponential function but observed
two exponential components in the distribution. Subsequent evidence also confirmed this
conclusion ([6],[7]). On the other hand, other observations negated that conclusion ([8],[9]).
Figure 5 shows the n-event arrival time intervals of air showers observed by our array in
case of n = 1, 2, and 3 with zenith angle in bins 0◦-10◦, 10◦-20◦, 20◦-30◦, 30◦-40◦, 40◦-50◦,
and all zenith angles between 0◦-60◦. Since for the Poisson function of order n, the mean
time interval, t̄n, is n/r, and the most probable time interval, Tn,p, is given by (n - 1)/ r,
the results are obtained by fitting the Equation (9) with different n( Table 2) is perfectly
consistent with the Poisson function and no anomaly are found in this distribution. As
expected at each zenith angle interval, the event count rates for the different ns are almost
the same. Event count rate is maximized in the zenith range of 20◦-30◦, which is due to
the maximization of the solid angle in this range. The event count rate for all zenith angles
obtained by fit is approximately ≃ 1.8 counts/min, which is consistent with the value of r ≃
1.8 counts/min stated above. Because

∫∞
0

xne−xdx = n!, hence the surface of all the curves
are the same for different n, and this means that as n increases, the distribution becomes
more uniform.

3.3 ������Effect �of environmental parameters on the rate of air shower
events

The event rate of air showers depends on some atmospheric parameters, the most important
of which are environment pressure and temperature. To investigate these effects, the data
of Mehrabad weather station is used.
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Figure 5: The n-event arrival time intervals of air showers in case of n= 1, 2, and 3 with
different zenith angles. Different ns are shown in one of the graphs, top-left, and the rest
are similar. Solid curves show the fit of the data with Equation (9).

Table 2: Some parameters of the time interval distributions fitted to the Poisson function
of order n, Including count rate, r, mean time interval, t̄n, and most probable time interval,
Tn,p.

Zenith angle 0◦-10◦ 10◦-20◦ 20◦-30◦ 30◦-40◦ 40◦-50◦ 0◦-60◦
n = 1 218±2 515±5 535±4 351±3 159±2 1785±20

103r ( events
min ) n = 2 220±2 520±2 539±2 354±2 159±1 1818±11

n = 3 220±1 520±2 540±3 355±2 158±1 1832±3
n = 1 459±4 194±2 187±1 285±3 631±7 56±1

102t̄n(min) n = 2 909±6 385±1 371±1 564±4 1260±11 110±1
n = 3 1362±8 577±2 556±3 846±4 1894±12 164±1
n = 1 0 0 0 0 0 0

102Tn,p (min) n = 2 455±3 193±1 186±1 282±2 630±6 55±1
n = 3 908±5 384±1 371±2 564±3 1263±8 109±1
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3.3.1 Pressure effect

Atmospheric pressure affects the recording rate of air showers. This relationship is demon-
strated in Figure 6(a).

Figure 6: The number of 3-hour events as the environment pressure; (a) raw events, and (b)
corrected pressure events. The solid line represents the fitted exponential function.

This figure is a representation of the three-hour rate of events in terms of pressure for angles
less than 45◦. This event rate can be modeled with the exponential function RP =R0P e

−α(P−P0),
where RP is the rate of events at pressure P . The values of R0P and P0 are calculated from
1
NΣN

k=1Rk and 1
NΣN

k=1Pk respectively, where N = 1711, which is the number of 3-hour
intervals in the experimental data, and Rk and Pk are the recorded count rate and pres-
sure respectively in ith 3-hour interval. The coefficient α is obtained using the least-square
method from the following equation.

α = −
ΣN

k=1 ln(
Rk

R0P
)(Pk − P0)

ΣN
k=1(Pk − P0)2

. (10)

Linear correlation coefficient is given by Pearson’s formula.

ρ = − SPR√
SPSR

, (11)

where SPR = ΣN
k=1 ln(

Rk

R0P
)(Pk − P0), SP = ΣN

k=1(Pk − P0)
2, and SR = ΣN

k=1(ln
Rk

R0P
)2.

Hence, we have α = ρ
√

SR

SP
, ∆α = ±α

ρ

√
1−ρ2

N−3 . From the data collected from the array, the
values of P0 ≃ 882mb, R0P ≃ 334/(3 hours), α ≃ (3.0 + 0.3) × 10−3/mb, and ρ ≃ 0.22 are
calculated. For the pressure corrected rate, Rc

P , we use the equation Rc
P = Rmeα(P−P0),

where Rm is the measured events rate in the data acquisition. The corrected values Rc
P in

terms of atmospheric pressure are shown in Figure 6(b). With this correction, the value of
the correlation coefficient changes from ρ = 0.22 to ρ = 3.82 × 10−5, which indicates that
the data is properly corrected with this method.
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3.3.2 Temperature effect

The effect of temperature on the recorded raw event rates can be seen by separating them
into different seasons: spring, summer, autumn and winter. The time interval distribution
of successive events in different seasons can be seen in Figure 7. These distributions follow
the exponential distribution Aexp(-rt), where the values of r (rate of events) for spring,
summer, autumn, and winter seasons are 1.78±0.02, 1.74±0.02, 1.76±0.02, and 1.84±0.02
events/min, respectively. One can see this rate decreases with increasing temperature, which
indicates that increasing temperature causes changes in air density, and this in turn affects
the number of secondary particles in the air shower, resulting in a decrease in the recording
of air showers.

Figure 7: Distribution of successive time intervals of events in different seasons. The curves
are fitted with function Ae−rt .

The temperature correction is performed on the values of Rc
P , that is, on the data of Figure

6(b). The method of performing this operation is similar to subsection 3.3.1. It is enough
to make the following transformations.

1) Rk → Rc
kP , and Pk → Tk, α → β ≃ (2.0 + 0.1)× 10−3/◦C,

2) R0P → R0T , with R0T = 1
NΣN

k=1R
c
kP ,

3) P0 → T0, with T0= 1
NΣN

k=1Tk=16.7◦C.

With these transformations, the pressure and temperature corrected event rate with Rc
PT =

Rc
P e

β(T−T0) are calculated. Figure 8 shows the values of Rc
PT as a function of temperature.

The correlation coefficient after these corrections reaches ρ=-0.008.

3.4 Anisotropy in solar and sidereal time
The number of recorded events, corrected for atmospheric pressure and temperature, in solar
and sidereal time is given in Figure 9. With the Fourier analysis up to the first order, given in
Section 1-3, the amplitudes and phases and probabilities to get larger values from statistical
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Figure 8: The number of 3-hour events after correcting pressure and temperature.

Figure 9: Number of events as a function of solar, sidereal, and antisidereal times, corrected
for atmospheric pressure and temperature.
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Table 3: Fourier amplitudes and phases at solar, sidereal, and antisidereal times corrected
presure and tempereture, and the probabilities to get larger values from statistical fluctua-
tions of an isotropic distribution for each of the 3 time periods.

Period N N0 N1 f(%) φ(hours) P (≥ f)
Solar time 523751 21823 71 0.3± 0.04 8.9± 0.5 0.25

Sidereal time 523751 21823 91 0.4± 0.04 0.2± 0.5 0.10
Antisidereal time 523751 21823 80 0.4± 0.04 12.8± 0.5 0.17

fluctuations of an isotropic distribution for each two time periods are shown in Table 3. One
can see that all these amplitudes are consistent with being fluctuations, showing then no
signs of remaining systematic effects.

4 Conclusion
During almost one year, more than five hundred thousand cosmic ray events have been
registered by an array of 5 scintillator detectors in different directions. With this array,
cosmic rays with energies in the range of 30 to 3000 TeV were collected at a rate of 1.8
events per minute. With the time delay of the secondary particles of each air shower, the
arrival direction of the primary particle at the top of the atmosphere was calculated using
the least square method. The zenith angle of the arrival direction of air showers obeys a
cosmθ law with m= 7.2± 0.1. On the other hand, when an air shower arrives at an angle to
the earth’s magnetic field, the secondary charged particles in the shower can be deflected.
For showers arriving from the north the shower particles have higher deflections than the
southern ones of the equal energy with the equal zenith angle. The amplitudes of anisotropy
observed in the zenith angle intervals of 0◦ − 15◦, 15◦ − 30◦, 30◦ − 45◦, and θ ≤ 45◦ are
(6.4 ± 0.3)%, (8.6 ± 0.2)%, (16.0 ± 0.3)%, and (9.9 ± 0.1)%, respectively at the location of
Alborz I observatory.
Also, the distribution of one-event, two-event, and three-event arrival time intervals were
obtained. With a regression greater than 99.9%, the cosmic ray arrival time distribution
agrees with a Poisson distribution function of order n for all n-event arrival time intervals.
Using Fourier analysis of data, and considering pressure and temperature corrections, we
found no cases that the number of events detected as a function of solar, sidereal, and
antisidereal times differ significantly from random expectation, in the energy range of 30 to
3000 TeV.
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