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Abstract. Observational results of the infrared dark clouds (IRDCs) reveal that these
clouds exhibit a clumpy structure with directional line-of-sight velocity gradients. Re-
cent research by Vahadanian & Nejad-Asghar (2022, hereafter VN22) focused on the
observational results of IRDC G34.43+00.24 (G34). The study concluded that G34
behaves like a rolling cylinder within the plane of the Galaxy, exhibiting a slow angular
velocity of approximately Ω ∼ 5.7×10−14 s−1. Using a simplified approximation for the
mismatch of opposite charges, denoted by the parameter ζ, researchers demonstrated
that the rotation-induced electric current can generate magnetic fields with strengths
on the order of thousands of micro-Gauss in certain regions of G34. This study specif-
ically examines the clumps within the IRDCs and employs a simplified model that in-
corporates a density-dependent function for the parameter ζ. Our research focuses on
analyzing the magnetic field morphology within a clump while taking into account the
rotation of the IRDC. To address this investigation, we examine three specific clumps
- MM1, MM2, and MM3 - within G34. The findings reveal that the magnetic field
strength is higher near the axis of rotation compared to distant regions from the axis.
Additionally, increasing values of the angular velocity Ω and the mismatch of opposite
charges ζ lead to stronger magnetic field strengths. On the other hand, the results
indicate that the strength of the magnetic field is not significantly influenced by the
angle between the rotational axis of the IRDC and the boundary magnetic field. These
findings offer valuable insights for researchers studying the distribution of star-forming
cores within clumps.

Keywords: ISM: Structure, ISM: clouds, ISM: Magnetic fields, Stars: Formation, In-
frared dark clouds

1 Introduction

With the introduction of advanced mid-IR detectors in the 1990s, space facilities enabled the
capture of images of the Galactic plane. These images revealed numerous dark features [1,2].
It was immediately proposed that these dark regions were dense molecular clouds (nH2

>
105 cm−3) with low temperatures (T < 20 K) that absorbed background radiation from the
Galaxy’s disk [3]. Subsequent research involving continuum and molecular line observations
allowed for a more precise determination of the physical and chemical characteristics of these
infrared dark clouds (IRDCs) [4–6]. In recent years, the availability of new observational
data has provided valuable insights into the essential physical characteristics and chemical
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composition of various IRDCs [7–10]. It is widely acknowledged that the cold and dense
regions (referred to as clumps) within IRDCs play a significant role in the formation of
clusters containing massive stars (refer to [11] for a comprehensive review). Consequently,
studying the physical properties of these clumps presents an opportunity to enhance our
understanding of the formation and evolution of star-forming cores within IRDCs.

Magnetic fields have a profound impact on the formation and evolution of clumpy molec-
ular clouds [12,21]. In the case of IRDCs, which are magnetized molecular clouds [14–18],
magnetic fields play a significant role in the evolution of IRDC clumps and the formation of
stellar clusters [19]. Observational studies, including those mentioned above, indicate that
the magnetic field strengths within IRDCs are typically several hundred micro-Gauss and
can increase to thousands of micro-Gauss within clump regions. However, due to limited
observational information, the detailed morphology of magnetic fields within IRDC clumps
remains largely unknown. Therefore, theoretical studies can provide insights into the mag-
netic field structure within these clumps.

One possible explanation for the strong magnetic fields observed in IRDCs and their
clumps is that they originated from the contraction of a primary atomic cloud. During
this contraction, assuming the magnetic field lines are ”frozen” in the gas (referred to as
flux freezing), the Galactic magnetic field lines become accumulated within the cloud (e.g.,
[20,21]). Mestel’s work demonstrated that if the initial cloud has a density of ni and contracts
to a final density of nf , the strength of the magnetic field increases from Bi to approximately
Bf ≈ Bi(nf/ni)

2/3 ([22]). As an estimation, we assume that the initial atomic cloud has
a number density of ni ≈ 10 cm−3 and reaches the inter-clump medium within an IRDC
with a density of nf ≈ 103 cm−3. As a result of this process, the Galactic magnetic field
increases from approximately Bi ≈ 3µG [23] to about Bf ≈ 60µG. If we continue the same
contraction process, assuming flux freezing within a clump with a density nf ≈ 105 cm−3,
the magnetic field inside this IRDC clump would reach the order of Bf ≈ 103 µG. It is
important to note that the assumption of flux freezing is a significant simplification and
does not fully align with reality, as molecular clouds can lose their magnetic fields through
the ambipolar diffusion process during their evolution [24]. However, despite this limitation,
this idea provides a reasonable explanation for the observed strengths of the magnetic fields
in molecular clouds and IRDCs.

In addition to the first idea, another approach suggested by [25] focuses on the generation
of magnetic fields through the dynamics of IRDCs. The researchers specifically examined an
IRDC named G34.43+00.24 (G34) and calculated its rotational angular velocity based on
observational data. By considering the charge imbalance, they determined the electric cur-
rent generated by the rotation and derived the corresponding magnetic field. Their findings
demonstrated that the strength of the magnetic field resulting from the rotational dynamics
of G34 is comparable to the field strengths predicted by the first idea (i.e., condensation
with flux freezing). Consequently, these results highlight the importance of incorporating
this mechanism into theoretical calculations.

The consideration of the charge imbalance coefficient, ζ, was a significant aspect of
VN22’s work. This coefficient represents a departure from the ideal assumption of equal
impacts between positive and negative charges at every point within the cloud, reflecting
a more realistic scenario. In their study, VN22 made the simplifying assumption that ζ
remains constant throughout the G34 region. However, accurately calculating ζ in different
regions of a cloud requires comprehensive observational data on the particle types, ionization
fraction, and relative velocities, which we hope to achieve through advancements in telescope
capabilities in the future. Currently, numerical codes such as NICIL [26,27] can be utilized
to provide some estimations of ζ by simulating the movement of ions and electrons within a
non-ideal magnetohydrodynamical cloud. But, this subject is out of the scope of this paper.
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Here, we use some physical points of view to consider a power-law relation for the density
dependence of ζ.

Our focus here is on the analysis of clumps within the IRDCs, particularly investigating
the morphology of local magnetic fields within the MM1, MM2, and MM3 clumps in G34.
To achieve this objective, Section 2 of this paper focuses on analyzing the gravitational
equilibrium and stability of a massive clump, extracting the relevant values for radii and
masses specific to the MM1, MM2, and MM3 clumps in G34. In Section 3, we calculate
the current densities, while Section 4 is dedicated to determining the morphology of the
magnetic fields resulting from these current densities. Finally, Section 5 provides a summary
and conclusion of our findings.

2 Massive clump equilibrium and stability

We are considering a simplified model of a spherically symmetric clump within an IRDC,
characterized by a radius R and in a stationary, quasi-static state (∂/∂t = 0). We assume
that the cloud is in a regime dominated by thermal pressure, where equilibrium is maintained
through the balance between self-gravity and thermal pressure forces. By neglecting any
internal temperature gradients and assuming an isothermal equation of state (p = a2T ρ),

with aT =
√
kBT/m̄ being the isothermal sound speed of the gas at temperature T and

mean molecular mass m̄ ≈ 2.3mH , we can derive the hydrostatic equilibrium equation

1

ρ
∇p−∇φg = 0, (1)

where φg represents the gravitational potential, and the Poisson equation: ∇2φg = 4πGρ.
These equations lead to the density profile ρ(r) = ρc exp(−ψ), where ρc is the central density
of the clump and ψ ≡ φg/a2T . Consequently, the Poisson equation gives rise to the isothermal
Lane-Emden equation

1

ξ2
d

dξ

(
ξ2
dψ

dξ

)
= exp(−ψ), (2)

where ξ ≡ (4πGρc/a
2
T )2r is the nondimensional radius. The given differential equation

can be numerically integrated starting from ξ = 0, using the boundary conditions ψ(0) =
ψ′(0) = 0. By solving the equation, we can obtain the ratio ρ(ξ)/ρc (as illustrated in Figure
9.1 of [28]). The mass of this spherically symmetric cloud with nondimensional radius ξ0 is

M = 0.1ξ20

(
dψ

dξ

)
ξ0

( nc
105 cm−3

)−1/2( T

10 K

)3/2

M�, (3)

where nc ≡ ρc/m̄ is the number density in clump center (e.g., [29]). Therefore, if we ignore
internal temperature gradients and assume an isothermal equation of state (p = a2T ρ), only
low-mass cores will exist.

However, to account for the presence of massive clumps within IRDCs, additional sources
of support need to be considered [30]. One such mechanism is the magnetic fields, which can
counteract gravitational forces and allow for the formation of larger clumps [31]. Another
plausible supporting mechanism is turbulence, although it is currently unclear what external
energy source may prevent the decay of turbulent eddies [32]. In this context, we consider
internal temperature gradients as a source of support. [33] demonstrated that magnetic
fluctuations within molecular clouds can generate ambipolar diffusion heating, resulting in
temperature gradients within the cloud in thermal equilibrium. To quantify the magnetic
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Figure 1: The number density and enclosed mass of a stationary quasi-static thermally
equilibrium clump for κ̃ = 5 (solid), 10 (dot), and 15 (dash). The external density of the
clump is assumed to be 103 cm−3.

fluctuations, the nondimensional parameter κ̃ was introduced. The findings indicated that
an increase in κ̃ leads to larger radii and masses for the non-isothermal modified Bonnor-
Ebert spheres. In our analysis, we assume the clump is in thermal equilibrium and refer to
Figure 1 of [33] for an approximate parametric relation

log(T/K) = (2.55 + 0.15κ̃)− (0.35 + 0.03κ̃) log(n/cm−3), (4)

for number densities, n, between 103 and 105 cm−3. Also, we assume κ̃ ≥ 5, which indicates
that the cloud is in the thermal pressure dominated regime.

Knowing the relation between temperature and density, (4), the ideal equation of state,
p = kBnT , leads us to determine the gradient of pressure as

dp

dr
= kB

(
T + n

dT

dn

)
dn

dr
. (5)

In this way, the hydrostatic equilibrium equation (1) becomes

dn

dr
= −Gm̄

kB

M(r)n

r2
(
T + ndTdn

) , (6)

where M(r) is the enclosed mass between r = 0 and radius r. In addition, the mass
conservation implies that we have

dM

dr
= 4πm̄r2n. (7)

The differential equations (6) and (7) can be numerically integrated using methods such
as the Runge-Kutta method. The integration starts from the origin at r = 0, with the
boundary conditions n(0) = nc and M(0) = 0. Figure 1 illustrates the density and enclosed
mass results for a stationary quasi-static thermally equilibrium clump with nc = 105 cm−3.

Next, let’s examine the stability of these massive equilibrium clumps. To do so, we
analyze a series of pressure-bounded clumps within the IRDC. We plot their masses against
the density contrast from the center to the edge, nc/n0, similar to Figure 9.2 of [28]. The
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Figure 2: Sequence of non-dimensional masses of pressure-bounded clumps within an IRDC
with a medium number density of n0 = 103 cm−3. The central density, nc, varies from 103

to 107 cm−3. The mass is depicted as a function of the density contrast from the center
to the edge, nc/n0, for values of approximately κ̃ = 5, 10, and 15. Gravitationally stable
regions are indicated by positive slopes on the curves, while segments with negative slopes
represent unstable regions.

corresponding plot is presented in Figure 2. Initially, at the starting point of the sequence
where nc/n0 = 1 and r = 0, the clump mass M = 0 is equal to zero. As the density
contrast increases, the mass of the clump also increases until it reaches a maximum value.
Subsequently, the mass drops to a minimum value before entering an oscillatory pattern and
approaching an asymptotic limit. Whenever we encounter a maximum or minimum point
on the mass curve, it indicates a stability transition for some normal mode. Specifically,
clumps located to the left (right) of each maximum (minimum) point on the curve are
gravitationally stable. Conversely, clumps positioned to the right (left) of these points will
be gravitationally unstable. To clarify, the curve can be divided into two regions based on
the slope: segments with a positive slope indicate gravitational stability, while segments
with a negative slope indicate instability. Consequently, only a specific subset of the entire
model sequence exhibits gravitational stability. In this context, we examine three examples
of gravitationally stable clumps. These clumps have a density contrast from the center to
the edge ranging from 105 cm−3 to 103 cm−3, and their respective radii are approximately
R1 ≈ 0.59 pc, R2 ≈ 0.82 pc and R3 ≈ 0.42 pc, with masses M1 ≈ 77 M�, M2 ≈ 195 M� and
M3 ≈ 30 M�, respectively. These clumps are approximate models of three clumps MM1,
MM2 and MM3 in G34, respectively ([7]), and are suitable for probing successfully in the
next sections.

3 Current density

This section focuses on investigating the influence of moving charged particles on the gen-
eration of a magnetic field within a large, stable, and rotating clump located in an IRDC.
Specifically, we examine an IRDC similar to G34, which is situated near the Galactic plane.
Observational data analyzed by VN22 revealed that the rotational axis of G34 closely aligns
with the Galactic plane. To visualize the translational rotation of a stable equilibrium
clump around the rotational axis of a G34-like IRDC, a schematic illustration is presented
in Figure 3.

The motion of charged particles can generate a current density denoted as J =
∑
i niqivi−

neeve, where ni represents the number density of each species of ions with charge qi and
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Figure 3: A schematic illustration depicting the rotational movement of an IRDC clump
around an axis. The spherical cloud, characterized by a radius R, is considered to be part
of a toroid shape and rotates counterclockwise around the z-axis. The center of the clump
is located in the x − y plane at position ($0, φ0). The intersection of the clump with the
φ-plane forms a circle with a radius of rc and a central distance of $c. At any position
($, z) in the φ-plane, a toroidal current density J = Jφêφ is generated, which corresponds
to its value in the φ0-plane.

velocity vi, and ne represents the number density of free electrons with charge e and velocity
ve. The contribution of grains to the current density is negligible due to their extremely low
number density. In an ideal magnetohydrodynamics scenario with complete charge neutral-
ity, we would have ne ≈

∑
i ni(qi/e). However, simulations of real-world conditions indicate

that molecular clouds do not conform to the assumptions of ideal magnetohydrodynamic
fluids [26,27]. Recently, VN22 employed this concept to derive a straightforward parametric
relationship for the current density. They made the assumption that the ions are tightly
coupled with the neutral matter within the cloud, while the free electrons possess greater
mobility in both forward and backward directions. In a similar vein, we assume that the
ions, characterized by an average number density n̄i, are well-coupled to the neutral matter
of the cloud and move with a velocity v = $Ωêφ. Here, Ω denotes the angular velocity
of the clump’s translational rotation around the rotational axis of the IRDC. Using this
approach, the toroidal component of the current density, denoted as J = Jφêφ, can be ap-
proximated by a straightforward parametric relation: Jφ ≈ ζen̄i$Ω. Here, ζ represents a
nondimensional value that can be positive or negative, depending on the extent of charge
neutrality incompleteness and the relative velocity between ions and electrons at each point
within the cloud.

In their study, VN22 adopted a constant value for the parameter ζ as a simplifying
assumption (specifically, ζ ≈ 10−4) to facilitate their research process. Simulating multi-fluid
systems that incorporate neutrals, electrons, and different ions can offer valuable insights
into accurately calculating the degree of charge neutrality incompleteness and the relative
velocities of ions and electrons at various points within the cloud. This topic is beyond
the scope of this article. In this context, we adopt a physical perspective and explore
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an appropriate model for ζ. We consider the notion that as molecular clouds increase in
density, charged particles tend to approach each other more closely, resulting in an increase in
their coupling. Conversely, the ionization fraction decreases in densely populated regions of
molecular clouds due to enhanced shielding against ionizing factors. Based on this physical
framework, it can be inferred that ζ decreases as the density of the cloud increases. To
represent the deviation from charge neutrality and the relative speed of ions and electrons
at each point within the clump (r ≤ R), we employ a power-law function: ζ = ζc(n/nc)

−η.
Here, nc = 105 cm−3, ζc ≈ 10−4, and η > 0 are constants.

The average number density of ions in different locations within the clump, n̄i, is related
to the local neutral number density n. However, establishing the precise relationship between
n̄i and n is complex, as it involves ionization through various mechanisms and the recombi-
nation of electrons and ions on charged grains, both in the gas phase and on surfaces [34]. In
the steady-state approximation within molecular clouds, we find that n̄i ≈ 3.2× 10−5n1/2,
where number densities are measured in cm−3 (e.g., [35], p. 362). However, it is important
to note that using this steady-state approximation to equate recombination and ioniza-
tion rates in dense regions of molecular clouds is a simplified approach. Nowadays, the
ionization fraction in molecular clouds can be determined using numerical codes such as
NICIL ([26,27]). In this study, we utilize the extracted relationship n̄i ≈ C(n/nc)

0.4, with
C ≈ 6.3× 10−4 cm−3 [36].

To complete the model, we assume a constant density in the inter-clump medium to
maintain a constant value for ζ. The findings of VN22 suggest that the current density is
higher in the dense central region of a clump and gradually decreases to zero towards the
less dense periphery. Therefore, it is necessary to have η < 0.4. For the inter-clump medium
(R < r < Rb), we can employ a monotonically decreasing function for the current density,
denoted as Jφ(r) = Jφ(R)(Rb − r)/(Rb − R), where Rb represents an approximate radius
greater than the clump radius. For r ≥ Rb, the current density asymptotically approaches
zero, i.e., Jφ → 0. In this way, the toroidal component of current density is

Jφ =



ζcCeΩ
(
n(r)
nc

)0.4−η
$, r ≤ R,

ζcCeΩ
(
n0

nc

)0.4−η
Rb−r
Rb−R$, R ≤ r ≤ Rb,

0, r ≥ Rb.

(8)

In the coordinate system shown in Figure 3, any position ($, z) in the φ0-plane has a radius
given by the equation

r =

(
$0

1 pc

)[(
$

$0
− 1

)2

+

(
z

$0

)2
]1/2

pc. (9)

Here, $0 represents the distance between the clump center and the rotation axis. By
selecting a representative value for the parameter Ω, we can calculate the azimuthal current
density Jφ($, z) using the formula

Jφ($, z) = 9.1× 10−13
(

Ω

10−14 s−1

)(
$

1 pc

)
(
n(r)
nc

)0.4−η
, r ≤ R,

(
n0

nc

)0.4−η
Rb−r
Rb−R , R ≤ r ≤ Rb.

(10)
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Figure 4: The logarithm of current density within the model clumps MM1 (black), MM2
(blue) and MM3 (red) in G34. The curves represent the current density at the central
plane z = 0 (solid) as well as at ±R/2 (dash). We consider two cases with η = 0.1 and
η = 0.3. The rotational angular velocity is Ω = 5.7× 10−14 s−1. The number density at the
center of the clumps is nc = 105 cm−3, while it is n0 = 103 cm−3 at their periphery. In the
region outside the clumps (r > R), we assume a linear decrease of the current density, Jφ,
approaching zero. The sections of the curves corresponding to R < r < Rb are not shown
in the figures.

The current density in this equation is expressed in units of esu
cm2s . By solving the differential

equations (6) and (7) and determining the density profile of the clump, n(r), we can evaluate
the current density (10) at each point ($, z). In this section, we focus on three gravitationally
stable clumps (MM1, MM2, and MM3) identified in the previous section, which correspond
to regions within G34. The distance between each clump’s center and the rotation axis,
denoted as $0, is determined as follows: 1.03 pc for MM1, 1.10 pc for MM2, and 0.52 pc for
MM3 [25]. For all models, we assume Rb = 1.2 R. Figure 4 illustrates the variation of the
function Jφ($, z) within these model clumps of G34, assuming Ω ∼ 5.7 × 10−14 s−1, and
considering two typical values for the free parameter η: 0.1 and 0.3.

4 Magnetic field morphology

In this section, we investigate the magnetic field morphology of a massive equilibrium stable
clump in a rotating IRDC. We consider a toroidal current density model, assuming that
this configuration accurately represents the system. If Jφ($, z), is applicable to all parts
of the clump and its toroidal environment (as shown in Fig. 3), the magnetic field will
approximately be poloidal as B = B$ ê$ + Bz êz. In this way, Ampere’s law indicates that
B$ and Bz are independent of the azimuthal coordinate φ, and also

∂B$
∂z
− ∂Bz
∂$

=
4π

c
Jφ. (11)

Using the absence of magnetic monopole,

1

$

∂($B$)

∂$
+
∂Bz
∂z

= 0, (12)
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the equation (11) leads to

1

$

∂

∂$

(
$
∂B$
∂$

)
+
∂2B$
∂z2

− B$
$2

=
4π

c

∂Jφ
∂z

, (13)

1

$

∂

∂$

(
$
∂Bz
∂$

)
+
∂2Bz
∂z2

= −4π

c

1

$

∂

∂$
($Jφ), (14)

which are the Helmholtz and Poisson equations for the components B$ and Bz, respectively.
Since we are considering an axisymmetric problem, our focus is solely on the φ0-plane.

The results obtained for the poloidal magnetic field components B$ and Bz can also be
applied to other φ-planes. In the φ0-plane, we select a square region with sides measuring 2Rb
(approximately 2.4 times the value of R), where −Rb ≤ z ≤ Rb and $0−Rb ≤ $ ≤ $0+Rb.
We assume that the magnetic field remains constant along the perimeter of this square (as
depicted in Figure 5), as Jφ → 0 approaches zero for r > Rb. To define the magnetic field
at the boundaries of the square, we employ a constant vector field Bm. To discretize the
square region, we divide both the $ and z directions into M equal meshes, resulting in
M + 1 grid points along each direction. To solve the Helmholtz and Poisson equations (13)
and (14), we employ the centered finite difference formula at each interior grid point (i, j),
where i and j range from 2 to M . This enables us to determine the right-hand side of the
equations. Additionally, at the grid points located on the boundaries (i.e., i and j equal to 1
or M+1), we specify the values of the magnetic field components B$ and Bz. By numerically
solving equations (13) and (14), we can obtain the magnetic field components at the interior
grid points. To perform this numerical solution, we utilize FISHPACK, a software package
designed for solving problems involving the Helmholtz and Poisson equations [37].

Using the FISHPACK numerical solver, we can determine the values of B$ and Bz at
each grid point (i, j) within the mesh shown in Figure 5 by solving equations (13) and (14).
To visualize the magnetic field lines, we utilize the relationship ∆z/Bz = ∆$/B$ to move
from the position ($, z) to a new position ($ + ∆$, z + ∆z). To obtain the magnetic
field components at each position along the magnetic field lines, interpolation is employed
using the values from neighboring grid points. By applying this approach, we obtain the
morphology of the magnetic field lines across all regions of the square depicted in Figure 5.
In Figure 6(a), an example is presented illustrating the magnetic field lines of MM2 under the
conditions Bm = 60µG, θ = 45◦, RB = 1.2R and η = 0.2. Figure 6(b) displays a color-filled
contour plot representing the logarithm of magnetic field strengths in the φ0-plane of MM2,
measured in µG units. This visualization allows for an understanding of the distribution of
magnetic field strengths within the clump. The parameters Ω, η, and θ play a crucial role
in determining the magnetic field strengths inside the clumps. To examine their effects, we
investigate the maximum values of magnetic field strengths within the three clumps of G34.
The results of this analysis are presented in Figure 7, providing insights into the impact of
these parameters on the magnetic field strengths within the clumps.

5 Summary and conclusions

In this study, we aimed to propose a novel model for the magnetic field within clumps found
in IRDCs. We sought to provide a justification for the presence of magnetic fields on the order
of thousands of micro-Gauss in IRDCs. The existing cloud contraction model, which assumes
flux freezing, can justify the existence of these magnetic field strengths. In addition to this
model, we explored a novel concept that considers the rotational dynamics of the cloud and
the generation of an electric current resulting from the mismatched distribution of opposite
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Figure 5: The square boundary of the clump in the φ0-plane. The current density inside
the clump (r < R) and in the inter-clump medium (R < r < Rb) is given by the relation
(10). On the edges of the square boundary, the magnetic field is considered to be a constant
vector Bm.

charges. This current, in turn, leads to the production of a magnetic field. To quantify the
extent of this charge imbalance, we introduced a coefficient called ζ. This coefficient signifies
a departure from the state of equilibrium between the effects of positive and negative charges
at each point within the cloud. In other words, it indicates a deviation from the ideal neutral
environment typically expected in such systems. By incorporating ζ into our analysis, we
aimed to better understand the mechanisms responsible for generating magnetic fields within
IRDCs. In this study, we adopted a physical perspective and introduced a power relation
to capture the dependence of ζ on the density of the cloud. The aim was to investigate the
morphology of the magnetic field generated by the rotational dynamics of an IRDC. Our
analysis focused on three specific clumps within G34, namely MM1, MM2, and MM3.

In Section 2, we examined the equilibrium and stability of these clumps. The results
indicated that solely considering the pressure gradient in opposition to gravity could only
account for the presence of low-mass cores. To explain the existence of high-mass clumps, we
explored various mechanisms that assist the pressure gradient. Specifically, we investigated
the role of temperature gradients resulting from ambipolar diffusion heating. By incorpo-
rating these factors into our analysis, we sought to understand how the interplay between
pressure, gravity, and temperature gradients contributes to the formation and character-
istics of clumps within IRDCs. In our approach, we incorporated a temperature-density
relation described by equation (4) to investigate the variations of density and clump mass
with respect to radius. These results are presented in Figure 1, providing insights into the
radial profiles of these quantities within the clumps. Furthermore, we examined the stability
of the clumps under different conditions. Figure 2 illustrates the stability analysis for three
distinct values of the dimensionless parameter κ̃, which represents the magnetic fluctuation
coefficient governing heat generation. By considering these different values, we explored the
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effects of magnetic fluctuations on clump stability. The results depicted in Figures 1 and 2
demonstrate that the values obtained for the mass and radius of a stable equilibrium clump
align with observational findings for specific clumps. Specifically, for a value of κ̃ = 10, the
model matches the observations of MM1; for κ̃ = 15, it corresponds to MM2; and for κ̃ = 5,
it is consistent with the characteristics of MM3.

To illustrate the rotation of a clump around the rotational axis of an IRDC, we provide
a schematic diagram in Figure 3. Furthermore, by introducing the mismatch coefficient ζ,
which accounts for deviations from the ideal state, we developed a model for the toroidal
component of the current density. By including this coefficient, we aimed to capture the
effects of the charge imbalance on the dynamics of the clump. In our model, we incorporated
a power-law relationship between the mismatch coefficient ζ and the density. To account for
factors such as ionization fraction and the decreasing current density at greater distances
from the clump center, we constrained the power parameter η to values ranging from 0 and
0.4. Within regions outside the clumps, we assumed that the toroidal component of the
current density decreases linearly until reaching a specified radius, Rb. Consequently, we
expressed the φ-component of the current density inside the clumps and their surrounding
areas using equation (10). Figure 4 illustrates the values of the current density for three
specific clumps: MM1, MM2, and MM3.

These results demonstrate the distribution and magnitude of the current density within
the clumps and their immediate surroundings based on the applied modeling approach. Once
the current density is determined, we can proceed to analyze the magnetic field morphology
within the clumps, including the shape of magnetic field lines and their strength. Given
the toroidal component of the current density, the resulting magnetic field will exhibit a
predominantly poloidal configuration. Consequently, our investigation focuses on the φ0-
plane, as depicted in Figure 3. This plane and its positioning relative to the boundaries
with constant magnetic fields are presented in Figure 5. To solve the Helmholtz and Poisson
equations (13) and (14) within the inner regions of the square in Figure 5, we utilized the
FISHPACK subprogram. This numerical tool facilitated the solution of these equations,
enabling us to obtain insights into the magnetic field distribution and characteristics within
the clumps. The findings are presented in Figures 6 and 7, highlighting the shape and
strength of the magnetic field lines within the clumps.

Three key parameters influencing these characteristics are the angular velocity of the
IRDC, denoted as Ω, the power parameter η representing the mismatch of opposite charges,
and the angle θ between the rotational axis of the IRDC and the boundary magnetic field.
Interestingly, the results indicated that the specific values of these three parameters have a
limited impact on the shape of the magnetic field lines. Consequently, we chose representa-
tive values of θ = 45◦, η = 0.2, and Ω = 5×10−14 s to depict the shape of the magnetic field
lines corresponding to MM2 in Figure 6(a). From this figure, it is evident that the magnetic
field lines exhibit a stronger accumulation around the axis of rotation compared to regions
farther away from the axis.

This observation highlights the spatial variation in the magnetic field distribution, with
enhanced concentrations of magnetic field lines near the rotational axis within the MM2
clump. Figure 6(b) presents the strength of the magnetic field within the MM2 clump
using a contour color-fill diagram, with the boundary magnetic field set to 60µG. The
results demonstrate that the rotational dynamics of IRDCs can generate magnetic field
strengths on the order of thousands of micro-Gauss within the clumps. These values are
comparable to those resulting from cloud contraction under the assumption of flux freezing.
Notably, Figure 6(b) reveals an interesting characteristic: the symmetry of the magnetic
field strengths on both sides of the z = 0 plane. This symmetry has implications for
the evolution and fragmentation of clumps as well as the formation of star-forming cores.
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It suggests that the magnetic field plays a significant role in these processes, potentially
influencing the dynamics and structure of the clumps as they evolve. To fully address the
theoretical aspects discussed in this study, it is essential to complement the analysis with
relevant observational data. With the advancement of telescopes and the upcoming launch
of the James Webb Space Telescope (JWST), it is anticipated that such information will be
attainable in the foreseeable future.

Of particular interest is exploring the dependence of magnetic field strengths on the three
parameters: Ω, η, and θ. Our investigation focused on determining the maximum magnetic
field strengths within the MM1, MM2, and MM3 clumps. The results are presented in
Figure 7. As depicted in the diagrams of Figure 7, the magnetic field strength exhibits a
decreasing dependence on the parameter θ, while demonstrating an increasing dependence
on both Ω and η. It is worth noting that the variation in magnetic field strength due to the
parameter θ within the range of 0 to 90◦ is less than 5%. On the other hand, the influence
of the other parameters, Ω and η, on magnetic field strength is significant. Therefore, in
theoretical approaches, it is crucial to consider the rotational velocity in IRDCs as well
as the mismatch of opposite charges, as these factors can notably impact the strengths of
magnetic fields within IRDC clumps.
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