
Iranian Journal of Astronomy and Astrophysics
Vol. 9, No. 1, Spring 2022
c©Available online at http://journals.du.ac.ir
DOI:10.22128/ijaa.2022.603.1131

Iranian Journal of
Astronomy and
Astrophysics

Hierarchical Classification of Variable Stars Using

Deep Convolutional Neural Networks

Mahdi Abdollahi∗1 · Nooshin Torabi2 · Sadegh Raeisi3 · Sohrab Rahvar4

1 School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P. O. Box19395-
5531, Tehran, Iran;
∗email: m.abdollahi@ipm.ir

2 Department of Physics, Sharif University of Technology, P. O. Box 11365-9161, Tehran, Iran;
email: nooshin torabi@physics.sharif.edu

3 Department of Physics, Sharif University of Technology, P. O. Box 11365-9161, Tehran, Iran;
email: sraeisi@sharif.edu

4 Department of Physics, Sharif University of Technology, P. O. Box11365-9161, Tehran, Iran;
email: rahvar@sharif.edu

Abstract. The importance of using fast and automatic methods to classify variable
stars for large amounts of data is undeniable. There have been many attempts to
classify variable stars by traditional algorithms like Random Forest. In recent years,
neural networks as classifiers have come to notice because of their lower computational
cost compared to traditional algorithms. This paper uses the Hierarchical Classifica-
tion technique, which contains two main steps of predicting class and then subclass
of stars. All the models in both steps have same network structure and we test both
Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN). Our
pre-processing method uses light curves and period of stars as input data. We con-
sider most of the classes and subclasses of variable stars in OGLE-IV database and
show that using Hierarchical Classification technique and designing appropriate pre-
processing can increase accuracy of predicting smaller classes, ACep and T2Cep. We
obtain an accuracy of 98% for class classification and 93% for subclasses classification.
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1 Introduction

Variable Stars are important objects in astrophysics and cosmology. Most importantly, there
are well-defined relationships between the period and absolute magnitude of Cepheid stars,
which are relatively young, massive and radially pulsating stars. These stars are used as the
standard candles for measuring the cosmological distance and calibrating type Ia supernovas
[1,2].

The Cepheids as the distance indicators also provide essential information on the size
of our galaxy [3]. Type II Cepheids are also useful for studying stellar evolution as each
subclass of this class is in a different stage of stellar evolution [4]. RR Lyrae stars can
be used for studying the early history of galaxies. They are one of the oldest observable
populations of stars and the chemical and dynamical evolution of this type of stars provides
better understanding on the evolution of stars [5].

In order to classify variable stars, astronomers construct a set of features to describe
light curves and extract them using Certain algorithms. Debosscher, J. et al. [6] used the
Lomb-Scargle periodogram to find 28 properties of variable stars like median and mean of
magnitude of light curves. Kim, Dae-Won et al. [7] classified EROS-2 LMC variable stars by
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using Random Forest (RF) algorithm, using multiple features extracted from light curves.
The features included Period, period S/N, Color and magnitude among others which were
extracted using algorithms like Lomb [8] and Scargle [9]. They tested more than 30 features
and selected 22 features to train their classifier based on the feature importance. They also
computed the feature importance and found out that the period of variable stars is the most
important property extracted in classifying by RF.

Nun et al. [10] published the FATS package to extract features from photometry data
automatically. Kim & Bailer-Jones [11] designed the UPSILON package, which extracts the
features and then predicts the class of variable stars. This package works with a RF classifier
which was trained with OGLE and EROS-2 data and its performance has been tested on
MACHO, LINEAR, and ASAS database. All these works use sophisticated pre-processing
algorithms to extract relevant information of the variable stars which leads to high computa-
tional cost. This is not practical for large cosmological datasets such as the Large Synoptic
Survey Telescope (LSST) which will gather approximately 20 TB of data every night [12].
For realistic applications of these models on large astronomical data, it is essential to use
efficient and low-cost pre-processing techniques.

In the light of recent advances in Deep Learning, Neural Networks make a good can-
didate for classification of Variable Stars. Using neural networks can help saving time by
using transformed data instead of extracted features for networks’ input. Transformed data
here refers to data which is reshaped to become appropriate as input, without any complex
calculations like algorithms used for feature extraction.

Aguirre et al. [13] and Becker et al. [14] proposed models for classification of OGLE-III
variable stars using Convolutional Neural Networks (CNN) and Recurrent Neural Networks
(RNN), respectively. They did not use any feature extraction. Instead, they transformed the
light curves into matrix representations with differences in time and magnitude as elements.
In the case of data, Aguirre et al. [13] did not consider some classes like T2Cep and ACep.
Also, Becker et al. [14] accounted T2Cep class as Cep class and ignored Acep variable stars.
These are classes with smaller population and they are usually challenging to classify.

Machine learning models tend to train poorly when the training data is imbalanced i.e,
distribution of stars in classes is biased. For such problems, machine learning models tend
to over-fit to more populated classes and ignore smaller classes. For instance, in the case
of variable stars, ACep makes only 0.83% of samples. It means that if the model ignores
the ACep completely and classifies all the ACep as any other class, this would lead to an
error of less than 1% based on accuracy. In many cases, we are interested in the less
populated classes which correspond to rare events. For instance, as was explained before,
detection/identification of ACep and T2Cep are of particular interest.

In recent years, hierarchical methods have come to notice for classification by machine
learning tools. Sánchez-Sáez et al. [15] used hierarchical classification to classify several
objects in the sky, especially variable stars. They selected 152 features for each star in
classification, mostly defined from previous works like Kim, Dae-Won et al. [7] and Nun et
al. [10]. Rimoldini et al. [16] also used hierarchical classification with 5 steps which uses
different features in each step to distinguish stars.

We use hierarchical technique and train our Neural Networks using OGLE-IV database
[17]. We only use the I-band photometry of the stars, i.e., time series containing the magni-
tude at different observation times and the period of each light curve [31]. For comparison,
we have also trained an RNN based model. We find that the CNN has a lower computational
cost and better performance, especially for less populated classes.

Knowing what subclass a star belongs to, can be of importance. Therefore, the structure
of our model consists of two general steps of predicting class and then subclass of the stars.

They provide information about stellar evolution. For instance, each subclass of Type
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II Cepheids is in a very short state between two steps in stellar evolution, located in the
separated areas in the Hertzsprung-Russel diagram. Because of their small population, some
of these subclasses cannot be classified without using Fourier transform or other period re-
lated information about them [16]. So, in this work, we use the period of stars to obtain
phase-folded light curves as input in addition to using the period itself.

This paper is organized as follows. Section 2 presents the dataset used for training and
testing. In section 3, we propose the method designed for pre-processing. Section 4 presents
the hierarchical classification and the classifier used in this technique. In section 5, we com-
pare our results to some of the papers on this subject, and we also specifically consider
results of less populated classes. Finally, in section 6, we present the conclusion and future
work.

Table 1: This table includes information on each class of the data used in this work. Fre-
quency is the number of is the ratio of the number of stars in each class to the total population
of stars.

Class (Acronym) Num. Of Subclasses Num. of stars Frequency(%)
Eclipsing and Binary Stars (ECL) 2 9945 22.76
RR Lyrae (RRLYR) 2 9519 21.79
Long Period Variables (LPV) 3 9914 22.69
Delta Scuti (DSCT) 1 2678 6.13
Cepheid (Cep) 3 9478 21.69
Type II Cepheid (T2Cep) 3 1783 4.08
Anomalous Cepheid (ACep) 2 366 0.83
Total 16 43683

2 Data

We used the OGLE-IV [17] variable stars database for training and testing1. Data contains
7 classes and 16 subclasses in total (see Table 1 and Table 2 for the information of the classes
and sub-classes used in this paper).

For each star, the data includes observation time in Julian days, magnitude and error bar
of magnitude. The initial data has fluctuations due to the photometric error, the periodical
nature of variable stars and some gaps due to sampling of the light curves. In this database,
the population of different classes are not balanced. Machine learning techniques tend to
favor more populated classes. This means that probability of misclassification increases for
stars of less populated classes. To solve this problem, we implement two solutions. The first
is balancing the data, and the second is using the hierarchical technique presented in section
4. To balance the population of classes, a maximum of 10,000 random stars was chosen
from each class. Also, we removed some subclasses with less than 15 stars, like pWVir and
BLHer1O subclasses from T2Cep. We used a total of 43,683 stars from the OGLE database
to train and test the neural network model. 70% of the data were used for training, 10% for
validation, and 20% for testing the performance.

1Other references related to the OGLE database: [18–30]
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Table 2: This table contains the number of each subclass in the OGLE dataset used for
training, validation, and testing the performance of neural networks. Frequency is the ratio
of the number of stars in each subclass to the total number of variable stars.

Class Subclass Num. of stars Frequency(%)
ECL NC 8209 20.30
ECL C 1736 4.29
RRLYR RRab 7095 17.54
RRLYR RRc 2424 5.99
LPV Mira 188 0.46
LPV OSARG 8455 20.91
LPV SRV 1271 3.14
DSCT SINGLE 2678 6.62
Cep F 5315 13.14
Cep 1 3469 8.58
Cep 12 694 1.72
T2Cep BLHer 747 1.85
T2Cep RVTau 346 0.86
T2Cep Wvir 690 1.71
ACep F 246 0.61
ACep 1 120 0.30
Total 43683

BinningFolded 
light curve

Time series 
with 50 points

Folding to the 
specified period

Photometry Data

times: [t1 t2 … tn]
magnitudes: [m1 m2 … mn]

[M1 M2 … M49 M50 ]50 values of the binned magnitude

The period of star
Input Data
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Figure 1: Schematic of pre-processing steps. In the first step, we take the raw data from the
OGLE-IV dataset. Then, in the second step, we fold raw data by using its specific period
provided by the OGLE catalogue. We try binning the data to make the data with same
length in the third step. Then, we add the period as an important feature to the input
data. For an example, pre-processing steps on OGLE-LMC-CEP-0004 is shown. For details
of pre-processing, see section 3.

3 Pre-processing input data

The raw data from different surveys differ in the sampling rate and even in the number of
observation points due to complications such as the weather and moon’s effects. To make
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the models independent of sampling rate, the pre-processing method produces normalized
and binned light curves.

To start pre-processing, first we use the period of variable stars, which is provided by
the OGLE catalogue to fold the raw data using the “lightkurve” package [32]. This step
leads to obtaining the periodic behavior of the star in the phase space. Then, each phase
folded light curve is divided into 50 equal bins to make the length of data points the same,
and the value of each bin is set to the average of the values of the points in it. During this
process, some bins become empty because there are no data points in them. To address this
problem, we replace the empty values using linear interpolation.

To find the best number of bins, we should consider that increasing the number of bins
leads to increasing empty values, and decreasing the number of bins results in ignoring the
details of the light curve. We test 25, 50, and 75 for the number of bins, and we find that
50 gives the best classification result. We also normalize the light curve by the mean of its
magnitude. This would enhance the performance of the neural network model.

The folded light curve has the disadvantage of losing period information which is a critical
feature for classification of variable stars. To solve this problem, the value of the period is
provided as a separate feature to the model. Figure1 shows the pre-processing pipeline.
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Figure 2: Schematic of Hierarchical Classification. Hierarchical classifiers are shown in the
blue box. Classifier(a) and Classifier(b) are built to predict class of the stars, and the other
classifiers named by their classes are designed to predict subclasses. The red box shows the
targets.
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4 Model

We use a Hierarchical classification model technique, i.e., we use several classifiers to achieve
better accuracy. The first classifier which we refer to as Classifier(a) separates ECL, RRLYR,
LPV, DSCT, and a 5th class containing Cep, ACep, and T2Cep classes. More specifically,
for the first level of classification, we group the three classes that are less populated and
similar together. When the first classifier outputs the 5th class, a second classifier is used
to specify which subgroup, i.e., Cep, ACep or T2Cep, the star belongs to. Up to this point,
the combination of the two classifiers makes a classifier that can identify the class of the
variable stars. Next, for each class that is composed of subclasses, a new classifier is trained
to identify them.

A schematic picture of the structure of our hierarchical classification model is depicted in
Figure 2 (acronyms used for classes are introduced in Table 1). This is in contrast to mod-
els used in [14] where one classifier is directly trained to classify subclasses, and then they
group the subclasses to find the classification result for classes. Having several classes with
different subclasses increases the probability of misclassification. The Hierarchical Classifi-
cation technique helps to reduce these errors when we deal with multi-class classification.
Specifically, this structure limits instances where stars from less populated classes such as
ACep are assigned to more populated classes like RRLYR.

The classifiers used for the hierarchical model are identical in the network structure. The
model is composed of a 1D convolutional layer with eight channels followed by three fully
connected layer. We used the “Keras” library [33] to design our classifiers.

CNN are a type of neural networks that are often used for image processing. CNN
layers exploit properties in the input data such as locality or transnational in-variance for
parameter sharing [34]. This reduces the number of parameters of the neural network which
reduces the training costs and also makes the model less susceptible to over-fitting [34]. The
schematic structure of the network is shown in Figure 3. As shown in the figure, the model
makes 8 convolutional channels from input data. Then, the flattened layer make appropriate
data for the fully connected neural network which have three layers with different nodes.
For details of CNN model, see Table 7.

For comparison, we also try another type of classifier, which is known as RNN [35]. The
RNN models are typically used for classification of sequential data like the photometry data.
This is why one may expect to get better performance from RNN. In this work, we use RNN
models with two layers of simple RNN with 3 and 32 units, respectively. Also, we add two
dense layers to increase the number of trainable parameters to have flexible models. See
Table 8 for more information. However, we find that RNN does not offer any advantages
over the CNN-based models and in fact, CNN model provides a faster classification with the
same accuracy.

Table 3: Comparing accuracy and runtime of each type of neural network used to classify
variable stars.

Model Accuracy Training Time (min)
CNN 0.93 ∼ 24
RNN 0.90 ∼ 324
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Figure 3: Schematic of Convolutional Neural Networks. In a simple neural network, hi is the
number of nodes in each layer. In the final layer, n-class is the number of classes which the
model should classify, e.g., 2 for the ECL classifier. The words in parenthesis are the name
of activation functions, e.g., Relu. Blue rectangular is a filter that makes a convolutional
layer.

Table 4: Classification results of less populated subclasses using CNN and RNN classifier in
hierarchical model.

Class Subclass CNN RNN
Precision-Recall Precision-Recall

Cep F 0.98 - 0.98 0.97 - 0.90
Cep 1 0.87 - 0.98 0.82 - 0.90
Cep 12 0.72 - 0.45 0.67 - 0.28
T2Cep BLHer 0.94 - 0.88 0.90 - 0.83
T2Cep RVTau 0.86 - 0.87 0.84 - 0.81
T2Cep Wvir 0.95 - 0.89 0.75 - 0.95
ACep F 0.92 - 0.98 0.48 - 0.98
ACep 1 0.43 - 0.25 0.29 - 0.67

5 Classification results

We trained and tested our models on Google collaboratory, which is an online programming
environment equipped with 12 GB of RAM and NVIDIA Tesla T4 GPU.

We have tested different models (CNN, RNN). For evaluation, we consider two main
metrics, the accuracy of classification and the time required for training models. Table 3
shows the accuracy and time cost of our models. This shows that the CNN model has better
performance and is faster.

One of the key aspects of our model is its ability to classify classes and subclasses with
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smaller populations. To evaluate the performance for unbalanced datasets like ours, accuracy
is not enough. We also need to measure how well samples from smaller classes are detected.
For this, we use “recall” which for each class, is the fraction of the samples from that class
that have been correctly classified. For instance, the Cep has 1916 samples in the test set
and our model classifies 1863 of them as Cep which means that its recall for Cep is 0.97.

Another metric that should be considered for imbalanced datasets, is “precision” which
is the fraction of samples that are correctly predicted for each class. For instance, our model
predicted 1907 samples from the test set to be Cep, out of which, only 1863 stars are actually
Cep. This means that the precision for the Cep class is 0.97. The performance metrics are
discussed in more details in appendix B.
Table 4 shows the comparison of classification results for CNN and RNN based models for

Table 5: Results of classes classification using CNN models.
Class Precision Recall
ECL 1.00 0.98
RRLYR 0.98 0.99
LPV 0.98 1.00
DSCT 0.99 1.00
Cep 0.98 0.97
T2Cep 0.94 0.90
ACep 0.82 0.74
weighted avg 0.98 0.98

Table 6: Results of subclasses classification using CNN models.
Class Subclass Precision Recall
ECL NC 0.91 0.92
ECL C 0.68 0.57
RRLYR RRab 0.98 1.00
RRLYR RRc 0.96 0.98
LPV MIRA 1.00 0.86
LPV OSARG 0.96 0.97
LPV SRV 0.79 0.84
DSCT SINGLE 0.99 1.00
Cep F 0.98 0.98
Cep 1 0.87 0.93
Cep 12 0.72 0.45
T2Cep BLHer 0.94 0.88
T2Cep RVTau 0.86 0.87
T2Cep Wvir 0.95 0.89
ACep F 0.92 0.98
ACep 1 0.43 0.25
weighted avg 0.93 0.93

less populated classes. For the performance of all classes and subclasses for the CNN model
see Tables 5 and 6.

These two tables show that the models have better results for more populated classes
than smaller ones, based on precision and recall.
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Figure 4: Confusion matrix of classification using CNN models and the pre-processing
method discussed in section 3, only containing classes.

In addition to mentioned metrics, we can evaluate our model by using confusion matrix.
The Confusion matrix of classes and subclasses is shown in Figure 4 and 5 for the CNN
based model discussed in the paper.

The more the matrix is diagonal, the more the classification is accurate. Checking the
confusion matrix allows us to find the misclassifications made by the model. Therefore, the
numbers out of the diagonal show misclassified classes and subclasses.

Considering the confusion matrix, we find that misclassification in some subclasses are
more than others. The main reason for these mistakes is the similarity of the light curves
and the periods of the two subclasses. Subclasses with small population can be hard to
predict, too, due to the data not being enough for training the network.

As an example, 62% of ACep (subclass 1) stars have been predicted as RRab stars. The
reason for this is the similarity between period and light curve of these two types of stars. To
be able to enhance prediction of ACep stars, information of distance and absolute magnitude
is needed [36].

By comparing confusion matrices, we can find misclassifications in the second step of
hierarchical classification. For instance, in Figure 4, 98% of ECLs predict as actual labels;
however, in the subclass confusion matrix (Figure 5), we find misclassifications in both
subclasses of ECL, especially in the second one. This means class classifiers work well to
distinguish ECLs from other classes; however, subclass classifiers in the second step could not
classify subclasses as good as the first step. This happens more in classes and subclasses with
imbalanced data and leads to less accuracy for subclass classification than class classification.
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Figure 5: Confusion matrix of classification using CNN models and the pre-processing
method discussed in section 3. The black squares highlight the seven classes of the top level
(from top to bottom, ECL, RRLYR, LPV, DSCT, Cep, T2Cep and ACep, respectively)

6 Conclusion

We present a hierarchical model for classification of variable stars. The model has two neural
networks for classification of the class of the star. Then each class is passed to a new neural
network to identify the subclasses of the corresponding class. With this architecture, we
manage to classify less populated classes/sub-classes with high performance (See tables 5
and 6).

We use methods mentioned in section 3 to make phase folded light curves suitable for
input data. Although we obtain satisfying results for classes and subclasses classification,
this pre-processing method is very challenging and costly because of the processing needed
for calculating the period. But it has a significant advantage. When using other methods
based on features extracted from light curves, we usually face over-fitting when there are
many features, and we should select important ones to solve this problem. But our models
classify variable stars by the shape of light curves and their essential feature, the period.

This work was done using OGLE-IV dataset. Next step could be including other datasets
like WISE and Gaia.
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[12] Ivezić, Ž., Kahn, S. M., Tyson, J. A., Abel, B., Acosta, E., Allsman, R., Alonso, D.,
et al. 2019, ApJ, 873, 111.

[13] Aguirre, C., Pichara, K., & Becker, I. 2019, MNRAS, 482, 5078.

[14] Becker, I., Pichara, K., Catelan, M., Protopapas, P., Aguirre, C., & Nikzat, F. 2020,
MNRAS, 493, 2981.
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Ulaczyk, K., Poleski, R., et al. 2015, AcA, 65, 233.



42 Mahdi Abdollahi∗ et al.
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[30] Soszyński, I., Udalski, A., Szymański, M. K., Pietrukowicz, P., Skowron, J., Skowron,
D. M., Poleski, R., et al. 2020, AcA, 70, 101.

[31] Graham, M. J., Drake, A. J., Djorgovski, S. G., Mahabal, A. A., Donalek, C., Duan,
V., & Maker, A. 2013, MNRAS, 434, 3423.
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A Model Information CNN and RNN Models

Details of CNN and RNN models are provided in Table 7 and Table 8.

B Performance Metric

The goal is to predict all classes and their corresponding subclasses as perfectly as possible.
Because of the unequal population of the classes, accuracy could be misleading at metering
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the performance especially at the training step. We used precision and recall defined as
follows (see Figure 6 for illustration):

Precision =
True Positive

False Positive+True Positive
, (1)

Recall =
True Positive

False Negative+True Positive
. (2)

The weighted precision and recall are the precision and recall computed for each subclass
separately and average weighted by the population of that subclass in the sample.

Actual

Predicted

True 
Positives

False 
Positives

True 
Negatives

False 
Negatives

Figure 6: Illustration of true/false positives/negatives.


