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Abstract. In this work we solve the set of hydrodynamical equations for accre-
tion disks in the spherical coordinates (r, θ, ϕ) to obtain the explicit structure along θ
direction. We study a two-dimensional advective accretion disc in the presence of ther-
mal conduction. We find self-similar solutions for an axisymmetric, rotating, steady,
viscous-resistive disk. We show that the global structure of an advection-dominated
accretion flow (ADAFs) is sensitive to viscosity, advection, wind and thermal conduc-
tion parameters. We discuss how the radial flows, meridional velocity, rotation velocity,
sound speed and density of accretion flows may vary with the advection, thermal con-
duction and wind parameters. We will find that the radial velocity in nearby the equa-
tor, angular velocity and sound speed decrease by increasing the thermal conduction
parameter and meridional velocity increases by increasing it.
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1 Introduction

Accretion on compact objects are the most energetic process in the universe, powering x-ray
binaries and nuclei of galaxies [1, 2] . It is believed that many astrophysical objects are
powered by mass accretion on to black holes. The standard geometrically thin, optically
thick accretion disk model can successfully explain most of the observational features in
active galactic nuclei (AGN) and X-ray binaries [3]. The thin accretion disk model describes
flows in which the viscous heating of the gas radiates out the system immediately after
generation [3]. However, another kind of accretion has been studied during recent years
where radiative energy losses are small so that most of the energy is advected within the
gas.

These Advection Dominated Accretion Flows(ADAF)occur in two regimes depending
on the mass accretion rate and the optical depth. At very high mass accretion rate, the
optical depth becomes very high and the radiation can be trapped in the gas. This type of
accretion which is known under the name ,slim accretion disk, has been studied in detail by
Abramowicz et al (1988)[4]. But when the acretion rate is very small and the optical depth
is very low, we may have another type of accretion [5, 6, 7].

These types of solutions have been used to interpret the spectra of X-ray binary black
holes in their quiescent or low/hard state as an alternative to the Shapiro, Lightman and
Eardly (1976, SLE)[8] solutions. Since ADAFs have large radial velocities, and also in
falling matter carries thermal energy to the black hole, the energy transported by advection
can stabilize the thermal instability by removing their steep temperature gradients: thus
the ADAF models have been widely used to explain the observations of low luminousity
observed in Sgr A* [9, 10]. However, Numerical simulations of radiation inefficient accretion
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flows revealed that the low-viscosity flows are convectively unstable, and therefore convection
strongly influences the global structure of accretion flows [11]. Thus another type of accretion
flow was proposed, in which the convection plays the dominated role in transporting the
energy- angular momentum and locally released viscose energy within the disk.

The observations of black holes confirm the existence of hot accretion flows that con-
trasted with classical cold and thin accretion discs models [3]. Hot accretion flows can be
seen in super massive black holes of galactic nuclei and during quiescent of accretion on to
stellar-mass black holes in X-ray transients and also on the hard state of XRBs [12, 13, 14].
Chandra’s observations provide constraints on the density and temperature of gas at or near
the Bondi capture radius in Sgr A* and several nearby galactic nuclei [15, 16, 17, 18]. Tanaka
& Menou (2006) [19] have shown through their calculations that the accretion disks in such
systems will operate under weakly collisional conditions. Thermal conduction therefore has
an important role in energy transport along the disks. The aim of this work is to con-
sider the effect of thermal conduction, which has been largely neglected before as an energy
transport mechanism, on the 2D structure of ADAFs. It could affect the global properties
of hot accretion flows substantially. A few authors have considered the role of turbulent
heat transport in ADAF discs [20, 21, 19]. Since thermal conduction acts that oppose the
formation of temperature gradient that causes it, one might expect that the temperature
and density profile for accretion flows in which thermal conduction plays a significant role;
are modified to appear different, compared with those flows form which thermal conduction
is less effective [22].

The Weak-collisions nature of hot accretion flows has been addressed previously [23]
studied the effect of electron thermal conduction on the properties of hot accretion flows un-
der the assumption of spherical symmetry. In another interesting analysis, Tanaka & Menou
(2006)[19], studied the effect of saturated thermal conduction on optically thin ADAFs using
an extension of self-similar solution of Narayan & Yi (1994) [5]. In their solutions, the ther-
mal conduction is provided an extra degree of freedom which affects the global dynamical
behaviors of the accretion flow. Also Narayan &Yi (1995)[24], used self-similar assumptions
in the radial direction and solved the structure along the θ direction in spherical coordinates
(r, θ, φ). Abbassi, Ghanbari & Najjar (2008) [25] have presented a set of self-similar solu-
tions for ADAFs with a toroidal magnetic field in which the saturated thermal conduction
has a great role in the energy transport in the radial direction.

Also now several self-similar solutions of ADAFs with outflow have been presented in
different papers [22, 26, 27, 28, 29, 30]. The equations that describe the hydrodynamical
processes are the Navier-Stokes equations, which are quite difficult to solve, in the case of
accretion disks which involve viscosity and radiation. Therefore in most works, some kind of
simplifications, such as one-zone or polytropic distribution and hydrostatic equilibrium, are
usually applied in the vertical direction, and the vertical variation, z, of the velocity field
is usually neglected. In this way the equations are changed to a set of ordinary differential
equations(ODEs) in the radial direction, which can be solved numerically. However, by tak-
ing these assumptions, one cannot get a clear picture of the vertical structure of accretion
flows; the velocity is always radially inward and no mass will cross the disk surface, display-
ing no outflow structure. Among the exceptions is a work done by Narayan &Yi in 1995
(hereafter NY95)[24], which used self-similar assumptions in the radial direction and solved
the structure along the θ direction in spherical coordinates (r, θ, φ). However in their work
they assumed vθ = 0 and thus cannot get proper velocity field and their solutions compose of
only pure inflow. They argued that the Bernoulli parameter is positive in their solutions so
that a bipolar outflow is expected to develop near the vertical axis. Blandford & Begelman
(1999, hereafter BB99)[31] relaxed the mass conservation assumption and assumed that the
mass inflow rate varies with radius, and obtained solutions with outflow called adiabatic
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inflow-outflow solutions (ADIOs). Their solutions are one-dimensional self-similar solutions
that are height-averaged and they also applied the Bernoulli parameter to argue the pres-
ence of outflow. However, Abramowicz et al. (2000)[32] pointed out that positive Bernoulli
function is not sufficient for outflow (also see the simulation works done by Stone et al.
1999 and Yuan & Bu 2010)[33, 34]. Blandford & Begelman (2004)[35] furthered the work
and presented some self-similar two-dimensional solutions of radiatively inefficient accretion
flows with outflow. They assumed hydrostatic equilibrium in the vertical direction and that
convection dominates the heat transport, which may only be applicable in certain cases. Xu
& Chen (1997, hereafter XC97) [36] relaxed vθ = 0 and obtained two types of solutions with
outflow: accretion and ejection solutions. However their solutions require the net accretion
rate to be 0, which is not realistic. Xue & Wang (2005, hereafter XW05)[37] followed NY95
and solved the disk structure along the θ direction considering . Their solutions display a
field of inflow near the equatorial plane with wind blowing out of the upper boundary.

Now we follow the work done by NY95 and XW05 by using self-similar assumptions
in radial direction. In order to solve the ODEs along θ direction in spherical coordinates
(r, θ, φ) , we would consider the thermal conduction as well. We try to find the flow structure
dependence on some parameters in order to understand the inflow/outflow mechanism more
physically.

2 The Basic Equations

Three conservation equations: mass, momentum, and energy conservation equations. They
can be respectively written as

∇.(ρu) = 0 (1)

ρu.∇u = −∇P − ρ∇φ+∇.T (2)

ρ(u.∇e− P

ρ2
u.∇ρ) = f∇u : T−∇.Fs, (3)

where ρ,u, P, φ,T, e and f are mass density, velocity vector, gas pressure, gravitational
potential, tensor of viscous stress, internal energy of gas, and advective fraction of viscous
dissipation. Also Fs = 5ϕsρc

2
s is the saturated conduction flux [38]. Dimensionless coefficient

ϕs is less than unity. Tanaka & Menou (2006) have shown that for very small ϕs their
solutions coincide with the standard ADAF solutions.

We employ the parameter f = 1 − (Q−
Q+

) to measure the degree to which accretion flow

is advection-dominated. When f ≈ 1 the radiation can be neglected and the accretion flow
is advection-dominated [39]. We assume that the problem is axi-symmetric and in steady
state, (∂/∂φ = ∂/∂t = 0). Now we formulate the basic equations (1)-(3) in spherical polar
coordinates as follows:

1

r2
∂

∂r
(r2ρvr) +

1

r sin θ

∂

∂θ
(sin θρvθ) = 0 (4)

The three components of the momentum equation are as follows :

ρ[Vr
∂Vr

∂r
+

Vθ

r
(
∂Vr

∂θ
− Vθ)−

V 2
ϕ

r
] = −GMρ

r2
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1
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ρ[Vr
∂Vθ
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r sin θ
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∂

∂r
(r sin θT21) +

∂

∂θ
(sin θT22)−

T33 cot θ − 2T21

r
] (6)

ρ[Vr
∂Vϕ

∂r
+

Vθ

r
(
∂Vϕ

∂θ
) +

Vϕ

r
(Vr + Vθ cot θ)] =

2

r
(
∂

∂r
(rT31) +
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∂θ
)+

4

r
(T31 + T32 cot θ) (7)

where Tij is the component of stress tensor T. (see the detailed form of viscous stress tensor
in Appendix A). The energy conservation is
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)− p
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∂Vϕ
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T31+

1

r
(
∂Vr
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− Vθ)T12 +

1

r
(
∂Vθ

∂θ
+ Vr)T22 +

1

r

∂Vϕ

∂θ
T32 −

Vϕ

r
(T13 + T23 cot θ)+

T33

r
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1

r2
∂

∂r
(5ϕsr2p

3/2ρ−1/2)− 1

r sin θ

∂

∂θ
(5ϕs sin θp

3/2ρ−1/2), (8)

The solutions of these equations ,(4)-(8), are strongly dependent on viscosity, the degree of
advection, wind and the role of thermal conduction for the discs. For the set of equations,
we use the following standard assumptions: The kinematics viscosity coefficient,υ = µ/ρ, is
generally parameterized using the α-prescription [3].

υ = αcsH, (9)

where H = cs/Ωk is known as the vertical scale height, cs =
√
P/ρ is the isothermal sound

speed and the dimensionless coefficient α is assumed to be independent of r. To determine
the thermodynamical properties of the flow in the energy equation, we require a constitutive
relation as a function of two state variables. Therefore we choose an equation for the internal

energy of e =
c2s

γ−1 where γ is the ratio of specific heats and cs is isothermal sound speed.

3 Self-Similar Solutions

We adopt the self-similar assumptions in the radial direction; therefore we seek solutions of
the forms

ρ = ρ(θ)r−n (10)

Vr = Vr(θ)Vk (11)

Vθ = Vθ(θ)Vk (12)

Vϕ = Vϕ(θ)Vk (13)

cs = cs(θ)Vk (14)

where

Vk =

√
GM

r
(15)

This set of self-similar solutions, instead of equation(13), are similar to that of NY95 and
Tanaka & Menou (2006) [19]. Equation (13) is similar to that of XW05 [37] and Jiao &
Yuan (2012)[30]. The results are unaffected by this difference. In NY95, Narayan and Yi set
n=3/2, which implies Vθ = 0, according to the continuity equation, thus they intrinsically set
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no outflow for the accretion disk. Here we relax this parameter ,n, following BB99 and XW05,
to allow outflows from the disk. If we substitute equations (10)-(14) into equations (4)-(8),
the r components can be eliminated, leaving only the dimensionless functions ρ(θ), Vr(θ),
Vθ(θ),Vϕ(θ), cs(θ), the variable θ and some constants which are set as input parameters
(α, n, f and ϕs). The equations are as follows:

2Vθ
dρ

dθ
+ ρ{(3− 2n)Vr + 2(cos θVθ +

dVθ

dθ
)} = 0 (16)

3α
d(ρc2s
dθ

(3Vθ − 2
dVr

dθ
)− ρ{3(V 2

r + 2V 2
θ + 2V 2

ϕ − 2Vθ
dVr

dθ
− 2)

+c2s[α(4n− 17)(cot θ +
dVθ

dθ
) + 6α(cot θ +

d2Vr

dθ2
) + 12α(n− 2)Vr + (6 + 6n)]} = 0, (17)

d

dθ
[2ρc2s(3− 3αVr + 2α cot θVθ − 4α

dVθ

dθ
)] + ρ[3Vθ(Vr + 2

dVθ

dθ
)− 6 cot θV 2

ϕ ]

+αρc2s[6(n− 2)
dVr

dθ
+ (6− 9n)Vθ − 12

d

dθ
(cot θVθ)] = 0, (18)

d

dθ
[2αρc2s(cot θVϕ − dVϕ

dθ
)] + ρ[Vϕ(Vr + 2 cot θVθ) + 2Vθ

dVϕ

dθ
] + αρ

c2s[(6− 3n+ 4 cot2 θ)Vϕ − 4 cot θ
dVϕ

dθ
] = 0, (19)
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(γ − 1)c2s

dcs
dθ

− nVr + Vθ
dρ

dθ
+ 3fαV 2
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dVθ

dθ
+ 2fαVrVθcotθ

−3αVθ
dVr
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+

9

4
fαV 2

θ +
4

3
fαV 2

θ cot2 θ +
9

4
fαV 2
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ϕ cot2 θ + fα(

dVr

dθ
)2+

4

3
f(

dVθ

dθ
)2 − 4

3
fαVθ

dVθ

dθ
cot θ + fα(

dVϕ

dθ
)2 − 2fα cot θVϕ

dVϕ
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+ 5(n− 1

2
)ϕscs−

5ϕs cot θ −
5ϕs

ρ

dρ
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= 0 (20)

This set of ODEs can be numerically solved with proper boundary conditions. We assume
the structure of the disk is symmetrical to the equatorial plane, and thus we have

θ = 900 : Vθ =
dρ

dθ
=

dcs
dθ

=
dVr

dθ
=

dVϕ

dθ
= 0 (21)

in which only four conditions are independent. For the last boundary condition we set
ρ(900) = 1, which can be normalized by a scale factor if the effective accretion rate at a
certain radius is set [24, 37], etc. We obtained numerical solutions of equations (16)-(20)
with different sets of input parameters (α, f, n, ϕs, γ). Some typical solutions are shown in
Figures (1)-(5). The calculations start from the equatorial plane (θ = 900) towards the
vertical axis (θ = 00). Since we can’t describe the flow near the vertical axis with a simple
self-similar solution in the radial direction, we can describe the upper boundary (minimum
θ) that we reach in our calculations as θb. Then the effective accretion rate Ṁeff across
sphere at radius r within the 900 ≥ θ ≥ θb is.

˙Meff = 2

∫ 900

θb

ρVr.2πr sin θr.(π/180
0)dθ = 4π

√
GMr

3
2−n

21
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∫ 900

θb

ρ(θ)Vr(θ) sin θ.(π/180
0)dθ, (22)

which is a function of r unless n = 3/2. In equation (22) negative values of Ṁeff represent
inflow while positive values represent outflow. If we describe the accretion rate in the region
between the vertical axis and the inclination angle θb as Ṁaxis, then according to the steady
nature of the flow, we have

Ṁeff + Ṁaxis = Ṁ (23)

in which Ṁ represents the total accretion rate across any sphere at a reasonable radius
centered by the central accretor and should be constant for a steady accretion flow. If
the solution doesn’t end at an upper boundary, and instead can describe the entire flow
structure in the whole space, then θb = 0 and Ṁeff = Ṁ , which should be a constant.
According to equation (22), this can only happen in the following two cases: (1) n = 3/2
which enforces Ṁeff not to change with radius r,(2) when n ̸= 3/2 ,the integration term in

equation (22) must be 0, in which case Ṁeff = 0. The first case was discussed in NY95.
Because n = 3/2, r2ρVr is independent of r, and the continuity equation (1) shows that
Vθ = 0, resulting in a solution in which the flow is always radial (wind rotation). The
second case was discussed in XC97, and the fact that Ṁ = 0 requires that the outflow rate
exactly equals the inflow rate at any radius. However this is unrealistic for an accretion
flow, which is also discussed in XW05. The reason is that, when material is accreted in
the form of an accretion flow, gravitational energy is released and part of it, is changed
to internal energy via viscous friction. The restriction that outflow rate equals inflow rate
requires that the internal energy released from gravitational energy should be fully returned
to gravitational energy, which violates the second law of thermodynamics.

4 Numerical Results

There are six parameters, n,α, θ0, r, ϕs and f in our model. The exponent of density profile,
n, is an index of inflow/outflow (when n increases, the inflow increases and the outflow
decreases), but there is always more inflow material than outflow material, and it has 1/2 ≤
n ≤ 3/2. The parameter α is an index of viscosity, and 0 < α < 1. In this paper we present
three types of solutions with different inflow/outflow indices n = (1.25, 1, 0.75).

Figure 1 shows the variations of various dynamical quantities in terms of polar angle θ
for fixed values of viscosity, thermal conduction and wind parameters with a sequence of
decreasing advection parameter f . We can see by decreasing advection parameter f , Vϕ

and cs increase. Also Vr in about the equatorial plane decreases with increasing advection
parameter. While Vθ decreases by decreasing f .

Figure 2 displays the behaviour of Vr(θ), Vθ(θ),Vϕ(θ) and cs for different values of the
viscosity parameter. We find that the value of the viscous parameter,α, quantitatively
affects the dynamical variable of the accretion flow. By increasing viscous parameter α,
the quantities Vθ(θ), cs and also Vr in nearby the equatorial plane increase, while Vϕ(θ)
decreases by increasing α. In this case, increasing the viscosity parameter corresponds to
increase heating mechanism, so in fixed advection regime, there is more energy to advect
into the central star.

Figure 3 shows by decreasing, n, the velocity quantities Vθ(θ),Vϕ(θ) and sound speed cs
decrease. While Vr in the rang (450−650) increases by decreasing n. But it decreases among
650 and 900 by decreasing n. We can see that ADAFs with winds rotate more quickly than
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Figure 1: Numerical results for n = 1.25, α = 0.3, ϕs = 0.0001 and γ = 1.4 .

those without winds. Also, the viscous dissipation is expected to be larger in the presence
of winds and outflows.

The panels in Figure 4 show how Vr(θ),Vθ(θ) and Vϕ(θ) change with θ and ϕs. We
consider the disk to be radiation dominated with n = 1.25, α = 0.3, f = 1 and γ = 1.4,
which is the widely used values. We can see radial velocity in around the equator, angular
velocity and sound speed decrease by increasing the thermal conduction parameter and
meridional velocity increases by increasing ϕs.

Actually, outflows play as a cooling agent and thermal conduction provides extra heating
and there is a competition between these physical factors. While the effects of winds and
thermal conduction on Vr(θ), Vϕ(θ) and the sound speed is similar, their effect on Vθ(θ)
oppose each other.

In Figure 5 we can see by increasing γ, radial velocity in nearby the equator decreases
and meridional velocity, rotation velocity and sound speed increase by increasing γ. We can
see that the gas adiabatic index contributes with thermal conduction to reduce advection
transport of energy.

5 Conclusions

We follow the work done by NY95 and XW05 by using self similar assumptions in radial
direction. In order to solve the ODEs along θ direction in spherical coordinates (r, θ, ϕ) , we
considered the thermal conduction as well. Our conclusions are listed as follows:

(1) In ADAFs with wind when decrease, n, increases outflow and radial velocity in nearby
the equator, sound speed, meridional velocity, rotation velocity and density decrease. We
can see that ADAFs with winds rotate more quickly than those without winds. Also, the
viscous dissipation is expected to be larger in the presence of winds and outflows.

(2) The radial velocity in the range 650 − 900 , angular velocity and sound speed de-
crease by increasing the thermal conduction parameter and meridional velocity increases by
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Figure 2: Numerical results for n = 1.25, ϕs = 0.0001, f = 1 and γ = 1.4 .
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Figure 4: Numerical results for n = 1.25, α = 0.3, f = 1 and γ = 1.4 .
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increasing ϕs. Actually, outflow plays as a cooling agent and thermal conduction provides
extra heating and there is a competition between these physical factors.

(3) By decreasing advection parameter, Vr in about the equator, Vϕ and cs increase.
While Vθ decreases by decreasing f .

(4) We can see by increasing viscous parameter, Vr in nearby the equator, Vθ and
cs increase while Vϕ decreases by increasing α. In this case, by increasing the viscosity
parameter,α, corresponding to increase heating mechanism, so in fixed advection regime,
there is more energy to advect into the central star.

(5) By increasing γ , radial velocity in around the equatorial plane decreases while sound
speed, meridional velocity and rotation velocity increase by increasing γ. We can see that
the gas adiabatic index contributes with thermal conduction to reduce advection transport
of energy.

APPENDIX A
The components of viscous stress tensor are

T11 = µ[
∂Vr
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− 1

3
[
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T21 = µ[
1

2
[
1

r

∂Vr

∂θ
+ r

∂

∂r
(
Vθ

r
)]]

T22 = [µ
1

r

∂Vθ

∂θ
+

Vr

r
− 1

3
[
1

r2
∂

∂r
(r2Vr) +

1

r sin θ

∂

∂θ
(sin θ)]]

T23 = µ[
sin θ

2r

∂

∂θ
(

Vϕ

sin θVθ
)]

T31 = µ[
r

2

∂

∂r
(
Vϕ

r
)]

T32 = µ[
sin θ

2r

∂

∂θ
F (

Vϕ

sin θ
)

T33 = µ[
V

r
+

Vθ

r
cot θ − 1

3
[
1

r2
∂

∂r
(r2Vr) +

1

r sin θ

∂

∂θ
(sin θVθ)]]
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