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Abstract. Astronomy is experiencing rapid growth in the size and complexity of
data.This reinforces the development of data-driven science as a useful complement to
the current model of model-based data analysis. In spite of this, traditional merger
analysis of catalogs is mostly done through visual inspection by trained experts. These
methods are not efficient today because, the subjectivity of manual classification has
made the result of the process very dependent on the intuition of the analyst and the
type and quality of the image. Hence, this study focuses on data processing methods
based on Artificial Intelligence (AI) algorithms and investigates the possibility of a
pattern among astronomical data to predict the merger of galaxies. The modeling is
done in two phases. The first phase deals with the classification between minority
and majority classes and the second phase search for any distinction between minority
classes. In both phases, various algorithms such as Naive Bayes, Random Forest, and
Generalized linear model (GLM) and Neural network are used to ensure the best results
according to the research data. The best results for both phases were obtained from
the implementation of the GLM algorithm with the accuracy of 70.28% and 76.51% for
the first and second phase, respectively.

Keywords: Galaxy Morphology, Galaxy Merge, Near-Infrared Spectroscopy, Galaxy
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1 Introduction

The size and complexity of data in astronomy is growing rapidly. This promotes the develop-
ment of data-driven science as a useful complement to the current model of model-based data
analysis, where astronomers develop automated tools to manipulate data sets and extract
new information from them [1,2]. Extracting knowledge from data collected by advanced
tools requires the high processing power that is possible today with the help of high-tech
processors and complex machine learning algorithms. The archiving of astronomical data
has increased dramatically over the past decades [1,2]. Due to the advances in telescopes
technologies, increased computing power, improved data collection methods, and successful
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theoretical simulations, large volumes of data (terabytes) are available now and will soon
appear in petabytes[1,3]. Implementation of all these data manually or even by using regu-
lar available electronics is impractical for astronomers [3,4]. However, astronomy has been
one of the pioneers which brings forward the notion of Big Data. These huge data sets
need proper management and processing. By processing such data sets, rare and unknown
phenomena can be discovered and objects are categorized in terms of their structure, shape,
and any other specific observable attribute. Furthermore, some events, such as the merger
of galaxies are predicted and help to accept or reject theories [3–5].

In many astronomical catalogs, containing galaxies, morphological characteristics were
compiled during twentieth-century [6–8]. In most of these catalogs, traditional integration
analysis is mostly done through visual inspection by trained experts. These methods are
not efficient today because they requires a lot of skills and experience in the field [3]. On the
other hand, due to the subjectivity of the manual classification, the outcome of the process
depends highly on the analyst intuition and the type and quality of image.

For the correct classification of an object, the image quality and other systematic fac-
tors of various astronomical studies must also be considered. The use of data mining and
the application of advanced image processing techniques and powerful learning algorithms
make automatic classification of stars and galaxies faster and is a better alternative to the
manual methods [9]. Applications of data mining in astronomy includes the classification of
stars, galaxies, and planetary nebulae, with both methods of image and spectral processing,
separating stars from galaxies, and identifying the structure of galaxies (morphologically)
[3]. Such studies have focused mainly on the degree of merge, and relatively little effort has
been made to examine their morphologies and internal properties. But, to accurately under-
stand the process that takes place during the merging of galaxies, measuring the interaction
rate alone is not enough because the processes that determine the morphological results of
mergers are not fully understood yet.

Given the increasing and rapid growth of astronomical data, this question arises: how can
machine learning be used to propose a model for predicting the galaxies merger? To answer
this question, this study aims to provide a model for predicting the merger and morphology
of galaxies using their spectroscopic characteristic in the near-infrared region by proper
implementation of machine learning algorithms. By increasing the sample size or changing
the variables used in previous studies, as well as using and testing the performance of several
different algorithms, an attempt was made to increase the accuracy of the prediction. The
results of the research can help to discover those rare and unknown objects or phenomena
and to predict some events such as the galaxies merger and to accept or reject theories in
this field.

The rest of the study is organized as follows: After reviewing the research literature
in this field, the research method is proposed. Then, the data analysis and its results are
presented. Finally, conclusions and suggestions for future research are provided.

2 Literature Review

Galaxies are celestial bodies made up of gas, dust, and billions of stars that form over
billions of years, and their morphology provides astronomers with a wealth of information
about their composition and evolution [10–12]. The classification of galaxies can be impor-
tant because physicists often use large catalogs of information to test existing theories or to
propose hypotheses to explain the physical processes that make up galaxies, stars, and the
nature of the universe [12]. Through the merger, galaxies alter their own content of stars,
gas, and dark matter [13]. Mergers can also affect the formation of black holes and stimulate
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the activity of AGNs (active galactic nuclei) [13,14]. Morphology can be considered as a
powerful indicator of the history of galaxies and mergers where it is strongly related to many
physical parameters, including mass, star formation history, and mass distribution [15–17].
Galactic morphology can be used to study how galaxies evolve and to identify the predom-
inant mechanism of their formation [18]. As telescopes, detectors, and computers become
more powerful, the amount of data available to astronomers is entering the petabyte realm,
providing accurate measurements for billions of celestial bodies [19,20]. These automated
tools, increased computing capabilities, improved data collection methods, and provided
successful theoretical simulation applications. Large volumes of data [1–3] have made the
use of more advanced analytical methods, including data mining, inevitable.Data mining
includes procedures for finding designs or patterns in a large dataset, and includes strategies
for converging machine learning techniques and the database framework [21].

Being aware of the importance of the morphology of galaxies, many researchers have
tried to predict the structure of galaxies using data mining techniques [16]. For example,
[22] used SDSS DR9 labeling and machine learning algorithms such as simple Bayesian,
logistic regression, SVM vector machine, random forest, and nearest neighbor to find the
best machine learning methods to detect unknown morphological types of galaxies. The
results of their research showed that support vector machines (SVM) and random forest
methods provide the highest accuracy for morphological classification of binary galaxies. In
another study, [16] used clustering to morphologically classify galaxies and demonstrated
that unsupervised machine learning algorithms were powerful in performing accurate mor-
phological analyses. The study [23] used the CNN-based regression model to predict the
stage of galaxy integration using images. They showed that their proposed model provides a
reasonable estimate based on actual observations, which is almost consistent with previous
estimates provided by detailed dynamical modeling. In another study, [24] used machine
learning to classify galaxies using images taken from an SDSS source. The results of their
study indicated that morphologies based on over-trained traits such as colors, shapes and
concentrations with machine monitoring, showed less bias than morphologies based on hu-
man recognition. This result is maintained even when there is a fundamental bias in the
training sets used in the machine learning process with the observer. The study [25] used
simple Bayesian algorithms, random forest, and SVM to classify the morphology of galaxies,
which ultimately yielded the best results from random forest. The study [26] also sought to
classify galaxies as spiral, elliptical, disk, or other using random forest, decision tree, KNN,
and SVM algorithms. The results of their study indicated that the random forest algorithm
was more accurate. In another study, [27] used machine learning to classify the morphology
of galaxies from visual data of galaxies classified by citizen-scientists and indicated that
machine learning performance could be dependent on data quality and can be improved by
using examples that have high agreement among citizen scientists. Some of the research on
the morphology of galaxies using data mining are presented in Table 1.

According to the studies, the researches have been more focused on the degree of inte-
gration, and relatively little effort has been made to study their morphologies and internal
characteristics. To accurately understand the process that takes place during the merging
of galaxies, measuring the interaction rate alone is not enough because the processes that
determine the morphological results of mergers are not yet fully understood. Therefore, due
to the increasing ability to collect large volumes of galactic data, the importance of studying
this type of data, the problems and shortcomings of traditional methods, and ultimately the
need for automated analysis of galactic data, new methods of processing and studying this
type of data should be provided with the help of data mining. Hence, this study aims to
use various algorithms to improve the accuracy of morphological prediction and merger of
galaxies as well as providing a model using near-infrared spectroscopic data with the help
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Table 1: Some Studies on the Morphology of Galaxies.
Resource Objective Method Data Resource
[25] To find the best ma-

chine learning meth-
ods for detecting un-
known morphological
types of galaxies from
SDSS DR9

Labeling and machine
learning algorithms
such as Naive Bayes,
logistic regression,
SVM vector machine,
random forest and
nearest neighbor

A sample of galaxies
from the SDSS DR9
catalog with redshifts
of 0.02 < Z < 0.1 and
absolute stellar magni-
tudes of −24m < Mr <
−19.4m

[19] Morphological classifi-
cation of galaxies

Clustering Images of celestial bod-
ies containing objects,
including galaxies

[26] To predict the integra-
tion step using the im-
age

CNN-based regression
model

Mergers’ simulated
data

[27] Classification of galax-
ies

Machine learning Images of galaxies from
SDSS source

[28] Morphological classifi-
cation of galaxies

Naive Bayes, Random
Farest and SVM

I-g band color indices
Inverse concentration
indices from SDSS
source

[14] To classify galaxies
as spiral, elliptical,
round, disk

Random forest, deci-
sion tree, KNN and
SVM

Pre-categorized data
and Galaxy Zoo
images

[29] Morphological classifi-
cation of galaxies from
the field visual data
of galaxies classified by
citizen-scientists.

Machine learning Images of galaxies from
SDSS source

of machine learning. Examining various algorithms makes it possible to achieve the highest
possible accuracy in prediction by using the appropriate algorithm.

3 Methodology

This study aims to provide a model for predicting the merger and morphology of galaxies
through near-infrared spectroscopic data using machine learning. The study was done on
real data from the Galaxy Zoo website, which is specifically a collection of galaxy merg-
ers and covers a range of spectral and morphological features of galaxies. This sample of
galaxies aggregated from 2010 SDSS Galaxy Zoo data, that is a sample of galaxies which
their merging was detected by spectroscopy of at least one of the two galaxies. Galaxy Zoo-
data includes the morphologies of the merged galaxies as well as the relative phase of the
merger. It is understandable that compiling such a collection would require years of effort
and collaboration by large teams of astronomers, and it would not be possible to collect and
study such dataset of several thousand galaxies in a short period of time. As a result, no
new datasets have been released since 2010 to examine the merger of galaxies on the Galaxy
Zoo website and other astronomical databases. Therefore, the studied dataset is the most
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complete dataset containing the spectroscopic characteristics of merging galaxies.

This dataset contains 3003 records or rows, and each row represents information about a
galaxy. It also contains 56 properties that represent the spectroscopic feature of each of the
merging galaxies. A description of each feature is summarized in Table 2. After examining
and recognizing each of the features, the features that had an ID nature and had no effect
on the process and accuracy of the model prediction including 12 features including: of
OBJECT (1, 2), PLATE (1, 2), FIBERID (1, 2), MJD (1, 2), RA (1, 2), DEC (2, 1) were
removed and only one feature was retained as an ID to identify and differentiate between
galaxies.

Based on related studies the variables that indicate the size of the measurement error,
including all variables with the extension (ERR) were removed and not used in modeling
[28]. Two variables SPECZ2 and COMMENT, which included 2322 and 2856 missing data
out of 3003 total data, respectively, were also removed due to the high number of missing
values and their outdated data and irreplaceable nature. Properties such as SPECZ2, which
include items such as -9999999 or NaN, appear to have correct values, but in reality these
numbers represent outdated data and in some cases represent missing data [29]. These values
are not incorrect in size but are clearly meaningless. After removing the above properties,
26 features remained in the data set.

Then, the Synthetic Minority Over-sampling Technique (SMOTE) was used to balance
the dataset [30].The pre-processing and up-sampling time of minority data takes about 50
minutes. In the next phase, the modeling was performed to differentiate the two minority
classes so that all three classes could be predicted. Then, four algorithms of Generalized
Linea rModel (GLM), Neural Network, Naive Bayes and Random Forest were used to analyze
the accuracy of predictive model.

Data analysis was performed using the Python programming language. The specifica-
tions of the hardware used for analysis were: Intel(R) Core(TM) i5-8250U CPU@1.60GHz
1.80 GHz, and 8.00 GB RAM.

Table 2: Features of Galaxies.
Feature Description Feature Features Abbreviation
OBJECT1
OBJECT2

SDSS DR7 objID for the first
galaxy; SDSS DR7 objID for the
second galaxy

The ID of the first galaxy in a pair
of galaxies; The ID of the second
galaxy in a pair of galaxies

STAGE visually-classified stage of the
merger (1 = ”separated”, 2 =”in-
teracting”, 3 = ”approaching post-
merger”)

This variable is the label variable.
The phase of merging and inter-
action of two galaxies includes: 1
= two separate galaxies, 2 = two
galaxies are affected by each other
(either merging or due to the grav-
itational pull of each other) and 3
= close to the evolutionary stage of
merger
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Feature Description Feature Features Abbreviation
U-APP-1
G-APP-1
R-APP-1
I-APP-1
Z-APP-1
U-APP-2
G-APP-2
R-APP-2
I-APP-2
Z-APP-2

apparent U-G-R-I-Z band magni-
tude of the first and second galaxy
in the pair

The apparent magnitude of a pair
of galaxies is close to infrared. The
word appearance means that these
numbers do not represent the ac-
tual brightness of the galaxy, but
the visible light of each galaxy from
Earths surface. These numbers
are not independent of the dis-
tance and the brightness of any ob-
ject depends on its distance from
the earths surface. For example,
there are millions of brighter stars
around us than the Sun, but what
causes the Sun to glow is less dis-
tant from Earth than other stars
[31].

U-APP-ERR-1
G-APP-ERR-1
R-APP-ERR-1
I-APP-ERR-1
Z-APP-ERR-1
U-APP-ERR-2
G-APP-ERR-2
R-APP-ERR-2
I-APP-ERR-2
Z-APP-ERR-2

Measured uncertainty in apparent
U-G-R-I-Z BAND magnitude of
the first AND SECOND galaxy in
the pair

Uncertainty of measured apparent
limited data

U-ABS-1
G-ABS-1
R-ABS-1
I-ABS-1
Z-ABS-1
U-ABS-2
G-ABS-2
R-ABS-2
I-ABS-2
Z-ABS-2

Absolute U-G-R-I-Z BAND mag-
nitude o THE FIRST AND SEC-
OND GALAXY IN THE PAIR in
the pair, based on spectroscopic
red-shift

The true magnitude of the pair
of galaxies at close infrared wave-
lengths. Here the effect of dis-
tance (the case raised in apparent
magnitude) is eliminated and the
true luminosity of the mass is mea-
sured. This means that if an ob-
ject is known to be bright in this
data, it is really bright, and its
brightness is not due to its short
distance from the Earth. These
data primarily represent the tem-
perature of objects, because the
colder the mass, the brighter the
spectrum. Also, the spectrum ac-
curately indicates how much inten-
sity is received from the galaxy
at each wavelength. Finally, the
chemical ompositions represent the
various elements of the galaxy [28].
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Feature Description Feature Features Abbreviation
PLATE1
PLATE2

MJD1
MJD2

FIBERID1
FIBERID1

SDSS plate number for the obser-
vation of the first AND SECOND
GALAXY; SDSS Modified Julian
Date for the observation of the first
galaxy in the pair; SDSS fiber ID
for the spectroscopic observation of
the second galaxy in the pair

The number of spectrum extrac-
tion tools for each galaxy (they
have an ID nature) and the obser-
vation date of each galaxy.

SPECZ1
SPECZ2

Spectroscopic redshift for the first
AND SECOND galaxy in the pair

Spectral red transfer rate

PHOTOZ1
PHOTOZ2

Photometric redshift for the first
AND SECOND galaxy in the pair

The amount of redshift for galax-
ies that are so dim that it is not
possible to measure the amount of
redshift by spectroscopy. Conse-
quently, where the spectrum could
be measured, it was used, and
otherwise, photometry was used.
Spectroscopy and photometry are
two different methods that mea-
sure the amount of red light trans-
mission, differing only in technol-
ogy and are the same in nature.
Photometry is less accurate than
spectroscopy but can be measured
for all objects.

RA1
RA2
RA1
RA2

Right ascension (J2000, decimal
degrees) for the first AND SEC-
OND galaxy in the pair; Declina-
tion (J2000, decimal degrees) for
the first AND SECOND galaxy in
the pair

Dimension and desire to locate and
coordinate each galaxy in the sky.

KMASS1
KMASS2

stellar mass (log M/M sun) of the
first AND SECOND galaxy in the
pair

The logarithm of the mass of a
galaxy relative to the mass of the
sun (the mass of a galaxy is many
times the mass of the sun). This
variable is used to measure the
mass and population of stars in a
galaxy.

KMASS ERR1
KMASS ERR2

uncertainty in stellar mass (log
M/M sun) of the FIRST AND
SECOND galaxy in the pair

Uncertainty of galaxy mass loga-
rithm measurement

4 Data Analysis And Results

4.1 Modeling And Model Evaluation

At this phase, first minority and the majority classes were identified. The STAGE feature
had three classes with unbalanced distribution that represented the phase of merging and
interaction of two galaxies, including: 1 = two galaxies are apart, 2 = two galaxies are under
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the influence of each other (either merging or due to gravitational pull of each other) and 3
= they are close to the evolutionary stage of merging. Class 1 had 167 sample data, Class
2 had 2526 sample data and Class 3 had 310 samples from the total sample of this dataset.
Since most classification algorithms focus on the more frequent sample and either ignore or
incorrectly classify the minority sample in the unbalanced dataset, resolving the imbalance
problem is one of the most important steps in processing this type of data [33]. To solve
the problem of unbalanced data, modeling was performed in two separate phases. First, by
merging the two minority classes, the first three data classes were reduced to two classes to
increase the ability to detect and process the algorithm between the minority classes (labels
1 and 3) and the majority class (label 2) and the algorithm error (due to Unbalanced data)
to be reduced to a minimum. The SMOTE method was used to balance the data set. This
method uses the original data to generate and simulate new data and at each stage is able
to generate a new sample for only one of the minority classes. This method was applied in
parallel to each class, and then the new data generated by this method were integrated into
a table.

After implementing different classification models on the balanced data using SMOTE,
acceptable accuracy was not obtained in the results. The average accuracy was equal to
45.19%. According to [33] to increase the accuracy of modeling, it is better to use both
sampling methods (over sampling and sampling) simultaneously. For this purpose, in the
next step, using the module (SAMPLE), the class (2) sample was reduced and so-called
sampling was performed. It should be noted that during sampling, all minor data in each
class were sampled from minority classes. Classification models appropriate to this dataset
were also applied to the obtained data. After performing the classification models, the
average accuracy was equal to 48.20%.

The next step includes the increasing the accuracy of the model, changing the classifi-
cation and data class. By merging and assigning the label (yes) to two classes 1 and 3 and
the label (no) to the majority class (2), two new labels were created. By merging the two
minority classes, the frequency of the Yes class reached 477 in total, and the No class (label
2) with 2526 samples remains the majority class. The problem of imbalance between classes
remains strong at this phase. Then, in order to bring the frequencies of the two classes
closer to each other, oversampling and undersampling methods were performed on the new
dataset. The sampling was repeated several times with different numbers and tested with
modeling to find the optimal value after reducing the frequency of class No. Finally, the
number of obtained samples in the final classification with the best accuracy in modeling
was 1650 samples from the majority class and 1477 samples from the minority class.

Then, four algorithms of GLM, Neural network, Naive Bayes and Random Forest were
used to investigate the accuracy of predictive models.Algorithms used in this study were
not meta-heuristic except for neural network, therefore they did not have the problem of
convergence and local minimum, but hyperparameters were set for neural network in the
software and were estimated based on model evaluation criteria.

The maximum cost of the algorithms in terms of run time was for Neural Network with
about 80 minutes, followed by Random Forest (50 minutes), GLM (40 minutes), and Naive
Baise (about 30 minutes). The results of the implementation of these four algorithms are
given in Table 3.

As Table 3 indicates, the accuracy of the random forest is higher than all other models,
but this accuracy is due to the overfitting of the model on Class 2 data. Thus, the best
result is obtained from the GLM algorithm, which predicts both classes to an acceptable
level.

After distinguishing between minority and majority classes another model is required for
the minority class data that is able to distinguish between class 1 and 3. For this purpose,
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Table 3: Accuracy of Running Four Machine Learning Algorithms on All Classes.
Algorithm Precision (N) Precision (P) Recall (N) Recall (P) Accuracy
Nave Baise 81.01% 22.86% 11.64% 90.57% 29.34%
Random Forest 77.77% 26.60% 95.82% 5.24% 75.51%
GLM 86.31% 39.45% 73.03% 60.79% 70.28%
Neural Network 81.22% 30.04% 70.79% 43.40% 64.65%

four used machine learning algorithms were run again on the data of class 1 and 3 (Table
4).

Table 4: Accuracy of Running Four Machine Learning Algorithms on class 1 and 3.
Algorithm Precision (1) Precision (13) Recall (1) Recall (3) Accuracy
Nave Baise 54.08% 78.29% 63.47% 70.97% 68.36%
Random Forest 77.77% 26.60% 67.39% 72.73% 71.66%
GLM 67.74% 80.75% 62.87% 83.87% 76.51%
Neural Network 66.67% 80.37% 62.28% 83.23% 75.91%

According to Table 4, the GLM algorithm has the best results compared to other algo-
rithms with a very small difference from the Neural Network algorithm.

5 Conclusions

Data plays a vital role in astronomy, and its size and complexity are rapidly increasing. Given
this rapid growth, astronomers are developing automated tools to identify, describe, and
classify objects using rich and complex datasets collected with a variety of features. Since the
processing of data in this field is very difficult and heavy and is beyond the power of human
alone, machine learning algorithms have become increasingly popular among astronomers
and are widely used for a variety of tasks. Despite the widespread use of machine learning
in accurately understanding the process that takes place during the integration of galaxies,
few studies have addressed this issue. To fill this gap, this study seeks to find and provide a
solution for processing astronomical data, with the aim of predicting the merger of galaxies
with the help of machine learning algorithms. The use of machine learning can be considered
as one of the innovations of this research. In this study, prediction methods and classification
algorithms have been used to classify galaxies based on their degree of merging. The GLM
and Naive Bayes algorithms along with other algorithms used in previous studies (i.e., Neural
Network and Random Forest) were used to process and classify the data extracted from the
images. Using the GLM algorithm, acceptable accuracy was obtained for predicting the
merger of galaxies, which can be another innovation of this study.

Algorithms do not always make moral or careful choices. There are some reasons for
this. One is that algorithms make many predictions, some of which are likely to be wrong.
The probability of error depends on many factors, including the amount and quality of data
used to train the algorithms, the specific type of machine learning method chosen, which
may not allow it to maximize accuracy. Second, the environment in which machine learning
operates may be self-evolving or different from what the algorithms were developed to deal
with [34]. Besides, algorithms do not necessarily work the same on all data. Based on the



28 Samira Monfared et al.

data, the performance of the algorithms are different [35]. Algorithms used in this study
worked better on the studied data.

Besides, the best results were obtained when in the preprocessing phase, in addition
to removing features and data augmentation, the SMOTE was performed on imbalanced
data and both oversampling and Undersampling methods were performed simultaneously.
Classification of data into two groups, minority and majority, and then prediction in two
stages in order to solve the problem of severe imbalance between the data under study,
along with methods such as SMOTE sampling, which were used alone in previous studies,
are other innovations of this study.

In the study [28], which was performed on a similar dataset, using the tree algorithm
and information gain index, 70% accuracy was obtained for classifying galaxies. In this
study, the obtained accuracy was 70.28% in the first phase, which was between minority
and majority classes, and 76.51% in the second phase, which was between minority classes.

Since astronomical data are very similar in nature and distribution, the preprocessing
and modeling methods used in this study can pave the way for future research and guide
them in achieving better results.

Astronomers always want to know the answer to the question, how did they get to
this point? What made galaxies and galaxy clusters, superclusters, cavities, and strings
look like this? The existence of such large strings of galaxies and orbits is an interesting
mystery. The challenge for theorists is to understand how a world almost uncharacteristically
transformed into the complex and massive world we see today. As data science has become
an integral part of astronomy, the results of this study may eventually lead to the use of
machine learning to solve a variety of unsolved astro-physical mysteries of galaxies and the
universe as a whole. Besides, galactic period maps with the help of advanced technology
allow scientists to identify galaxies that were difficult to observe in the past and to obtain
more data on the evolution, size and shape of galaxies.

In this study, some features were extracted and used for modeling. Thus, it is suggested
that future studies extract more and different features from the present study or combine
different tables of features using astronomical knowledge. Because, in astronomical prob-
lems, there are many features that can be used to improve the prediction and classification
accuracy by consulting experts and extracting optimal features with specific problem trans-
formations. It is also suggested to use a deep learning approach to solve these problems.
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