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Abstract. We consider Brans Dicke scalar vector tensor gravity to study an infla-
tionary scenario of the accelerating expansion of the universe for which the anisotropy
property occurs. We study both primordial inflation and late inflationary period of the
universe. To do so we, use Bianchi I line element where spatial part has cylindrical
symmetry along x direction in the local Cartesian coordinates. To seek stabilization of
our obtained metric solution, we apply dynamical system approach to obtain critical
manifolds in phase space and determine which of them confirms the inflation with stable
nature in presence of the anisotropy property of spacetime. We solve dynamical equa-
tions for different directions of the timelike dynamical vector field. We obtain several
critical manifolds whose nature of stable (sink) or quasi stable (saddle) are dependent
on the direction of the used vector field. At last, we should point that observational
constraint on the Brans Dicke parameter ω > 40000 which satisfied by the well known
Brans Dicke scalar tensor gravity is not valid for our modified scalar vector Brans Dicke
gravity because of presence of timelike dynamical vector field.

Keywords: Anisotropic cosmology, Bianchi model, Dark energy, Timelike vector fields,
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1 Introduction

The ΛCDM model which is confirmed by the standard cosmology has a great success in
explaining the observations of the cosmic microwave background radiation (CMBR) tem-
perature anisotropy, as well as the galaxies distribution and whose motion [1–4]. This model
which is based on the validity of the cosmological principle (the spatial homogeneity and
spatial isotropy) and the Einstein‘s general theory of relativity explain most large-scale ob-
servations with unprecedented accuracy. However, several directional anomalies have been
reported in various large-scale observations. In short these anomalies are called as follows:
the polarization distribution of the quasars [5], the velocity flow [6–8], the handedness of
the spiral galaxies [9–11], the anisotropy of the cosmic acceleration [12–17], the anisotropic
evolution of fine-structure constant [18–20] and asymmetry of the CMBR parity [21–25]. In
fact, origin of these anomalies do not still understood and so they treat as puzzles. There are
two different proposals to understand these problems as follows: The first perhaps is they
are originated from cosmological effects which should be described via alternative gravity
theories instead of the Einstein‘s general theory of relativity. Other possibility which arises
these directional anomalies can be systematic errors or contaminations of measuring instru-
ments and etc., which should be excluded from the future data analysis. In the latter case,
one usually accept validity of the standard cosmological ΛCDM model while in the former
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proposal one use an alternative gravity model instead of the Einstein‘s general theory of
relativity. Zhao and Santos, did provided full review about these proposals [26] where the
directional anomalies predict a preferred axis called as ‘Axis of Evil‘ in large scale of the
Universe. In short, they compared the preferred directions in large-scale observations and
the CMBR kinematic dipole and found a strong alignment between them. In fact, CMB
radiation dipole is caused by motion of the solar system in the universe which is a non-
cosmological effect. For review on data results of WMAP (Wilkinson-microwave anisotropy
probe) and the Planck satellite, one can see references [27–39]. However, some alternative
cosmological models are provided to satisfy these anomalies where the cosmological princi-
ple (spatial homogeneity and spatial isotropy in large scales structure) should be violated.
In general, anisotropic curved spacetimes should be supported by anisotropic stress energy
tensor of matter fields which are not present in the standard FLRW cosmology [40,41]. For
anisotropic vector field models, one can see [42,43] and for anisotropic cosmological constant
with dark energy [44–57]. See also [53–55] which describe homogeneous but anisotropic
Kantowski-Sachs cosmological model. To describe the above mentioned anomalies, it is
shown that the anisotropic Bianchi cosmological models are applicable by anisotropic cos-
mological constant [56,57] and by dark energy [53–58]. From the point of view of elementary
particle physics, several candidates have been identified for the particle carrying dark energy
or dark matter and introduced to the world of science. The multiplicity of these candidates
makes unknown origin of dark sector of matter/energy. Because of this some scientists use
other gravitational models by regarding principle of general covariance (laws of Physics are
the same for all observers and, therefore, must be written in terms of geometric objects),
in which timelike dynamical vector fields coupled with the geometry produce gravitational
corrections instead of the effects of unknown dark sector. Such models are called Einstein-
Aether gravity usually in which the used timelike dynamical vector fields can be interpreted
as four vector velocity of preferred reference frames. In fact these dynamical timelike vec-
tor fields break rotational symmetry of spacetime because there is interaction between the
vector field and the geometry which will have bimetric(see introduction section of reference
[59] for more discussion).

As a generalization of Einstein-Aether gravity, we consider a scalar-vector-tensor gravity
model [59,60] which is made from generalization of the well known Jordan-Brans-Dicke scalar
tensor gravity [61] by transforming the background metric such that gµν → gµν + 2NµNν
in which Nµ is dynamical timelike four vector field. In the latter model, there is a non-
minimal interaction between the Brans Dicke scalar field and the timelike vector field and
in the present work we will see that it is possible to have the vector field whose spatial
part does not vanish with the evolution (unless it has always been zero) pointing towards
a direction which is different to the one of the rotational symmetry. This is what we call
”preferred reference frame effects”. Several applications of the model [59,60] are studied
for classical and quantum approach of FLRW cosmology [62–66] previously. In the present
work, we investigate affects of a timelike dynamical massless vector field Nµ interacting
with the Brans Dicke scalar field, on anisotropy property of a Bianchi I cosmology. To
solve the gravitational field equations we use dynamical system approach and we obtain
some critical manifolds with stable or quasi stable nature in phase space for each of four
directions of the vector field which asymptotically are reduced to the de Sitter epoch with
anisotropy trajectories. However, we determined stability nature of the obtained critical
manifolds which are dependent to spatial directions of the used the dynamical vector field.
Organization of the paper is as follows.

In section 2, we introduce the scalar vector tensor Brans Dicke gravity model [59,60]
briefly. In section 3, we use the Bianchi I background metric to obtain exact form of
dynamical field equations. We solve gravitational equations by using dynamical systems
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approach. We determine critical manifolds in phase space of dynamical equations in presence
of small perturbations of anisotropy property of the spacetime for each of four directions of
the timelike dynamical vector field. Section 4 assign to concluding remark and outlook of
the work.

2 The Model

Let us start with the following scalar-vector-tensor-gravity action [59,60]

Itotal = IBD + IN , (1)

where

IBD =
1

16π

∫
dx4
√
g

{
φR− ω

φ
gµν∇µφ∇νφ

}
, (2)

is the well known Brans Dicke scalar tensor action [61], and with definitions

Fµν = 2(∇µNν −∇νNµ), Ωµν = 2(∇µNν +∇νNµ), (3)

the action functional

IN =
1

16π

∫
dx4
√
g{ζ(xν)(gµνNµNν + 1) + 2φFµνF

µν − U(φ,Nµ)

− φNµNν(2FµλΩνλ + FµλFνλ + ΩµλΩνλ − 2Rµν +
2ω

φ2
∇µφ∇νφ)}, (4)

describes dynamics of a unit timelike four vector field Nµ which can be considered as four
velocity of a dynamical preferred reference frame which is couple non minimally with the
Brans Dicke scalar tensor gravity. In fact, we assume that Nµ satisfies

gµνN
µNν = −1, (5)

and such a model is named as Einstein-Aether gravity models in the literature. In fact,
the general covariance principle leads us to consider Nµ as a dynamical vector field. ζ(xµ)
is undetermined Lagrange multiplier and U(φ,Nµ) is interacting potential between scalar
and vector fields. Without the additional terms ζ and U the action functional (4) is gen-
erated from (2) by regarding the metric transformation gµν → gµν + 2NµNν . One can
check references [59,60] to see detail of calculations. The action functional (4) shows that
the vector field Nµ is coupled as non-minimally with the Brans Dicke scalar field φ. The
action functional (1) is written in units c = ~ = 1 with Lorentzian signature (-,+,+,+).
The undetermined Lagrange multiplier ζ(xν) controls Nµ to be unit timelike vector field.
According to the Mach‘s principle [61] the Brans Dicke scalar field φ describes inverse of
Newton‘s gravitational coupling parameter as φ(x) ∼ 1

G(x) and its dimension is (lenght)−2

in units c = ~ = 1. Authors in reference [61] showed that to have an inflationary model
for FRW metric the Brans Dicke scalar field should be a raising function versus the cosmic
comoving time and this theory reduces to general theory of relativity at ω → ∞. While
our mathematical calculations show that the constraint on the ω parameter in Brans Dicke
gravity does not valid in our modified scalar vector model. This is because our stable so-
lutions are happened at small values of ω parameter. But fortunately, these solutions have
stable nature in phase space with a raising function for the Brans Dicke field solution in
both inflationary epochs and for all different directions of the vector field. With this view,
it seems there is non minimal interaction between the timelike vector field and the Brans



94 Hossein Ghaffarnejad∗ et al.

Dicke scalar field can resolve the inconsistency problem (why constraint on large values of
the ω parameter does not consistent with our modified gravity theory). g is absolute value
of determinant of the metric field gµν . Present limits of dimensionless Brans Dicke ω pa-
rameter based on time-delay experiments [67–70] requires ω ≥ 4× 104, but we will see this
constraint can be violated in the alternative gravity model (1). Recently, authors of the work
[72] investigated on constraining an exact Brans Dicke gravity with recent observations and
obtained ω > 1627.

By varying (1) with respect to ζ(xν) we obtain (5) and by varying (1) with respect to the
fields φ, Nµ and gµν , we obtain corresponding dynamical equations respectively as follows

2ω�φ
φ
− ωgµν∂µφ∂νφ

φ2
−

4ωNµNν∂µ(
√
g∂νφ)

φ
√
g

− ∂U(φ,Nµ, )

∂φ

− 4ω∂µ(NµNν)∂νφ

φ
−

4ωΓµµαN
αNν∂νφ

φ
−

4ωΓνµλN
µNλ∂νφ

φ
+

2ωNµNν∂µφ∂νφ

φ2

+R− 2NµNνRµν + 2FµνF
µν −NµNν{2FµλΩνλ + FµλFνλ + ΩµλΩνλ} = 0, (6)

[4Fµν −NµNλ(Fλν + 3Ωλν) +NνN
λ(Fλµ − Ωµλ)]∂µ(

√
gφ)

√
gφ

− ∂U(φ,Nµ, )

φ∂Nµ
+∇µ[4Fµν −NµNλ(Fλν + 3Ωλν) +NνN

λ(Fλµ − Ωµλ)]

+Nµ(Fνλ + 3Ωνλ)∇µNλ +Nλ(Fλµ + 3Ωλµ)∇νNµ −Nλ(Fνµ − Ωµν)∇µNλ

−Nλ(Fλµ − Ωµλ)∇µNν + 2NµRµν −
2ωNµ∂µφ∂νφ

φ2
− ζ(xα)Nν

φ
= 0, (7)

and

Gµν =
8π

φ
Tmatterµν +

ω∂µφ∂νφ

φ2
+
∂µ(
√
g∂νφ)
√
gφ

− ζ(xα)NµNν
φ

+
2�(φNµNν)

φ
− gµν

2φ
{2�φ+

ωgαβ∂αφ∂βφ

φ
− 2φFαβF

αβ + 2φNαN
βFαλΩβλ

+ φNαN
β(FαλFβλ + ΩαλΩβλ) + 2NαNβ(φRαβ −

ω∂αφ∂βφ

φ
)}+

U(φ,Nµ)

φ
gµν , (8)

where

� =
1
√
g
∂µ(
√
ggµν∂ν).

We now set the above dynamical equations for anisotropic Bianchi I cosmological model as
follows.

3 Bianchi I cosmology

Spatially homogeneous but anisotropic dynamical flat universe given by the Bianchi I metric
has the following line element from point of view of free falling comoving observer [40].

ds2 = −dt2 + e2a(t){e−4b(t)dx2 + e2b(t)(dy2 + dz2)}, (9)

where x,y, z are Cartesian spatial coordinates of the comoving observer and t is cosmic time.
In the metric equation (9), we assume that the spatial parts have a cylindrical symmetry for
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which ea(t) is global isotropic scale factor and b(t) represents deviations from the isotropy.
Substituting (9) the equation (5) reads 1 = N t2(t)−e2a−4bNx2(t)−e2(a+b)[Ny2(t)+Nz2(t)]
in which time dependent components of the vector field Nµ should satisfy the following
parametric identities

Nµ(t) =


Nt
Nx

Ny

Nz

 =


coshα

ea−2b sinhα cosβ
ea+b sinhα sinβ cos γ
ea+b sinhα sinβ sin γ

 , (10)

where the parameters (α, β, γ) denote polar directions of the vector field Nµ. Substituting
(10) one can calculate Fµν and Ωµν as follows

Ftx = 2(ȧ− 2ḃ)Nx, Fty = 2(ȧ+ ḃ)Ny, Ftz = 2(ȧ+ ḃ)Nz, (11)

and

Ωtx = −2(ȧ− 2ḃ)Nx, Ωty = −2(ȧ+ ḃ)Ny, Ωtz = −2(ȧ+ ḃ)Nz, (12)

Ωxx = −4(ȧ− 2ḃ)e2a−4bNt, Ωyy = Ωzz = −4(ȧ+ ḃ)e2a+2bNt.

To solve the dynamical field equations for the line element (9), we remember symmetry
property of the Einstein‘s tensor in left hand side of the metric equation (8) where all non
diagonal components have zero values and its diagonal components are

Gtt = 3(ȧ2 − ḃ2), (13)

Gxx = 2ä+ 2b̈+ 3ȧ2 + 6ȧḃ+ 3ḃ2, (14)

and

Gyy = Gzz = 2ä− b̈+ 3ȧ2 − 3ȧḃ+ 3ḃ2, (15)

and so non diagonal components in right side of the metric equation (8) should be set with
zero values. This is done by choosing some different ansatz for direction of the vector field
Nµ(t) such that (Nt 6= 0, Nx,y,z = 0), (Nx 6= 0, Nt,y,z = 0) and (Ny 6= 0, Nt,x,z = 0). Without
to use the above ansatz there is an inconsistency between right and left hand sides of the
metric equation (8). Hence, we solve dynamical field equations separately for each of the
above mentioned choices as follows.

3.1 Metric solution for Nt 6= 0, Nx,y,z = 0

In this case, we must be set α = 0 in the equation (10) for which we will have

Nt = 1, Nx,y,z = 0.
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In this case, one can show that the field equations (6), (7) and Gtt, G
x
x, G

y
y = Gzz components

of the metric equation (8) will have the following forms respectively.

ω
φ̇2

φ2
− 2ω

φ̈

φ
+ 2ω

ȧφ̇

φ
− 6ȧ2 − 6ḃ2 − 4ä− 1

3

∂U(φ)

∂φ
= 0, (16)

ζ(t)

φ(t)
= 2ω

φ̇2

φ2
− 6ȧ2 − 12ḃ2 − 6ä, (17)

2
φ̈

φ
+

5ω

2

φ̇2

φ2
+ 6

ȧφ̇

φ
− 12ȧ2 − 15ḃ2 − 9ä+

U(φ)

φ
= 0, (18)

φ̈

φ
− 4ä− 6ȧ2 − 6ḃ2 +

3ȧφ̇

φ
− ω

2

φ̇2

φ2
= 0, (19)

b̈+ 3ȧḃ = 0, ḃ = Ke−3a, (20)

in which we substitute Tmatterµν = 0, because the model under consideration is a creative
matter alternative gravity model in which the Brans Dicke scalar field φ and the vector field
Nµ play the role of the matter and we define the integral constant K = ḃ(t)a=0 to be initial
velocity of anisotropy at primordial inflation (a = 0). Because in the primordial inflation
size of the space time has smallest scale and the cosmic system is in a high energy state
for which we can consider that the background metric is flat Minkowski at the primordial
inflation a(0) ≈ 0. The equation (20) shows that at late inflationary period where a >> 1
the anisotropy expansion velocity ḃ can be negligible and so one can infer that the anisotropy
property of this space time is vanishing by the expansion such that

lim
a→+∞

(
ḃ

ȧ

)
= lim
a→+∞

(
db

da

)
= lim
a→+∞

Ke−3a = 0. (21)

Furthermore, in this case we set U(φ,Nt = 1) ≡ U(φ). To study chaotic inflation in the well
known alternative scalar tensor gravity theories, one usually use power law self interaction
potential for the inflaton field as U(φ) ∼ φn (see for instance [75] and references therein)
but we feel that a simpler linear form n = 1 may be enough to study inflation phase of
the model under consideration because this model is two fluids model for which the second
field is non-minimal time like vector field Nµ which should support the inflation. Hence, we
check just linear potential in the present work and some complicated forms n 6= 1 dedicated
to our future works. However, by defining

φ̇

φ
= ψ(t), ȧ = H(t), U(φ) = Cφ, (22)

the equations (16), (18) and (19) read

Ḣ = −3H2 +
3ωHψ

2(1 + 2ω)
− ω(6 + 15ω)

2(1 + 2ω)
ψ2 −

(
5 + 8ω

1 + 2ω

)
C

2
, (23)

ψ̇ = −
(

2 + ω

1 + 2ω

)
ψ2

2
+

(
3− 2ω

1 + 2ω

)
Hψ − C

2(1 + 2ω)
, (24)

and

ḃ = Ke−3a =

√
H2 +

ω(13 + 29ω)

6(1 + 2ω)
ψ2 − 4ωHψ

3(1 + 2ω)
+

(
9 + 16ω

1 + 2ω

)
C

12
. (25)

We obtain solutions of the nonlinear differential equations (23) and (24) near its critical
manifolds and study stability conditions of the obtained solutions. Critical manifolds in
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phase space {H,ψ} are obtained by solving the equations Ḣ = 0 = ψ̇ for which the above
dynamical equations reduce to the following relations.

Hc

ψc
= yc, (26)

y±c (ω) =
(32ω2 − 25ω − 30)

12(1 + 2ω)
±
√

1024ω4 − 1936ω3 − 743ω2 + 2340ω + 1140

12(1 + 2ω)
, (27)

ψ±c (ω) =

√
−C

2yc(2ω − 3) + 2 + ω
, (28)

and

ḃ±c (ω) = Ke−3ac =

√
ψ2
c

[
y2c −

4ωyc
3(1 + 2ω)

+
ω(13 + 29ω)

6(1 + 2ω)

]
+
C

12

(
9 + 16ω

1 + 2ω

)
, (29)

which at large values of the ω parameter asymptote to the following forms respectively.

y+c ≈ 2.7ω − 3.6− 0.5

ω
+O(ω−2), (30)

y−c ≈ 0.2− 0.3

ω
+O(ω−2), (31)

ḃ+c ≈
√
−123C

ω

[
0.04 +

0.03

ω
+O(ω−2)

]
, (32)

ḃ−c ≈
√
−35C

[
0.13 +

0.02

ω
+O(ω−2)

]
, (33)

ψ+
c ≈

√
−6C

ω

[
0.13 +

0.17

ω
+O(ω−2)

]
, (34)

ψ−c ≈
√
−30C

ω

[
0.13 +

0.02

ω
+O(ω−2)

]
. (35)

The above relations show that to have real fields, we should choose C > 0 in limits ω →∞
(see Eq.33) but for small regions of the ω parameter the case C < 0 has still some acceptable
solutions (see diagrams 2-a and 2-b). We plot diagrams of the critical solutions (26), (27),
(28) and (29) versus the ω parameter in Figures 1 and 2 for C = ±1. In fact C > 0 describes
a repeller Brans Dicke potential while C < 0 shows an attractor potential. Diagram of 1-a
shows all possible real values for y±c . Diagram of 1-b shows ḃc versus ω parameter at critical
manifolds y±c . Diagram of the Figure 1-c shows variation of the ψc versus ω parameter
at points y±c . However, time trajectories of the fields H(t) and ψ(t) are obtained by the
linearized form of the equations (41) and (42) near the critical values (Hc, ψc) as follows

d

dt

(
H(t)
ψ(t)

)
=

(
J11 J12
J21 J22

)(
H(t)
ψ(t)

)
, (36)

where the constants Jij = ∂χi
∂qj

with χi = {Ḣ, ψ̇} and qj = {H,ψ} are components of the

Jacobi matrix of two dimensional phase space (H,ψ). They are calculated at the critical
point yc by applying (41) and (42) as follows

Jij =
ψc

2(1 + 2ω)

(
3ω − 6(1 + 2ω)yc 3ωyc − 2ω(15ω + 6)

2(3− 2ω) 2(3− 2ω)yc − 2(2 + ω)

)
, (37)
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which its secular equation det(Jij − σδij) = 0 reads

(2 + 4ω)2σ2 + 2(1 + 2ω)[6(1 + 2ω)ψc + 2(2ω − 3)yc + 4− ω]σ

+ ψc[(48ω2 − 48ω − 36)yc + 24ω2 + 60ω + 24]− 120ω3 + 126ω2 + 60ω = 0. (38)

This secular equation has two different solutions versus the ω parameter and they occur at
Figures 1-d and 2-c for C ≥ 0 and C < 0 respectively. In fact for C ≥ 0 vertical axis in
Figure 1-d shows real part of complex eigenvalues whose negative numeric values describe
spiral stable nature for the system while negative numeric values in the vertical axis of
the figure 2-c show stable nature for the system. These diagrams show just one negative
numeric value for the eigenvalues for large ω and the second eigenvalue has not negative
numeric value. This means that the system will be quasi stable for ω >> 1. This can be
follow by asymptotic behavior of the eigenvalues at ω → ∞ which are obtained from (38)
as follows

σ±1 ≈ 0.016 + 2.74
√
ω +O(ω−1/2) > 0, for y−c (39)

and
σ±2 ≈ 0.016− 2.74

√
ω +O(ω−1/2) > 0, for y+c . (40)

Diagrams of the eigenvalues in Figures 1-d and 2-c show stable nature for our parametric
solutions just for numeric values of the ω parameter where all two eigenvalues take on
negative numeric values. This occurs at small ω. For instance for ansatz ω = 0.7 with
C = +1 we obtain numeric values for the critical points and corresponding eigenvalues as
y+c = 0.45 with σ+

1 = −0.6 + 0.8i and σ+
2 = 0.2 − 3.5i and y−c = −2.7 with eigenvalues

σ−1 = −0.7− 1.7i and σ−2 = −1.8 + 0.9i. These critical points have ψ+
c = 0.9i and ψ−c = 0.3i

and so are not physical solutions because ψ±c have imaginary numeric value and are not real
fields. While one can check numeric values of the critical points for ω = 0.7 with attractor
potential C = −1 to be physical as y+c = 0.5 with corresponding values for ψ+

c = 0.9 and
σ+
1 = −1.5+1.6i and σ+

2 = −1.5−1.6i which describes a spiral stable physical solution. And
for second critical point y−c = −2.7 with ψ−c = 0.3 and σ−1 = −1.7+1.6i and σ−2 = −1.7−1.6i
which describes a spiral stable physical solution also. By looking at the series forms (32),(33)
and (35) we must be choose ω < 0(> 0) for the case C > 0(< 0) but (34) shows that for
physical real fields we must be set just C < 0 and so we collect some physical numeric
solutions for the critical points and corresponding eigenvalues in the table 1 for different ω
values. In the last column of the table we call stability nature of the physical (means with
real fields for yc and ψc) solutions. To obtain numerical solutions given in the table 1 we
set ansatz C = −1. In fact, y±c < 0(> 0) in the table 1 describe a collapsing (expanding)
universe because physical values for critical time fluctuations of the Brans Dicke field ψc
should be take on some positive values and so negative numeric values for yc readds to a
negative hubble parameter Hc < 0 which describes a collapsing universe and so in the table
1 we should consider some real positive values for the fields y±c > 0 and ψ±c > 0 which are
defined inflationary expanding universe. In fact y±c > 0 given in the table 1 corresponds to a
physical stable solution because both of corresponding eigenvalues take on negative numeric
values. By looking at this, one can infer that for stable critical point the time trajectories
of the Brans Dicke field should be a raising function which satisfies with physical situations.
Because the Brans Dicke scalar field is inverse of the Newton‘s gravity coupling parameter
by regarding the Mach‘s principle (see [61]). Also, one can see that for C ≥ 0 the secular
equation (38) give us a complex parametric eigenvalues and so to plot possible acceptable
numeric values for the eigenvalues we must to plot real part of the complex parametric σ(ω)
which are appeared in Figure 1-d. In the latter case one call spiral stable nature for the
dynamical system under consideration with Re(σ) < 0. According to the dynamical system
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Table 1: critical points, eigenvalues and their nature for C = −1

ω (y+c , y
−
c ) (ψ+

c , ψ
−
c ) (σ+

1 , σ
+
2 ) (σ−1 , σ

−
2 ) Nature

+∞ (+∞, 0) (0, 0) (+∞,+∞) (−∞,−∞) quasi stable
+100 (+263.02,−0.22) (+0.003,+0.073) (+2.88,−260.37) (+29.64,−29, 83) quasi stable
+0.9 (+0.5,−2.1) (+0.8,+0.4) −1.3± 1.5I −1.3± 1.6I spiral stable
+0.6 (+0.4,−2.7) (+0.96,+0.27) −1.7± 1.6I −2± 1.3I spiral stable
+0.5 (+0.4,−3.3) (+1.1,+0.25) −1.8± 1.5I −2.5± 0.56I spiral stable
+0.1 (+0.3,−4.8) (+8.7,+0.16) (−1.3,−5.6) (−0.67,−26.62) stable
0.0 (+0.31,−5.3) (+2.9,+0.17) (−1,−8.7) (−17.94,−0.52) stable
-0.1 (+0.3,−6) (+8.7,+0.16) (−1.12,−26.34) (-0.4,-26.5) stable
-0.5 ∞ ∞ ∞ ∞ undetermined
-0.6 (+0.5,−0.4) (+0.2,+3.3) 9.1± 10.8I (−4.1− 0.7I,−53.4 + 0.1I) spiral stable
-0.9 (−0.4,+0.45) (+0.15,+0.56I) (+26.97,+1.51) (+0.36− 8.2I,+0.02 + 6.5I) un physical
-100 (−270.3, 0.22) (+0.003,+0.07) (+273.2,+2.8) +0.02± 29.5I un stable
−∞ (−∞, 0) (0, 0) (+∞I,+∞I) (−∞I,−∞I) spiral quasi stable

approach (see [62]), we know that all possible stable solutions should have negative numeric
values for the real eigenvalues and spiral stable nature for the solutions if the eigenvalues
become complex number with negative numeric values for its real part. We plotted arrow
diagrams of the dynamical field equations given by (23) and (24) in Figure 3 for choices
ω = 0 and ω = ±0.1 given by the table 1. These arrow diagrams show stable point where
the arrows approach to a fixed point finally. This means stability of the metric solutions
in studying of the dynamical system approach which show sink hole for (Hc, ψc) > 0. This
is appeared for attractor potential C = −1. However, one can solve (36) to obtain time
trajectories of the fields H(t) and ψ(t) around the stable nature critical points (Hc, ψc)
given by the table 1 such that

H(t) = Hc +OH(eψcσ1t − eψcσ2t), (41)

and

ψ(t) = ψc +Oψ(eψcσ1t − eψcσ2t), (42)

in which OH,ψ are integral constants and they should be fixed with initial conditions on the
system. In the above solutions, we choose origin of the time to be critical time tc = 0 for
which H(0) = Hc and ψ(0) = ψc. Also, numeric values of the critical fields Hc and ψc for
the stable critical points yc should be substituted by the numeric values in the table 1. By
integrating the Equations (41) and (42), we obtain

a(t) = ac +Hct+
OH
ψcσ1

(eψcσ1t − 1)− OH
ψcσ2

(eψcσ2t − 1), (43)

and

ln

(
φ(t)

φc

)
= ψct+

Oψ
ψcσ1

(eψcσ1t − 1)− Oψ
ψcσ2

(eψcσ2t − 1), (44)

where we assumed

a(0) = ac, φ(0) = φc. (45)

We can substitute (41) into the definition of the deceleration parameter −q = 1 + Ḣ
H2 to

obtain

q(t) ≈ −1 +
ψcσ1
OH

e−ψcσ1t (46)
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for σ1 > σ2 and vice versa. Acceleration of the universe say us q < 0 for both primordial
inflation or late time inflation. At late time inflation (the present epoch of the anisotropic
universe), the above time dependent deceleration parameter reaches to the following limit

lim
t→∞

q(t) = −1, (47)

and for beginning of the primordial inflation we have

lim
t→−∞

q(t) ≈ −1, (48)

while for end of primordial inflation we can evaluate

q(0) = −1 +
ψcσ1
OH

< 0, (49)

which reads
OH > ψcσ1 (50)

if σ1 > σ2 and vice versa. In this view, we assumed that the primordial inflation is begin
at t → −∞ for which isotropic part of space time scale factor vanishes a(−∞) = −∞ and
it is ended at the time t = 0 where at this duration of expansion the declaration parameter
takes on some negative numeric values. By substituting (43) the equation ḃ = Ke−3a reads

ḃ(t) = K exp{−8ac − 8Hct−
8OH
ψcσ1

(eψcσ1t − 1) +
8OH
ψcσ2

(eψcσ2t − 1)}, (51)

in which for stable physical solutions we have σ1,2 < 0 and ψc > 0 and so the above
anisotropy velocity decreases with t → ∞. By regarding the condition (50) the solutions
(51) and (41) read to the following forms for numeric values of the critical point ω = 0.1
given in the table 1.

ḃ(t) = exp{−20.88− 16 exp (−11.31t) + 16 exp (−48.72t)} (52)

and
ȧ(t) = H(t) = 2.61− 22.62 exp (−11.31t) + 22.62 exp (−48.72t) (53)

where we set

K = e8ac , OH = 2ψcσ1. (54)

Diagrams of these solutions given in the Figure 4 show that velocity of anisotropy time
trajectory of the space time ḃ(t) is smaller than the Hubble parameter time trajectory
(velocity of isotropy part of the space time) by raising the cosmic time but it dose not never
vanishes. Now, we investigate some suitable conditions for the solutions (51) and (43) such
that they can be satisfy both of primordial or late time inflations for line element (9).

3.1.1 Primordial inflation

In the primordial inflation, the scale factor of the space time (9) takes on smallest size and
the system is in high energy state. Thus, one can assume that the background metric is flat
Minkowski at duration of this phase of the expansion and so we should substitute boundary
conditions a(0) = ac = 0 at end of the primordial inflation in the equations (54) such that

K = 1, (55)

b(t) ≈ −e
−1761(t−tp)

1761
, (56)
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and
a(t) ≈ 32.13(t− tp) + 14.76(t− tp)2, (57)

where tp = −0.01919308906 is particular cosmic time for which ḃ(tp) = 1 and to calculate
the above integral solutions we use first order Taylor series expansion in the exponent of
the functions ḃ and ȧ given by the equations (52) and (53). The solution (56) shows that
for beginning of the primordial inflation (t << tp) the anisotropy of the space time is not
negligible but is for late time inflationary phase of the space time expansion (t >> tp). By
substituting the solutions (56) and (57) into the definitions of the metric fields we obtain

gxx = exp{64.26(t− tp)2 + 29.52(t− tp)2 + 0.0023 exp[−1761(t− tp)]} (58)

and

gyy = gzz = exp{64.26(t− tp)2 + 29.52(t− tp)2 − 0.001 exp[−1761(t− t0)]}. (59)

Diagrams of the solutions (52) and (53) are plotted in Figures 4-a and 4-b. Diagrams of the
equations (56) and (57) are plotted in Figures 4-c and corresponding metric components of
line element (9) are plotted in Figures 4-d. They show isotropic scale factor raises faster
than the anisotropic scale factor and at duration of the inflation there is not more different
time trajectories between gxx and gyy = gzz. For this stable solution, we obtain matter
density, directional pressures and corresponding barotropic indexes which are defined by the
following formulas and whose diagrams are plotted in Figures 5.

ρ(T )

ρc
= Gtt = 3(a′2 − b′2), (60)

px
ρc

= 2a′′ + 2b′′ + 3a′2 + 6a′b′ + 3b′2, (61)

py
ρc

= 2a′′ − b′′ + 3a′2 − 3a′b′ + 3b′2, (62)

in which

′ ≡ d

dT
, T = t

√
ρc, ρc = 3(H2

c − ḃ2c), (63)

and barotropic indexes are obtained by

γx =
px
ρ
, γy =

py
ρ
, γ̄ =

γx + 2γy
3

, (64)

where explicit form of time dependence of the above functions are not shown because they
have long length. They do not show negative pressures for after the primordial inflation t > 0
which means that the Brans Dicke scalar vector matter behaves as regular visible matter
instead of dark sector for support of spacetime inflation. In fact the Figure 5-d shows that
before end of primordial inflation t→ 0 we have γx,y < 0 which means that the matter field
of the model behaves as dark sector. Red line in the Figure 5-a shows the density of the
matter has maximum point firstly and then reaches to a local minimum which means that in
the end of the primordial inflation the system reaches to the reheating phase. But with the
passage of time, it has tended to a very low density, which can be the average density of the
current phase of the world by setting the observational data.Diagrams of 5-a and 5-b and
5-c show that anisotropy of the space time is negligible after end of the primordial inflation
but not before than. In our calculations, we set the dimensionless parameters so that the
end time of primordial inflation is zero. Now, in the next subsection we check the above
general solutions for the late inflationary period.
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3.1.2 Late inflationary period

In this approach, the spacetime scale is large and the anisotropic part of scale factor is
negligible. In other word, the universe is old (the present state) and so, we can use the
asymptotic solutions given by (43) such that for t >> 1 we can write

a(t) ≈ lnN +Hct, b(t) ≈ 0, (65)

in which we defined e-folding parameter as

ac = lnN >> 1. (66)

In this regime, the line element (9) reaches to a flat Robertson Walker metric with scale
factor exp(t

√
Λ/3) in the asymptotic de Sitter epoch in which

Λ = 3H2
c , (67)

is effective cosmological constant which supports the exponential expansion of the universe.
To determine N value given by the identity (66), we should use the observational data. From
the observational point of view, the total number of e-folds, must be larger than N > 60,
which depends on the scale of inflation and thermal history after inflation [73]. Also, for
critical density of the matter we should use ρc ≈ 8.5×10−27kg/m3 from observational data.
The scalar spectral index ns is observational quantity to check validity of our solutions.
With lowest order terms it is defined by slow rolling parameters |ε| < 1 and |η| < 1 of the

inflation [74] as ns ' 1− 6ε+ 2η where ε =
m2
p

16π

(∂φU(φ)
U(φ)

)2
and η =

∂2
φU(φ)

U(φ) are defined versus

the derivatives of the inflation potential. To match the observational data, at end of the
inflation we should have ns ≈ 1. This will be guarantee the generation of scale invariant
scalar perturbations. In fact, the Planck satellite full mission temperature data and a first
release of polarization data on large angular scales measure the spectral index of curvature
perturbations to be ns = 0.968± 0.006 [71]. By substituting the potential U = Cφ given by
(22), we obtain

ε =
m2
p

16πφ2
, η = 0, ns = 1−

3m2
p

8πφ2
, (68)

in which mp is the Planck mass. By substituting the solution (44) at limits t→>> ψ−1c the
above relations reads

ns = 1−
3m2

p

8πφ2c
e−ψct ≈ 1, (69)

which obey observational conditions. In the next subsection, we investigate other possible
metric solutions in case where the timelike dynamical vector field is parallel with the spatial
symmetry axis of the Bianchi I line element (9).

3.2 Metric solution for (Nx 6= 0, Nt,y,z = 0)

By substituting Nx 6= 0, Nt,y,z = 0, the equation (10) reduces to the following conditions.

β = 0, α =
iπ

2
, Nx = iea−2b, (70)

and the fields equations φ, Nµ and Gµν take on the following forms respectively.

2ω
φ̈

φ
+ 2ω(ȧ+ 4ḃ)

φ̇

φ
− ω φ̇

2

φ2
− 18ȧ2 − 86ḃ2 + 108ȧḃ+ 2ä+

∂U(φ,Nx)

∂φ
= 0, (71)
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ζ

φ
= −102ȧ2 − 20ḃ2 + 216ȧḃ− 8ä+ 12b̈− 24(ȧ− 2ḃ)

(
φ̇

φ

)
− 1

φNx

∂U

∂Nx
, (72)

and Gtt, G
x
x, G

y
y = Gzz will be respectively

ä+
ω

2

φ̇2

φ2
− 10ȧ2 + 58ȧḃ− 69ḃ2 − U

φ
= 0, (73)

ä− 10b̈+ 830ȧ2 − 136ȧḃ+ 111ḃ2 + 9ȧ

(
φ̇

φ

)
+
ω

2

φ̇2

φ2
+ 3

φ̈

φ
+

(U + ζ)

φ
= 0, (74)

and
ω

2

φ̇2

φ2
+
φ̈

φ
+ 3

ȧφ̇

φ
+ 67ḃ2 − 55ȧḃ+ 16ȧ2 +

U(φ,Nx)

φ
= 0. (75)

The above five equations are enough to determine all fields a, b, φ, ζ, U. By substituting (70)
and definitions

ȧ = H, ḃ = B,
φ̇

φ
= ψ, (76)

we can write the following identities for potential.

1

Nx

∂U

∂Nx
=
∂U

∂a
− 1

2

∂U

∂b
=

(
1

H
− 1

2B

)
U̇ ,

∂U

∂φ
=

U̇

φψ
. (77)

By substituting (76) and (77) one can show that the dynamical field equations (71), (72),
(73), (74) and (75) are transformed to the following first order nonlinear differential equa-
tions.

Ḣ =
(−ωφψ2 + 138B2φ− 116BHφ+ 20H2φ+ 2U)

2φ
, (78)

ψ̇ = − (ωφψ2 + 134B2φ− 110BHφ+ 32H2φ+ 6Hφψ + 2φψ2 − 2U)

2φ
, (79)

Ḃ = − (3ωφψ2 + 42B2φ+ 58BHφ− 1584H2φ− 10U − 2ζ)

20φ
, (80)

U̇ =
2HB

5(H − 2B)
× (81)

(2986B2φ− 11ωφψ2 − 3226BHφ− 240Bφψ − 3842H2φ+ 120Hφψ + 10U − ζ), (82)

and

ζ =
5ψ[ω2φψ2 + 134B2ωφ− 8Bωφψ − 52B2φ− 2(ω + 1)U ]

H
,

− 5ψ(ω2φψ2 + 32H2ωφ+ 4Hωφψ + 2ωφψ2 − 2H2φ− 2(ω + 1)U)

2B

+ 2986B2φ− (885ωφψ + 3226Hφ+ 70φψ)B

+ 435Hωφψ + 29ωψ2φ− 3842H2φ+ 90Hψφ+ 10U. (83)

By solving the equations Ḣ = 0 = ψ̇ = Ḃ = U̇ , we obtain critical points as follows

Hc = 2Bc, ψc = 2.2484Bc, Uc = −1557B2
cφc, ζc = 4B2

cφc, ω = −618.77, (84)

in which critical anisotropy velocity Bc is arbitrary constant which should be determined
by observational data. This shows that in order to have at least one metric solution, we
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must have an anisotropy at the critical point, that is, Bc = ḃc 6= 0. To determine if the
above critical manifolds show stable metric solution, we must be determine eigenvalues of
the Jacobi matrix of the above dynamical field equations in four dimensional phase space
{H,B,ψ, U} similar to previous section by solving the corresponding secular equation. This
fourth degrees algebraic equation has a negative real root (eigenvalues) such that

σ1 = σ2 = σ3 = σ4 = −269.1022666Bc. (85)

Its negativity shows stable (unstable) nature for our obtained metric solutions in phase
space with Bc > 0(Bc < 0). By looking at the critical point (84) one can infer that similar
to previous section this stable solution is supported with attractor critical potential Uc =
−1557B2

cφc. In fact, in the real universe we know that the anisotropy part of the metric
field should be decreasing function and in large scales of the universe it is negligible. While
for our solution the critical hypersurface Hc = 2Bc in phase space shows that anisotropy
is not negligible and grows with half velocity of the isotropic expansion. Furthermore,
in a real universe the Brans Dicke scalar field should be increasing function versus the
cosmic times which for our critical solution is happened for Bc > 0 with equation (84) as
ψc = 2.2484Bc. This shows that our solution can be physical. Because in accordance with
the Mach‘s principle the authors of the work [61] showed that the Brans Dicke gravity for a
FRW cosmology predicts a raising function for the Brans Dicke scalar field which behaves as
inverse of Newton‘s gravity coupling parameter. Such a asymptotic behavior for the Brans
Dicke field obeyed by our obtained solution in this subsection. However, we now obtain
time trajectories of the fields near the above stable critical point versus the eigenvectors
(not shown) as follows

H(T ) ≈ 2Bc +H1 exp(−269T ), (86)

ψ(T ) ≈ 2.2484Bc + ψ1 exp(−269T ), (87)

B(T ) ≈ Bc +B1 exp(−269T ), (88)

and

U(T ) ≈ 41.672B3
cφc exp(−269T )

H1 − 2B1
, (89)

where we defined dimensionless cosmic time

T = Bct, (90)

and integral constants H1, ψ1, B1 should be determined by observational data. By integrat-
ing the solutions (86), (87) and (88) we obtain time trajectory of the metric and the Brans
Dicke scalar fields as follows

a(T ) ≈ ac + 2T − 1

269

H1

Bc
exp(−269T ), (91)

ln

(
φ

φc

)
≈ 2.2484T − 1

269

ψ1

Bc
exp(−269T ), (92)

and

b(t) ≈ bc + T − 1

269

B1

Bc
exp(−269T ), (93)

where ac, bc, φc are initial (critical) isotropic and anisotropic metric fields and the Brans
Dicke scalar field which is given at begin of the inflation. For this solution the matter
density ρ = Gtt = 3(H2 −B2) and directional pressures px = Gxx, py = Gyy read

ρ(T )

B2
c

= 9 +
6(2H1 −B1)

Bc
exp(−269T ) +

3(H2
1 −B2

1)

B2
c

exp(−538T ). (94)
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px
B2
c

= 27− 520(H1 +B1)

Bc
exp(−269T ) + 3

(
H1 +B1

Bc

)2

exp(−538T ), (95)

and

py
B2
c

= 9− 269
(2H1 −B1)

Bc
exp(−269T ) + 3

(
H2

1 −H1B1 +B2
1

B2
c

)
exp(−538T ). (96)

To obtain admissible values of the constants H1, B1, we calculate extremum point of the
density and we consider this physical fact in which the matter density with all possible forms
should have positive values for all times. To do so, we set dρ

dT = 0 and obtain

Tm = − 1

269
ln

(
Bc(2H1 −B1)

B2
1 −H2

1

)
, ρm = ρ(Tm) =

3B2
c (2B1 −H1)2

B2
1 −H2

1

. (97)

For a physical stable metric solution where Bc > 0 (see the eigenvalue) the above relations
show that we should have

H1 < B1 < 2H1, (H1, B1) > 0, (98)

and
H1 > B1 > 2H1, (H1, B1) < 0. (99)

One can infer that (97) approaches to the following limits

lim
B1→H1

(Tm, ρm) = (−∞,+∞), lim
B1→2H1

(Tm, ρm) = (+∞, 9B2
c ), (100)

in which left (right) side describes expanding (collapsing) Bianchi cosmology. By substitut-
ing B1 = H1 the mass density and the pressures for expanding phase read

ρ(T )

3B2
c

= 3 + 2χe−269T , χ =
H1

Bc
, (101)

px(T )

B2
c

= 27− 1040χe−269T + 12χ2e−538T , (102)

and
py(T )

B2
c

= 9− 269χe−269T + 3χ2e−538T . (103)

For collapsing (reheating) phase of the Bianchi I cosmology with B1 = 2H1, we can obtain
time trajectories of mass density and directional pressures of the Bianchi I cosmology as
follows

ρ(T )

9B2
c

= 1− χ2e−538T , (104)

px(T )

3B2
c

= 9− 520χe−269T + 9χ2e−538T , (105)

and
py(T )

9B2
c

= 1 + χ2e−538T . (106)

We plot diagrams of the above functions for arbitrary values Bc = 0.01, and χ = 0.5, 10, 100
respectively in Figure 6. We check that diagrams of the directional barotropic indexes (not
shown) are similar to diagrams of the pressures but with re-scaled size. Negative regime of
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the pressures (or corresponding barotropic index) in the diagrams show a phase transition
which originates from anisotropy velocity B 6= 0 while one can imagine that it is apparently
originates from unknown dark sector matter. In other words the Brans Dicke scalar vector
fluid behaves as dark sector of the cosmic matter. In Figure 6-d, one can see that arrow
diagram of the metric fields in which arrows converge to a stable point with a non-vanishing
anisotropy velocity B 6= 0.

3.3 Primordial inflation

Same as previous section we know that in primordial inflation the spacetime has smallest
scale and is in high energy state such that we assume a(0) = 0 = b(0) and then the metric
solution (91), (93) read

ap(T ) = 2T +
χ

269
(1− e−269T ), bp(T ) = T +

χ

269
(1− e−269T ), (107)

with constraint condition
ac = bc =

χ

269
. (108)

g(p)xx (T ) = exp{− 2χ

269
(1− e−269T )}, g(p)yy = g(p)zz = exp{6T +

4χ

269
(1− e−269T )}, (109)

where superscript (p) denotes primordial. This metric solution shows at end of primordial
inflation the spacetime reaches to non vanishing smallest scale in parallel direction with the
cylindrical symmetry axis x but in vertical direction y = z the inflation continues to next
phase such that

lim
269T>>1

gxx ≈ e−
2χ
269 , lim

269T>>1
gyy = gzz ≈ e6T+ 4χ

269 . (110)

This means that at duration of the primordial inflation compression of spacetime is happened
in direction of symmetry axis x while expansion of space time is happened in its vertical
directions y, z. In other words, primordial inflation in this model is similar to expansion of
cigarette like or pipeline. By substituting (86) and definitions B1 = H1 and χ = H1

Bc
into

the deceleration parameter q = −1− Ḣ
H2 we obtain

q(T ) = −1 +
269χ exp(−269T )

[2 + χ exp(−269T )]2
. (111)

It is easy to check that for end of primordial inflation the above deceleration parameter
reduces to the following form

qe = lim
269T>>1

q(T ) ≈ −1, (112)

which satisfies the de Sitter epoch full but for beginning of the primordial inflation we have

q0 = q(0) = −1 +
269χ

(2 + χ)2
, (113)

in which the beginning time of the primordial inflation is chosen to be tc = 0. Negativity
condition on the deceleration parameter at beginning of the primordial inflation shows the
following restriction on the χ parameter.

q0 < 0, −∞ < χ < 0.01509519949. (114)
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We assume at end of primordial inflation which is happened after passing times Tp >> 1,
the anisotropy can be negligible and the metric components (110) reach to the following
approximation

g(p)xx (Tp) ≈ g(p)yy (Tp) ≈ eNp , (115)

in which Np is e-folding parameter of the spacetime at end of the primordial inflation and
so we can write

− 2χ

269
= Np = 6Tp + 4

4χ

269
. (116)

This identity gives out

Tp = − χ

269
, Np = 2Tp. (117)

By applying these boundary conditions on our general metric solutions given by (91) and
(93) we now obtain exact form of the solutions which satisfy the late time inflation.

3.4 Late inflationary period

In this case, the scale of the space time is large and so the anisotropy can be negligible and
so the metric field solutions (91) and (93) will be

g(L)xx = exp{2ac − 4bc +
2χ

269
e−269T }, (118)

and

g(L)yy = g(L)zz = exp{2ac + 2bc + 6T − 4χ

269
e−269T }, (119)

where superscript (L) denotes Late. If we assume T0 is beginning time of the late inflationary
period in which anisotropy has more small effects we should use continuity condition of

the metric fields at time T0 as g
(L)
xx (T0) = g

(L)
yy (T0) and equality of whose first derivative

dg(L)
xx (T0)
dT =

dg(L)
yy (T0)

dT which by using the above solutions we obtain

bc = −T0 −
1

269
, χ = −e269T0 . (120)

By substituting (120) into the metric field solutions (118) and (119) we have

g(L)xx = exp{2ac + 4T0 +
2

269
(2− e−269(T−T0))}, (121)

and

g(L)yy = g(L)zz = exp{2ac − 2T0 + 6T − 2

269
(1− 2e−269(T−T0))}. (122)

By using the approximation e−269(T−T0) ≈ 1− 269(T −T0) we can rewrite the above metric
solutions for the times T > T0 such that

g(L)xx ≈ g(L)yy = g(L)zz ≈ eN+2(T−T0), (123)

where

N = 2ac +
2

269
+ 4T0, (124)

is assumed to be the e-folding parameter of the late time inflation and it should be determined
by observational data. We again remember that observations show that the current world
is old enough such that the e-folding parameter should be a large number between N ∼
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{60 · · · 70}. This asymptotic behavior of the metric solution (123) shows a homogenous and
isotropic FRW spacetime in de Sitter epoch in which critical value of the anisotropy velocity
Bc behaves as an effective cosmological constant such that

2Bc =

√
Λ

3
, T = Bct. (125)

However, N is evaluated by observations but how can define the integral constant ac with
other physical parameters of the system? To do so we assume T0 = Tp and N = Np which
means end of primordial inflation is continued with beginning of the late time inflation. By
regarding this, one can infer

ac = − 1

269
− 2Tp. (126)

We end this section by calculating the scalar spectral index [74]

ns = 1 + 2η − 6ε, (127)

in which the slow rolling parameters of the inflation ε and η mentioned in the previous
section take on extended forms with two variable potential U(φ,Nx) (two fluid model) as
follows

ε =
m2
p

16π

(
∂φU(φ,Nx)

U
+
∂NxU(φ,Nx)

φNxU

)2

, (128)

and

η =
m2
p

8π

(
∂2φU

U
+ 2

∂Nx∂φU

φNxU
+

∂2NxU

φ2N2
xU

)
, (129)

which by substituting (77) and chain derivative can be rewritten as follows

ε =
m2
p

16π

(
1

ψ
+

1

H
− 1

2B

)2
U̇2

φ2U2
, (130)

and

η =
m2
p

8π

{(
1

φψ
+

1

H
− 1

2B

)2
Ü

U
− U̇

U

[
1

φ3
+

ψ̇

φ2ψ3
+

(
2

φψ
+

1

H
− 1

2B

)
Ḣ

H2

−
(

2

φψ
+

1

2H
− 1

4B

)
Ḃ

B2

]}
. (131)

By substituting the critical point (84) and time dependent potential solution (89) we obtain
asymptotic critical values for these slow rolling parameters such that

εc ≈ 0, ηc ≈
2

π

(
30mp

φc

)2

, (132)

for which the scalar spectral index ns become

ns ' 1 +
1

π

(
60mp

φc

)2

. (133)

In the above relations, we set critical point conditions Ḣ = 0 = Ḃ = U̇ = ψ̇. By regarding the
observation data for the scalar spectral index ns ≈ 1, we infer that the following inequality
should be obeyed between φc and the Planck mass.

φc >> 60mp. (134)

In the following section we investigate possible stable metric solutions when direction of
spatial part of the vector field is in perpendicular to axis of symmetry of the spacetime.
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3.5 Metric solution for (Ny 6= 0, Nt,x,z = 0)

In this case, the equation (10) reduces to the following constraint.

α =
iπ

2
, β =

π

2
, γ = 0, Ny = iea+b, (135)

and the field equations φ, Nµ and Gµν reduce to the following formes respectively.

2ω
φ̈

φ
+ 2ω(ȧ− 2ḃ)

φ̇

φ
− ω φ̇

2

φ2
− 2ȧ2 − 12ḃ2 − 34ȧḃ+ 8ä+

∂U(φ,Ny)

∂φ
= 0, (136)

ζ

φ
= −54ȧ2 − 2ḃ2 − 54ȧḃ− 10ä− 8b̈− 8(ȧ+ ḃ)

(
φ̇

φ

)
− ∂U(φ,Ny)

φNy∂Ny
, (137)

and Gtt, G
x
x, G

y
y = Gzz will be respectively

ä+
ω

2

φ̇2

φ2
+ 6ȧ2 + 3ȧḃ− 2ḃ2 − U

φ
= 0, (138)

3ä+ 2b̈+ 6ȧ2 + 9ȧḃ+ 4ḃ2 − ω

2

φ̇2

φ2
− φ̈

φ
− 3ȧ

φ̇

φ
− U(φ,Ny)

φ
= 0, (139)

and

3ä− b̈+ 6ȧ2 + 4ḃ2 − ζ

φ
− 3ȧ

φ̇

φ
− φ̈

φ
− ω

2

φ̇2

φ2
− U

φ
= 0. (140)

The above five equations are enough to determine all quantities a, b, φ, ζ and U(φ,Ny). By
substituting (135) and definitions

ȧ = H, ḃ = B,
φ̇

φ
= ψ, (141)

we obtain the following identities for the potential

1

Ny

∂U

∂Ny
=
∂U

∂a
+
∂U

∂b
=

(
1

H
+

1

B

)
U̇ ,

∂U

∂φ
=

U̇

φψ
. (142)

By using (141) and (142) one can show that the dynamical field equations (136), (137), (138),
(139) and (140) are transformed to the following first order nonlinear differential equations.

Ḣ =
(−ωφψ2 + 4B2φ− 6BHφ− 12H2φ+ 2U)

2φ
, (143)

Ḃ = − (9BHφ+ ζ)

3φ
, (144)

ψ̇ =
(−6ωφψ2 + 30B2φ− 18BHφ− 36H2φ− 9Hφψ − 3φψ2 + 6U − 2ζ)

3φ
, (145)

and

U̇ = −HB(−15ωφψ2 + 66B2φ+ 24Bφψ − 18H2φ+ 24Hφψ + 30U − 5ζ)

H +B
, (146)
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and

ζ =3(4Bω2φψ3 + 4Hω2φψ3 − 20B3ωφψ − 8B2Hωφψ + 4B2ωφψ2

+ 36BH2ωφψ + 3BHωφψ2 + 5Bωφψ3 + 24H3ωφψ + 4H2ωφψ2 + 5Hωφψ3

+ 22B3Hφ− 4B3φψ + 62B2Hφψ − 6BH3φ+ 116BH2φψ + 50H3φψ − 4BUωψ

− 4HUωψ + 10BHU − 8BUψ − 8HUψ)/(−4Bωψ − 4Hωψ + 5BH). (147)

Similar to previous sections we solve the equations Ḣ = 0 = Ḃ = ψ̇ = U̇ to obtain five
critical manifolds which they are collected in the following table.

ω x y p q
-2.38189179 -0.81852617 -0.92679835 7.36673550 -1.45863725
0.82291508 -0.50652226 1.75767870 4.55870034 -0.70900689
2.41213514 -0.71882277 1.08689952 6.46940495 0.36855696
2.53481716 -0.06704170 -1.54604186 0.60337534 -186521838
0.50000000 -0.42183288 2.00000000 3.79649596 -1.19784076

where we defined

Hc = xBc, ψc = yBc, ζc = pφcB
2
c , Uc = qφcB

2
c . (148)

Physical boundary conditions for an accelerating expanding universe let us to choose Hc > 0
for which time trajectory of the Brans Dicke scalar field should be raising function versus
the cosmic times and so we should choose ψc > 0. These conditions lead to say that physical
critical manifolds given in the above table are just (x, y) > 0 for Bc > 0 or (x, y) < 0 for
Bc < 0. By regarding the latter conditions and by looking at the numerical values of the
table, we infer that ω = {−2.381891793, 2.534817164} are physical choices for which both
of the dimensionless critical manifolds x and y have negative numeric values synchronously
and with Bc < 0 they satisfy the physical boundary conditions (Hc, ψc) > 0. To determine
whether this critical point give stable metric solutions, we need to determine sign of the
eigenvalues. This is done by solving the secular equation of the Jacobi matrix for the above
dynamical field equations similar to the previous sections. By doing this, we obtain for
eigenvalues

σ1
1

Bc
= 0.1512854848,

σ1
2

Bc
= 40.08736104, (149)

σ1
3

Bc
= 4.811325390 + 1.938390681i,

σ1
4

Bc
= 4.811325390− 1.938390681i,

for ω = −2.381891793 and

σ1
1

Bc
= 0.2146088815,

σ1
2

Bc
= 11.13107522, (150)

σ1
3

Bc
= 46294.82001,

σ1
4

Bc
= −46288.47253,

for ω = 2.534817164. It is easy to see that the critical point (149) shows spiral source
(unstable) and (150) shows quasi stable nature for the metric solutions of this subsection
because for the former case, real part of all eigenvalues have positive numeric values while
for the latter case at least one of the eigenvalues has negative real value. Hence, we end this
section by plotting arrow diagram just for the latter quasi stable solution in Figure 7.
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4 Concluding remark

In this work, we used the modified Brans Dicke scalar vector tensor gravity to study
anisotropic Bianchi I cosmology. We solved dynamical field equations for different direc-
tions of the timelike dynamical vector field which interacts nonminimally with the Brans
Dicke scalar field and the metric field. We succeeded to obtain analytic metric field solu-
tions for epoch of primordial and late time inflations. In this model, in phase of primordial
inflation the space time expansion is similar to pipeline geometry while in the late time infla-
tion expansion is isotropic de Sitter epoch asymptotically. Time trajectories for anisotropy
part of the metric field and the Hubble parameter and the Brans Dicke scalar field are not
negligible in the primordial inflation but are at the late inflationary period. In the late
inflationary period, critical value of velocity of the anisotropy behaves as an effective cosmo-
logical constant which can be claimed that it is really origin of the unknown cosmological
parameter. By applying dynamical system approach, we investigated stability conditions
of the solutions and obtained stable (un stable) nature in phase space when spatial direc-
tions of the timelike vector field is parallel (perpendicular) to the axes of symmetry of the
spacetime. Negativity sign of the barotropic index which can be considered apparently as
characterization of dark matter/energy, is in fact depended to direction of the vector field in
the 4 dimensional Bianchi I line element. It has positive (negative) numeric value when spa-
tial components of the vector field is ( is not) eliminated. In fact, when spatial components
of the vector field is parallel to the symmetry axis of the spacetime our metric solutions
have two different branches. One branch describes accelerating expansion of a Bianchi I
cosmology with a stable nature in phase space while the second branch which describes a
collapsing metric solution with quasi stable nature can be considered as reheating phase of
the expansion. As extension of this work, we like to study dynamics of reheating phase with
more details of this SVT Brans Dicke Bianchi I cosmology in our next work.
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(a) (b)

(c) (d)

Figure 1: (a) Numeric values of the critical manifolds vs ω for Nt = 1, Nx,y,z = 0, (b) Critical
time trajectory of the anisotropy vs ω with repeller potential C > 0 for Nt = 1, Nx,y,z = 0,
(c) Critical time trajectory of the Brans Dicke scalar field vs ω with repeller potential C > 0
for Nt = 1, Nx,y,z = 0 and (d) Real part of eigenvalues vs ω for Nt = 1, Nx,y,z = 0 and
C ≥ 0
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(a) (b)

(c)

Figure 2: (a) Critical time trajectory of the anisotropy vs ω with absorber potential C < 0
for Nt = 1, Nx,y,z = 0, (b) Critical time trajectory of the Brans Dicke scalar field vs ω < 0
with absorber potential C < 0 for Nt = 1, Nx,y,z = 0 (c) Eigenvalues for Nt = 1, Nx,y,z = 0
with attractor potential C < 0
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(a) (b)

(c)

Figure 3: Arrow diagrams for attractor potential C = −1 for ω = 0.1 (a), ω = −0.1 (b) and
ω = 0 (c) in case Nt 6= 0, Nx,y,z = 0
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(a) (b)

(c) (d)

Figure 4: (a,b)Isotropic and anisotropic time trajectories and (c) isotropic and anisotropic
scale factors and (d) directional metric components vs cosmic time t for primordial inflation
in case Nt = 1, Nx,y,z = 0 for stable solution ω = 0.1 given in the table 1
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(a) (b)

(c) (d)

Figure 5: (a) Re-scaled density and directional pressures vs the dimensionless cosmic time
t and (b) directional barotropic indexes vs the dimensionless cosmic time t for primordial
inflation in case Nt = 1, Nx,y,z = 0
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(a) (b)

(c) (d)

Figure 6: (a) Diagram of the density vs dimensionless cosmic time T for Nx 6= 0, Nt,y,z = 0,
(b) pressure in x direction is plotted vs T for Nx 6= 0, Nt,y,z = 0, (c) Diagram of y direction
pressure is plotted vs T for Nx 6= 0, Nt,y,z = 0 and (d) Arrow diagrams for case Nx 6=
0, Nt,y,z = 0 with sink hole nature.
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(a)

Figure 7: Arrow diagram for Ny 6= 0, Nt,x,z = 0 with quasi stable (saddle) nature


