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Abstract. In this paper, the relativistic accretion disks around the non- rotating black
holes are studied. In these disks, we study the fluids with influences of stress viscosity
and heat flux in the ignorable magnetic field. In this paper, the reformed conservation
equations with the influences of heat flux are used. We use the simple model of heat
flux, in which the heat flux is proportional to temperature. Then, the thermodynamic
quantities are derived. We use the radial form for the radial component of four velocity
in the locally non rotating frame and Keplerian angular momentum. So, the viscous
heating and heat flux cooling are derived. Also, the figures of viscous heating and heat
flux cooling are derived by various parameters such as the viscous coefficient and the
thermal conductivity. Therefore, the energy balance can be study in the relativistic
accretion disks. So, we see the region which have the energy balance.
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1 Introduction

The relativistic accretion disks around the black holes were studied in many works. Vari-
ous processes have been considered for energy and momentum transfering, some important
mechanisms are perfect fluid, viscosity, and magnetic field effects (for example [1], [4], [11],
[9] and [7]). But the influences of heat flux were less studied. But, heat flux were studied
with the simple models in some papers such as [2].

In this paper, we consider the relativistic fluids with heat flux around the non-rotating
black holes. We use the radial model to calculate four velocity, shear tensor, heat flux, etc.
Then, viscous heating and heat flux cooling of fluids are derived. So, we can examine the
energy balance of the relativistic disks.

2 Metric and scaling

Similar to [4], [11]. we use the M=G=c=1 for scaling (M is the mass of a black hole, G
is the gravitational constant and c is the speed of light). This relativistic disk is around
the non-rotating black holes, so, we use the Schwarzschild metric in a spherical coordinate
system around a non-rotating black hole, wich is shown as

−dτ2 = gttdt
2 + grrdr

2 + gθθdθ
2 + gφφdφ

2. (1)

The non-zero components of Schwarzschild metric in this scaling are as follows

gtt = −(1− 2

r
), grr = (1− 2

r
)−1, gθθ = r2, gφφ = r2sin2θ. (2)
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3 Relativistic Energy- momentum tensor

The energy-momentum tensor of relativistic non-magnetic viscous fluids with heat flux is
given by [10]

Tµν = ρuµuν + pgµν + tµν + qµuν + uµqν , (3)

where, ρ, is the density, uν is four-velocity, p is the pressure, tµν is the shear stress viscosity
and qν is the heat-ux four-vector. The shear stress tensor (by zero bulk viscosity) and the
heat flux are given by

tµν = −2λσµν , (4)

qµ = −κhµν(∂νT + Taν), (5)

where, in above equation λ, κ, T , and σµν are the dynamical viscosity coefficient, thermal
conductivity, temperature and the shear tensor respectively. Also, the relations of the shear
tensor and the other related variables are given by ([6])

σµν =
gµαgνβ

2
(uα;β + uβ;α) +

1

2
(aµuν + aνuµ)− 1

3
Θhµν

uν;µ = ∂µu
ν + Γνµγu

γ ,

hµν = hνµ = gµν + uµuν ,

Θ = uγ;γ = ∂γu
γ + Γνγνu

γ ,

aµ = uµ;γu
γ ,

aν = gνµa
µ.

(6)

4 Basic conservation equations

The basic conservation equations of relativistic fluids are included, mass conservation equa-
tion, momentum conservation equation and energy conservation equation. The mass con-
servation equation is as follows

−4πHθρu
rr2 = Ṁ, (7)

where Hθ and Ṁ are the half thickness and mass-accretion rate. Also, the momentum
conservation equations and the energy equation are derived by inserting the influences of
heat flux in the conservation equations of [9] and [11] as

Ṁηuφ − 4πHθr
2(trφ + qruφ + urqφ) = Ṁj,

4πHθr
2((p+ ρ+ u)utu

r + trt + qrut + urqt) = Ė, (8)

ur(
du

dr
− u+ p

ρ

dρ

dr
) = q+vis − q

−
rad. (9)

In above equations, η = ρ+P+u
ρ , Ṁj, and Ė are the relativistic enthalpy (u is the internal

energy), the total inward flux of the angular momentum and actual rate of change of the
black hole mass respectively. We use the Ṁ = Ė = 1 in the above equations ([4] and [11])
Also, q+vis is viscous heating rate and q−rad is radiative cooling rate which are as follows

q+vis = tµνσµν = 2λσµνσµν ,

q−rad = −qµ;µ − qµaµ. (10)
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5 Solving conservation equations

We use the relativistic state equation p = ρT . For inertial energy, u = ρT 15T+6
5T+4 is used

([4]); so, we assume u ' 3ρT . By inserting Hθ = − 1
4πρurr2 (from equation (7)) in equation

(8) we have

(1 + 4T )uφ +
1

ρur
(trφ + qruφ + qφu

r) = j,

ρ(1 + 4T )utu
r + trt + qrut + qtu

r = −ρur. (11)

5.1 Four velocity

Similar to [7], the radial form is used for the radial component of velocity in the locally
non-rotating frame which is given by

urLNRF = − β

rn
, (12)

where β and n are positive and constant quantity. By using the Keplerian angular momen-

tum (Ω = uφ

ut = r−3/2), the component of four velocity in LNRF is derived as

(ut, ur, uθ, uφ)LNRF =

(
r3/2

rn

√
r2n + β2

r3 − 1
,− β

rn
, 0,

r3

rn

√
r2n + β2

r3 − 1

)
. (13)

The Components of four-velocity by the transformation equation ([9]) are derived as([7])

(ut, ur, uθ, uφ) =

(√
r(r2n + β2)

rn
√
r − 3

,−β
√
r2 − 2r

r2n+1
, 0,

√
r2n + β2

rn+1
√
r − 3

)
. (14)

The components of four acceleration, projection tensor, and shear tensor have been calcu-
lated with above four-velocity.
We assume qµ = −κhµνTaν and qµ = −κhνµTaν in equation (11); then, the thermodynamic
variables such as density, pressure, temperature, and etc. are derived.

6 Heating and cooling

The critical dynamical coefficient of viscosity ([11]) is used in equation (10) to calculate the
viscous heating of relativistic disks. So, the Figure 1 shows the heat generated by viscosity.

Figure 1: Viscous heating for n = −1/2, j = 3, and k = 1. Solid black curve is for λcrit = 1,
doted blue curve is for λcrit = 2 and dash-dot red curve is for λcrit = 3.
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To calculate the cooling, in equation (10), we first calculate the covariant derivative of
heat flux; so, in Schwarzschild metric, we have

qµ;µ =
dq

dr
+ qr(Γθtθ + Γφtφ) =

dqr

dr
+ qr

2

r
. (15)

Similarly, qµaµ has been calculated. Then, the figure of heat flux cooling is shown in Figure
2.

Figure 2: Heat flux cooling for n = −1/2, j = 3, and λcrit = 1. Solid black curve is for
k = 1, doted blue curve is for k = 2 and dash-dot red curve is for k = 3.

Finally, the energy balance can be studied by checking the net heat energy of fluid from
the equation (9). So, we calculate the pure energy by q = q+vis − q

−
rad, the Figure 3 shows

the net energy of fluids in three values of thermal conductivity.

Figure 3: Pure energy for n = −1/2, j = 3, and λcrit = 1. Solid black curve is for k = 1,
doted blue curve is for k = 2 and dash-dot red curve is for k = 3.

7 Conclusion

In this paper, we calculate the viscous heating and heat flux cooling of relativistic accretion
disks. So, we used the radial model for the radial component of velocity in the locally
non-rotating frame and the Keplerian form for the angular momentum. Therefore, the
calculations show that heating and cooling are much more effective near the black hole. Also,
we study the energy balance of viscous fluids with the influences of the heat flux around the
non-rotating black holes. We see that, there is no equilibrium with the heat generating and
cooling around the event horizon. But, in the outer layers of these relativistic fluids, there



Heating and Cooling Studies of Relativistic Accretion Disks 61

is the thermal equilibrium, so the assumption of thermal balcnce for the outer layers of the
fluids around the non-rotating black holes will be a good assumption.
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