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Abstract. The Propagation of electron acoustic solitary waves is studied in a plasma
consisting of hot and cold electrons and stationary ions and in the presence of nonuni-
form external magnetic field. Our simulation results in this paper show that the electron
acoustic solitary waves radiate some amount of energy during their traveling through
the varying magnetic field. The important point is that we do not have other dissipative
sources like particle interaction or viscosity effects, in this model. We also find that the
electron density wave moves with a small wavelets around the central electron density
even if the external magnetic field is constant. We propose to perform a laboratory
experiment which will be able to identify the special new features of the electron acous-
tic waves propagation in a magnetized plasma with external varying magnetic field in
which have been predicted in this investigation. Furthermore, our theoretical analysis
brings a possibility to develop more refined theories of nonlinear acoustic waves that
may occur in astrophysical nonuniform magnetized plasmas.
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1 Introduction

The study of nonlinear localized waves in plasmas as a reach nonlinear media is an attrac-
tive subject in theoretical physics as well as experimental and laboratory considerations.
There are several important phenomena in space environments and astrophysical situations
which can be understood only through nonlinear behaviors, such as the cusp region of the
terrestrial magnetosphere [1, 2], geomagnetic tail [3] and description of dayside auroral ac-
celeration region [4, 5], beside experimental applications [6-10]. Watanabe et al. [11] used
a linear electrostatic Vlasov dispersion equation to show that electron acoustic waves can
be destabilized in such a plasma. Later on, Yu and Shukla [12] and also Gary et al. [13]
obtained a dispersion relation for EAWs in a two (electron-ion) and three (two-temperature
electrons and ions) components plasmas, respectively. Electron acoustic (EA) waves is a
special kind of plasma wave fluctuations which may occur in media with two distinct elec-
tron populations referred to cold and hot electrons. The propagation of EA solitary waves in
different plasma systems has been studied by several authors in unmagnetized two electron
plasmas [14-17] as well as in magnetized plasmas [18-22]. The properties of obliquely prop-
agating EASWs in magnetized plasmas have been studied by Mace and Hellberg [19]. They
showed that negative potential EASWs corresponding to compression of the cold electron
density can be created in such media. Ergun et al. [23-24] observed that BEN bursts in
the dayside auroral zone have three-dimensional wave structure by including the magnetic
field effects. The external magnetic field and the wave obliqueness are found to change the
properties of the EA waves significantly. In all mentioned researches, external magnetic
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field has been considered as a constant vector throughout the medium, but we know that
in a realistic situation, magnetic field is not a constant vector at all. In this work, we have
tried to treat the problem using numerical solutions, beside an analytical evaluation using
the small amplitude perturbation technique. In order to find a physical sense, we present a
crude estimation for the evolution of EA solitary wave in the earth atmosphere where the
magnetic field clearly has spatial variation [25].

Outlines of this paper are as follows: The basic dynamical equations governing our
plasma model is presented in Section 2. In Section 3, the effect of varying magnetic field on
the harmonic waves is investigated as simulationally. The last section is devoted to some
concluding.

2 Basic equations

We consider homogeneous plasmas consisting of a cold electron fluid, hot electrons obeying
a Maxwellian distribution and stationary ions in the presence of a space dependent external

magnetic field
−→
B = B(r)ẑ. The nonlinear dynamics of electron acoustic solitary waves is

extracted from the continuity and motion equations for cold electrons, in addition to the
Poisson’s equation [26] as
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In the above equations, nc (nh) is the cold (hot) electron number density normalized by
its equilibrium values nc0 (nh0). uc is the cold electron fluid velocity normalized by the

phase speed of electron acoustic Ce =
√

kBTh

ame
in which kB is the Boltzmann’s constant, e

is the electron charge, me electron mass and a = nh0

nc0
. The important parameter in our

model is the space dependent parameter b =
eB(r)
mc

ωpc
normalized by the cold electron plasma

frequency ωpc and ϕ is the electrostatic wave potential normalized by kBTh

e . The time and
space variables are in units of the cold electron plasma period ω−1

pc and the hot electron
Debye radius λDh, respectively. The basic set of equations (1)-(3) can be expanded as
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As mentioned before, the Maxwellian distribution for hot electrons is considered as follows

nh = eϕ (9)
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3 Study by simulation method

We have solved equations (4)–(8) simulationally to observe the time evolution of the electron
density dealing with a varying magnetic field. Time derivations have been solved using the
second order Runge-Kutta method, while space derivatives have been expanded by centered
two point finite difference approximation. The grid spacing has been chosen as δx= 0.05,
0.11 and the time steps have been taken as δt=0.25δx. Since we have considered boundary
conditions to solve the problem, the simulation is valid as long as the wave reaches the
boundaries. Also, for simplicity, we have considered the charge neutrality condition in the
above equations. Therefore, the Poisson equation (8) is out of the question. As equations
(4)–(7) and condition (9) clearly show, finding the exact solution of the system parameters is
difficult. So, we have studied time evolution of a lump of electron density in this environment
which is not the exact solution of the system. These governing equations are nonlinear. Thus,
plasma parameters (particle density, velocity, and electric potential) are not constant and
evolve nonlinearly. We have selected the initial harmonic shape for the density of electrons
as

ne(X = x− x0, Z = z − z0, t) = sech2X
2 + Z2

W 2
,

where x0, z0, and W 2 control the initial position and the width of electron density dis-
tribution, respectively. It can be noted that we have considered normalized values for all
parameters in this model. We have set up several simulations for fixed and unstable values of
the external magnetic field. Figure 1 presents the time evolution of electron density in a fixed
magnetic field B=2, while ux = uz = 0.4 and uy = 0.2. Figure 1 shows that two lateral small
amplitude wavelets are created on both sides of electron density in the direction of propaga-
tion. This figure also demonstrates that initial velocities change during the evolution. It is
clear that the chosen initial conditions are not the solution of equations, and it is the reason
for small distortions which will grow in the time. In another simulations, we have examined
the interaction of electron density with the non-uniform magnetic field B = 2+2e−0.5(x−5)2 ,
where X = x−5, as presented in Figure 2, and initial velocity is ux = uz = 0.4 and uy = 0.2.
Taking a Gaussian perturbation for the magnetic field which contains both increasing and
decreasing parts seems to be a good selection for examining the effects of a varying magnetic
field. Moreover, most of naturally created perturbations of magnetic fields are Gaussian [27].
As perturbation is not a function of \z” we do not see such phenomena in the \z” direction.
These figures clearly show that backward propagating waves are created when electron den-
sity reaches the region with a varying magnetic field. Please note that the initial function of
electron density is a symmetric function of variables \x” and \z”, while the magnetic field
perturbation is a function of \x” only. Therefore, the derivatives of electric potential in the
right-hand side of equations (5) and (7) are not symmetric. On the other hand, the magnetic
field affects the x and y components of wave velocity directly and that’s why we see that
the velocity in the direction of perturbation changes. The right panel of Figure 2 clearly
shows asymmetry in the \x” and \z” directions. The profile of created shock waves is a
complicated function of initial conditions of plasma parameters (initial electron density and
velocity components). Comparison of Figures 1 and 2 shows that these two lateral waves
let grow rapidly and amplify when localized electron density reaches the varying magnetic
field. But what happens for the electron density when it travels among a varying magnetic
field? It may be argued that a non-uniform magnetic field does not exert the same force
on electron particles, and therefore wave propagation due to particle oscillation will not be
stable. In general, it can be said that a non-uniform magnetic field can be introduced as a
new factor in causing shock-like perturbation in behavior of the wave.
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Figure 1: Time evolution of electron density at t = 0 (left) and t = 1600 (right) when
ux(t = 0) = uz(t = 0) = 0.5, uz(t = 0) = 0.1, and B = 2.

Figure 2: Time evolution of electron density at t = 0 (left) and t = 1600 (right) when

ux(t = 0) = uz(t = 0) = 0.5, uz(t = 0) = 0.1, and B = 2 + 2e−0.5(x−5)2 .

4 Conclusions

The present study studies the behavior of electron acoustic solitary waves in the plasmas
containing a cold electron fluid, hot thermal electrons and stationary ions under the influence
of a varying magnetic field. Our results in this paper show that the electron acoustic
solitary waves radiate some amount of energy during their traveling through the varying
magnetic field. Radiated energy emerges as backward moving oscillatory shock profiles. It
is interesting that we have not considered any dissipative sources like particle interaction
or viscosity effects. In fact, the space dependent magnetic field can be introduced as a
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new source of dissipation. We also find that the electron density waves move with a small
wavelet around the central electron density even if the external magnetic field is constant.
Our theoretical study confirms the existence of collisionless shocks driven by a laser-produced
magnetic piston [28].
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