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Abstract. We study the thermodynamics of an asymptotically AdS black hole in a
holographic Einstein-Maxwell-dilaton model describing a nonconformal plasma at finite
temperature and chemical potential. Using a logarithmic warp factor and working in
the grand canonical ensemble, we analyze the temperature-horizon relation, entropy
density, grand potential, pressure, energy density, and trace anomaly, demonstrating
the emergence of a first-order phase transition at low chemical potentials, a critical end
point, and a smooth crossover at higher chemical potentials. Thermodynamic response
functions, including the heat capacity and charge susceptibility, exhibit finite jumps at
the first-order transition, divergence at the critical end point, and broad maxima in the
crossover region. These results collectively establish a consistent and QCD-like phase
structure in this holographic framework.
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1 Introduction
The study of strongly-coupled gauge theories at finite temperature and chemical potential
remains a central challenge in theoretical physics. Among the frameworks developed to ad-
dress this challenge, gauge/gravity duality (also known as holography) [1–4] offers a powerful
tool, enabling insight into non-perturbative phenomena of QCD-like theories. In bottom-up
constructions of holographic QCD, one often encounters limitations: for example, many con-
fining phases in simplified models are insensitive to temperature or chemical potential, which
restricts the possibility to explore the full phase diagram including finite-density effects.

In this framework, some of Einstein-Maxwell-Dilaton (EMD) models such as that pro-
posed by Dudal and Mahapatra serve as a convenient phenomenological setup [5]. Confine-
ment that depends on temperature and chemical potential can be realised only in bottom-up
constructions that solve the Einstein equations from a well-defined gravitational action. In
its version with a logarithmic warp-factor ansatz, the model allows for a finite-temperature
confining branch (realized by a small black hole rather than thermal AdS) and produces a
rich phase structure: a first-order line at low chemical potential terminating at a critical
end point (CEP), and a supercritical region beyond it. This feature makes the model par-
ticularly suitable for exploring the thermodynamic properties of QCD-like matter in both
the confined and deconfined regimes [5,6].

This is an open access article under the CC BY license.

299



300 Leila Shahkarami

In our earlier work [6], we mainly investigated this model through a dynamical ob-
servable, the Schwinger effect, while briefly examining a few thermodynamic quantities for
comparison. Here we take the complementary approach of systematically analysing equilib-
rium thermodynamic probes of the phase structure within the same holographic background.
Specifically, we study the behaviour of the heat capacity at fixed chemical potential and
the number-density susceptibility χ2. Our goal is to track how each of these quantities
behaves across the first-order transition line, near the critical end point, and in the super-
critical region. We observe that different probes exhibit distinct signatures and behaviours
at transitions. We show that thermodynamic quantities such as the energy density, trace
anomaly, and charge density are sensitive to first- and second-order phase transitions, but
are unable to distinguish the crossover between confinement and deconfinement beyond the
critical end point. In contrast, the heat capacity and the second-order susceptibility which
are the first derivatives of the entropy and charge density, respectively, can signal the nature
of the transition: they may exhibit a discontinuity at a first-order transition, a divergence
at a second-order transition, and peaks whose sharpening depends on the proximity to the
CEP. By following these features as functions of temperature and chemical potential, we
identify how thermodynamic observables mark the crossover behaviour in the supercritical
region. These results provide an additional perspective on the holographic study of QCD-like
matter, presented in a compact and focused way.

Our presentation is structured as follows. In Section 2 we briefly review the holographic
model and set our conventions, emphasising the version of the warp-factor used here. Section
3 introduces the thermodynamic ensemble, lists the relevant thermodynamic variables and
defines the probes of interest, along with their expected qualitative behaviour in first-order,
critical and crossover regimes. Subsections 3.1 and 3.2 present our numerical results. We
close in Section 4 with a short summary and discussion.

2 The Holographic Model
To describe the strongly coupled plasma, we use the Einstein-Maxwell-Dilaton (EMD) setup,
a five-dimensional gravitational theory capable of capturing both confinement and decon-
finement features of QCD-like systems. The bulk dynamics are governed by

S =
1

16πG5

∫
d5x

√
−g

[
R− 1

2
(∂ϕ)2 − V (ϕ)− 1

4
Z(ϕ)FMNFMN

]
, (1)

where G5 is the five-dimensional Newton constant, V (ϕ) is the dilaton potential, Z(ϕ) the
gauge kinetic function, and FMN the field strength tensor of a gauge field AM .

The background fields take the ansatz

ds2 = e2A(z)

[
−f(z)dt2 + dx⃗ 2 +

dz2

f(z)

]
,

AM = (At(z), 0, 0, 0, 0),

ϕ = ϕ(z), (2)

with the AdS boundary at z = 0 and the horizon at z = zh where f(zh) = 0. We have set
the AdS radius to one, for simplicity.

The gauge kinetic function is taken to have the following simple form

Z(z) = e−cz2−A(z), (3)
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and the scale factor is chosen as

A(z) = −3

4
ln
(
az2 + 1

)
+

1

2
ln
(
bz3 + 1

)
− 3

4
ln
(
dz4 + 1

)
, (4)

which reproduces a confining behaviour at low temperature while allowing black-hole solu-
tions to exist throughout the temperature range. Unlike many other choices of scale factor,
which lead to a thermal-AdS geometry representing the confining phase at low tempera-
ture, this form provides a unified metric ansatz in which both the confined and deconfined
regimes can be described continuously, enabling a consistent thermodynamic analysis across
the phase transition.

We use the parameter values found in Ref. [5]:

c = 1.16 GeV2, a = 0.128889 GeV2, b = 0.3625 GeV3, d = 0.128889 GeV4. (5)

The temporal component of the gauge field encodes the boundary chemical potential when
expanded near the boundary position,

At(z) = µ− ρ z2 + · · · , (6)

where µ and ρ are the chemical potential and charge density, respectively. The regularity
condition at the horizon requires At(zh) = 0, which relates µ and ρ.

These boundary and regularity conditions ensure a well-defined configuration in the
grand-canonical ensemble, where T and µ are control parameters.

The background solution is obtained through the potential reconstruction method, where
the forms of A(z) and Z(ϕ) are specified, and the dilaton potential V (ϕ) is reconstructed
from the equations of motion [7–12]. This approach provides a self-consistent EMD solution
suitable for thermodynamic analysis of the phase structure. The full details of solving the
equations and the explicit forms of the functions V (ϕ), At(z), ϕ(z) and f(z) can be found
in [5].

3 Thermodynamic Analysis
In this section we present the thermodynamic analysis of the holographic model introduced
above. Our aim is to examine how the equilibrium quantities and their response functions
reflect the phase structure of the dual QCD-like theory. We first compute the basic ther-
modynamic variables obtained from the black hole geometry, including temperature, quark
number density, entropy density, pressure, energy density, trace anomaly, and the grand po-
tential, and analyse their behaviour with respect to temperature and chemical potential. In
particular, we show that the temperature and grand potential reveal the transition between
the confining and deconfining branches of solutions, while the temperature dependence of
the pressure, energy density, and trace anomaly agrees well with lattice QCD results. This
discussion, presented in Subsection 3.1, sets the thermodynamic background for our later
analysis. In Subsection 3.2, we turn to the thermodynamic response functions, such as the
heat capacity and the susceptibility χ2, which serve as sensitive probes of the different phases
and the critical region of the model.

3.1 Deconfinement transition from basic thermodynamic quantities
In this subsection, starting from the background EMD solutions obtained in the previous
section, we extract the physically charged black hole branches dual to nonconformal plasmas
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by analysing their basic thermodynamic quantities: the temperature, entropy density, quark
number density, and the grand canonical potential at fixed chemical potential.

The Hawking temperature is obtained from regularity of the Euclidean metric at the
horizon radius zh. Equivalently, it may be computed from the surface gravity κ. For the
present metric ansatz one finds

T =
κ

2π
= − 1

4π
∂zf(z)|z=zh

=
1

4π
(
1− e−cz2

h

)2 z3h e
−3A(zh)∫ zh

0
dxx3 e−3A(x)

×
[(

1− e−cz2
h

)2

+ 2cµ2

(
e−cz2

h

∫ zh

0

dxx3 e−3A(x) −
∫ zh

0

dxx3 e−3A(x)e−cx2

)]
, (7)

which relates the physical temperature to the slope of the blackening function at the horizon.
The entropy density follows from the Bekenstein–Hawking relation, evaluated on the

horizon:

s =
A

4G5V3

∣∣∣∣
z=zh

=
e3A(zh)

4G5z3h
, (8)

where A is the transverse area and V3 the spatial 3-volume. Both T and s are functions of
zh and the chemical potential µ.

In the grand canonical ensemble, the relevant thermodynamic potential is the grand
potential density,

Ω = ϵ− Ts− µρ, (9)

where ϵ is the energy density and ρ is the quark number density. The first law at fixed
spatial volume reads

dΩ = −s dT − ρ dµ, (10)

which reduces to

dΩ = −s dT, (11)

when the chemical potential is held fixed. Integrating this relation, and imposing the stan-
dard holographic renormalization condition Ω(zh → ∞) = 0, we obtain

Ω(T, µ) =

∫ ∞

zh

s(z′h, µ)
∂T

∂z′h
dz′h. (12)

Once T (zh) and Ω(T ) are determined for a given µ, the physically preferred branch for
each boundary state (T, µ) is the one with the lowest value of the grand potential.

In Figure 1, we show T (zh) for several values of µ (left panel) and the corresponding
grand potentials (right panel). For µ < µcep, with µcep ≈ 312.192MeV, the temperature
curve exhibits three branches: a stable large black hole at small zh, a stable small black hole
at large zh, and an intermediate unstable branch where T decreases with decreasing zh. As
µ increases, the unstable branch shrinks, and at µ = µcep the two stable branches merge at
an inflection point. The three-branch structure in T (zh) manifests as a swallowtail in the
grand potential (the right panel of Figure 1), which disappears for µ ⩾ µcep. Such behaviour
is characteristic of a first-order phase transition.

To illustrate the transition explicitly, Figure 2 displays T (zh) and Ω(T ) at µ = 200MeV
as an example of cases with µ < µcep. The dashed region of the black hole solutions
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Figure 1: The left and right graphs show the temperature versus the horizon radius and the
grand potential as a function of temperature for various values of the chemical potential,
respectively.
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Figure 2: The temperature versus the horizon radius (left) and the grand canonical potential
as a function of temperature (right), at µ = 200MeV. Dashed blue and red lines show the
results for the metastable solutions, dashed gray lines represent the results for the nonphysial
black hole solutions, and solid blue and red lines show the results for the ground state
solutions at temperatures below and above transition temperature Tcrit, respectively

contains two distinct parts. The first, presented by gray color, corresponds to the genuinely
unstable branch, lying between the minimum and maximum of T (zh), where the temperature
decreases as the black hole grows, i.e. as zh decreases. These solutions are thermodynamically
unstable and therefore unphysical. The second part, shown by dashed blue and red lines for
large and small black holes respectively, consists of metastable solutions, which are physical
in the sense that they satisfy all consistency conditions of the background but possess a
higher grand potential than the blue and red stable branches as seen in the right panel of
Figure 2. Consequently, although metastable configurations may exist at the same values
of (T, µ), they are never energetically preferred in the grand canonical ensemble. From this
figure and above discussion, we conclude that for sufficiently small µ there is a small/large
black hole first-order transition, ending at the critical end point at µcep. In the dual gauge
theory this corresponds to a first-order transition between the hadronic (confined) and quark-
gluon plasma (deconfined) phases.
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In what follows, we adopt the convention chosen for the graphs of Figure 2, for all ther-
modynamic plots: solid blue and red lines correspond to the energetically preferred solutions
below and above the transition temperature Tcrit, respectively. These are those physical so-
lutions with lowest Ω, corresponding respectively to the large and small stable black hole
branches. The gray dashed lines denote the unstable nonphysical branch, and blue and red
dashed curves represent, respectively, the metastable large and small black hole solutions.

From the grand potential we obtain the pressure density,

p = −Ω, (13)

and the energy density is determined through Eq. (9). Another important quantity is the
trace anomaly, the trace of the energy–momentum tensor,

∆ = ⟨T a
a⟩ = ϵ− 3p, (14)

which is nonzero due to the dilaton-induced breaking of conformal invariance.
To evaluate these quantities we also require the quark number density ρ. From the

holographic dictionary,

At(z) = µ− ρ z2 + · · · , (15)

so reading off the coefficient of z2 yields

ρ = ρ(µ, zh). (16)

Figure 3 displays the pressure density, energy density, trace anomaly, and entropy den-
sity (each scaled by the required powers of temperature) as functions of temperature for
various chemical potentials. At zero chemical potential, after the transition temperature,
the scaled pressure, energy, and entropy density increase monotonically with T and approach
constant values at large temperatures, in agreement with the Stefan–Boltzmann behaviour
of non-Abelian plasmas. At nonzero finite chemical potential, all these quantities approach
the same constants at large temperatures and independently of µ. The trace anomaly curves
merge and approach zero at sufficiently high T , signalling restoration of approximate con-
formal symmetry. The enhancement of all observables with increasing µ contrasts with the
behaviour reported in [13]. Notice that our zero-µ results are in qualitative agreement with
lattice QCD data [14].

A further feature visible in these figures is the jump in the energy density, the trace
anomaly and entropy density at Tcrit for µ < µcep, characteristic of a first-order transition.
This is shown more clearly in Figs. 4 and 5, where we present enlarged plots for µ = 200MeV
and µcep, containing the metastable and unstable solutions. Figure 4 shows the entropy
density scaled by T 3 at µ = 200MeV and at the critical end point µcep. For chemical
potentials below the CEP, the entropy exhibits a multivalued region near the transition
temperature. In the left panel, we see that the entropy density increases with T for both
the small and large black hole branches represented by the solid blue and red curves, as
expected for physical configurations. It also grows with temperature along the metastable
branches, shown by the blue and red dashed lines; these solutions are therefore physical
but are not favored energetically compared with the solid-line branches. The gray dashed
curve corresponds to the unstable branch, where the entropy decreases with temperature,
confirming that these solutions are not physical. At µ = µcep, the unstable and metastable
branches disappear and the two physical branches merge. In this case, the entropy density
increases monotonically with temperature for all remaining black hole solutions.
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Figure 3: The temperature scaled pressure (top left), energy density (top right), trace
anomaly (bottom left), and entropy density (bottom right). Chemical potential increases
from blue to red (from bottom to top in each graph) and obtaines, respectively, the values
(0, 200, µcep, 400) in units MeV.
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Figure 4: The entropy density for µ = 200MeV as an example of µ < µcep (left) and at µcep

(right). The line colors and styles follow the same convention described in Figure 2.

We depict the energy density and trace anomaly in Figure 5 to complete this discussion.
The unstable and metastable solutions, shown by dashed curves, connect the two stable
branches and are not thermodynamically preferred. At the critical end point, the stable
branches merge and the other branches collapse to a point; consequently the jumps in the
energy density and trace anomaly disappear, signalling a second-order transition. These
observables therefore serve as reliable diagnostics for distinguishing first- and second-order
behaviour. However, once the unstable branch disappears for µ > µcep, these quantities
vary smoothly and thus cannot be used to locate a putative crossover boundary between the
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Figure 5: The scaled energy density (top) and trace anomaly (bottom) for a sample chemical
potential below the CEP (left panels) and at µcep (right panels). The line colors and styles
follow the same convention described in Figure 2.

confined and deconfined phases in that region, as can be seen in Figure 3 for µ = 400MeV
as an example of the supercritical region.

3.2 Thermodynamic response functions
In this subsection we examine the behavior of the thermodynamic response functions, namely
the heat capacity at fixed chemical potential and the charge susceptibility, near the tran-
sition temperature. Since these quantities involve derivatives of the basic thermodynamic
observables, they are particularly sensitive to critical behavior and therefore serve as reliable
diagnostics of the phase structure.

The heat capacity at constant chemical potential and the charge susceptibility are defined
as

Cµ = −T

(
∂2Ω

∂T 2

)
µ

= T

(
∂s

∂T

)
µ

, (17)

χ =

(
∂ρ

∂µ

)
T

. (18)

Figure 6 displays the temperature dependence of the rescaled heat capacity for represen-
tative values of the chemical potential. For chemical potentials below the critical end point,
as shown in the left panel, the heat capacity is positive for both the thermodynamically
preferred solutions and the metastable ones, as expected for physical configurations. In
contrast, it becomes negative for the unstable solutions (gray dashed lines), confirming their
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Figure 6: The temperature scaled heat capasity µ = 0 (left) and µcep (right). The line colors
and styles follow the same convention described in Figure 2.
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Figure 7: The temperature scaled heat capasity for various values of chemical potential.

thermodynamic instability. A finite discontinuity appears at the transition temperature due
to the jump from the large black hole branch (solid blue line) to the small black hole branch
(solid red line). This finite jump in Cµ, inherited from the discontinuity in the entropy, is
the characteristic behavior of a first-order transition. At the critical end point, where only
stable physical branches remain, this discontinuity is replaced by an infinite peak at the
transition temperature, corresponding to the divergence of the heat capacity at Tcep.

The behavior changes qualitatively above the critical end point. As shown in Figure 7,
the heat capacity develops a finite peak that gradually smoothens as the chemical potential
increases. This continuous and nonsingular maximum is the typical signature of a crossover
transition. In this figure we show only the heat capacity of the physical ground-state solu-
tions.

The scaled charge density and charge susceptibility for various chemical potentials are
depicted in Figs. 8 and 9. For a representative chemical potential below µcep (left panels of
Figure 8), the charge density exhibits a multivalued structure, and its first derivative with
respect to µ shows a finite discontinuity. This behavior is consistent with a first-order phase
transition. Increasing the chemical potential to the critical value removes the multivalued
region: the large and small black hole branches (solid blue and red curves) join at a single
finite value of the charge density but with an infinite slope, leading to a divergence in the
charge susceptibility at the critical temperature.

For µ > µcep, as seen in Figure 9, the charge density cannot be used to sharply distinguish
the phases, since it varies smoothly across the transition region. Nevertheless, the charge
susceptibility develops a finite maximum for any chemical potential above the critical end
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Figure 8: The rescaled charge density (top) and charge susceptibility (bottom) as functions
of temperature for fixed values of the chemical potential; at µ = 200MeV as an example of
below the critical end point, µ < µcep, (left) and at µ = µcep (right). The line colors and
styles follow the same convention described in Figure 2.
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Figure 9: The rescaled charge density (left) and charge susceptibility (right) as functions of
temperature for various values of the chemical potential.

point. This peak provides a clear indication of the crossover between the confined and
deconfined regimes in this region of the phase diagram.

In summary, the heat capacity and the charge susceptibility offer sensitive probes of the
thermodynamic phase structure. They correctly capture the first-order behavior below the
critical end point, the divergence characteristic of the second-order critical point at µcep, and
the smooth crossover behavior for µ > µcep. Their behavior thus provides a coherent and
physically consistent description of the different types of transitions present in the system.
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4 Summary and concluding remarks
In this work, we have investigated the thermodynamics of an asymptotically AdS charged
black hole solution in a holographic Einstein-Maxwell-dilaton (EMD) model describing a
nonconformal plasma at finite temperature and chemical potential. Working in the grand
canonical ensemble with fixed T and µ, we analyzed a range of thermodynamic quantities
and response functions to characterize the equilibrium phases of the system. By employing a
logarithmic form for the warp factor of the five-dimensional metric, capturing the dependence
on temperature and chemical potential for both confined and deconfined phases, we obtained
a set of black hole solutions exhibiting rich phase behavior, including first-order, second-
order, and crossover transitions.

The thermodynamic structure obtained from the temperature, entropy density, grand
potential, pressure, energy density, and trace anomaly displays the expected QCD-like pat-
tern. At low chemical potentials, the multibranch behavior of T (zh) and the swallowtail
form of the grand potential signal a first-order transition between small and large black
holes. The unstable branch decreases with increasing µ and ends at a critical end point,
beyond which all thermodynamic quantities vary smoothly, indicating a crossover. The
pressure, energy density, entropy density, and trace anomaly behave consistently across the
phase diagram and approach the Stefan-Boltzmann limit at high temperature, where their
dependence on µ becomes negligible. The model shows qualitative agreement with lattice
QCD at zero chemical potential.

Thermodynamic response functions provide further support. The heat capacity and
charge susceptibility exhibit finite jumps at first–order transitions, diverge at the critical
end point, and develop smooth maxima for µ > µcep. While the charge density and entropy
density alone cannot identify the crossover region, the susceptibility and heat capacity retain
a characteristic peak that does. These features offer a unified picture of first-order, second-
order, and crossover regimes.

In summary, the constructed model provides a coherent holographic framework for ex-
ploring equilibrium properties of strongly coupled systems with broken conformal symmetry
and dynamical charge degrees of freedom at finite density. Future studies could investigate
the transport coefficients, critical dynamics near the CEP, and real-time response functions
in the crossover region. Another promising direction is the inclusion of scalar potentials
fitted to lattice data at finite chemical potentials or coupling the model to additional bulk
fields to capture flavor dynamics and chiral physics in a more realistic setting.
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