

Research Paper

The Relationship Between Recent and Old Star Formation in Dwarf Irregular Galaxies

Aysan Hemmatiortakand¹ · Reza Rezaei² · Sina Mehdizadeh Fard³

¹ Department of Physics, Sharif University of Technology, Tehran, Iran;

*E-mail: aysanhemmatiortakand@gmail.com

² Department of Physics, Sharif University of Technology, Tehran, Iran;

E-mail: reza.rezaei@sharif.edu

³ Department of Physics, Sharif University of Technology, Tehran, Iran;

E-mail: sinamfard1382@gmail.com

Received: 29 December 2025; Accepted: 9 January 2026; Published: 14 January 2026

Abstract. In this paper, we investigate the structural properties of local dwarf irregular galaxies, including optical scale lengths, position angles, and star formation rates, using data from the LITTLE THINGS survey. Our analysis is based on a sample of 24 dwarf irregular galaxies. Optical structural parameters are derived from B and V band images, while recent star formation rates are estimated using H_{α} data. Our goal is to identify correlations among properties associated with the same epoch, such as relationships between scale lengths measured in different optical bands, as well as to explore connections between different evolutionary stages. In particular, we examine how recent star formation relates to the $B - V$ color index, V-band luminosity and magnitude, and scale lengths as measured in optical wavelengths. We find that (A) there is a strong correlation between scale lengths measured in different optical bands and (B) Recent star formation rates show strong correlations with both galaxy magnitude and scale length in the visible filter, indicating that very recent star formation activity (on timescales of ~ 1 Myr) is closely linked to older star formation activity (on timescales of ~ 1 Gyr). The results for our sample are consistent and in good agreement with values reported in literature.

Keywords: Dwarf Irregular Galaxies, Star Formation Rate, LITTLE THINGS, Photometry, H_{α} Emission.

1 Introduction

Star formation in galaxies is commonly described using large-scale gravitational instability theory, where gas is expected to collapse and form stars once its density exceeds a critical threshold. While this theory successfully explains star formation in massive spiral galaxies, it is not able to predict how stars are formed in low-density systems, such as dwarf irregular galaxies, that do not reach the canonical critical value.

Dwarf irregular galaxies are low-mass, gas-rich systems that lack the structural characteristics of spiral or elliptical galaxies. Although individually faint, they constitute a significant fraction of the local galaxy population and can provide valuable information for

* Corresponding author

This is an open access article under the CC BY license.

studying star formation under conditions of low metallicity and low gas density. It is due to the importance of dwarf galaxies in understanding star formation at low gas densities that several surveys have compiled datasets of nearby dwarf systems, including the *LITTLE THINGS* sample, with the goal of characterizing their star-forming properties [1–3].

The star formation rate (SFR) measures the mass of gas a galaxy converts into stars per unit time, providing an overall picture of its ongoing growth. Star formation activity can be traced over a wide range of timescales using multiwavelength observations, as different tracers are sensitive to stellar populations of different ages. H_{α} emission is produced when ultraviolet radiation from young, massive O- and B-type stars ionizes the galaxy’s interstellar gas. H_{α} emission traces the most recent star-forming activity on timescales of ~ 10 Myr, whereas optical emission (e.g., UBV bands) reflects the integrated star formation history over Gyr timescales, and near-infrared (JHK) emission indicates the cumulative star formation throughout a galaxy’s life [13]. For instance, Hunter et al. (2012) [1] derived SFRs from the combined luminosity of H_{α} and R-band images, while Leroy et al. (2012) [4] estimated SFRs using H_{α} , UV, and infrared (IR) data.

In this work, we investigate the recent star formation activity of 24 nearby dwarf irregular galaxies using continuum-subtracted H_{α} imaging. The paper is organized as follows. In Sections 2 and 3, we present the observations and data reduction. The results are discussed in Section 4, followed by the Discussion and Summary in Sections 5 and 6, respectively.

2 Observations

The images of galaxies referenced in this paper were sourced from the (Local Irregulars That Trace Luminosity Extremes, The H_I Nearby Galaxy Survey) database, a multi-wavelength dataset comprising 37 Dwarf Irregular and 4 Blue Compact Dwarf Galaxies.

We analyzed 24 Dwarf Irregular Galaxies from this sample using U, B, V, and H_{α} filters, with observations conducted at Lowell Observatory. Our sample can be categorized into four morphological subtypes within the irregular category: Magellanic irregular galaxies (Im), Barred Magellanic irregulars (IBm), Barred Magellanic irregulars with spiral features (IB(s)m), and Intermediate-barred Magellanic irregulars with spiral features (IAB(s)m).

Two types of H_{α} images were used in this study: one including the stellar continuum and one continuum-subtracted. The continuum-subtracted frame was obtained by subtracting an image captured through a continuum-only off-band filter (centered at 6440 Å with FWHM 95 Å) from the original H_{α} exposure. It should be noted that the continuum-subtracted image still contains [NII] emission, as these lines at 6548 Å and 6583 Å lie within the passband of the narrow-band H_{α} filter (FWHM ≈ 30 Å).

A complete table of the objects and images discussed in this study is provided in Appendix A.

3 Data Reduction

Photometric scale lengths are tools for quantifying galaxy size and structure. These characteristic radii are typically defined either at specific surface-brightness thresholds—such as the B-band isophotal radius R_{25}^B [5,6] and the Holmberg radius R_H^B [3,7,8]—or derived from parametric model fits to the surface-brightness profile, such as the exponential scale length R_D^V [9,10] and the half-light radius $R_{1/2}^V$ [5].

We define R_{25}^B as the semi-major axis of the ellipse fitted to the $\mu_B = 25$ mag arcsec $^{-2}$ isophote on the extinction-corrected B-band image, using $E(B - V)_f$ from Hunter and

Elmegreen 2004 [2]. Similarly, R_H^B is defined as the semi-major axis of the ellipse fitted to the $\mu_B = 26.5 + 0.22 - 0.149(B - V)$ mag arcsec $^{-2}$ isophote, where $B - V$ is averaged over radii where the color is well defined [3,8]. In both cases, the uncertainty reflects the fitting error in the ellipse parameters derived from the respective isophotal contour.

For most disk-like galaxies, an exponential fit provides an adequate description of the outer surface-brightness profile, following de Vaucouleurs's two-component model of a $R^{1/4}$ bulge plus an exponential disk [5]. This paradigm was then tested and confirmed in the outer parts of spiral and S0 galaxies by Freeman [9], in dwarf ellipticals of the Fornax cluster by Caldwell & Bothun [11], and in low-surface-brightness dwarf irregulars of the Virgo cluster by Impey et al. [12]. By fitting an exponential function of the form

$$I(x) = \exp\left(-\frac{x - x_0}{R_D^V}\right), \quad (1)$$

where x_0 denotes the center of the light profile (see Figure 1), we determined R_D^V , with its uncertainty given by the 1σ width of the R_D^V distribution from $n = 1000$ Gaussian-noise bootstrap realizations.

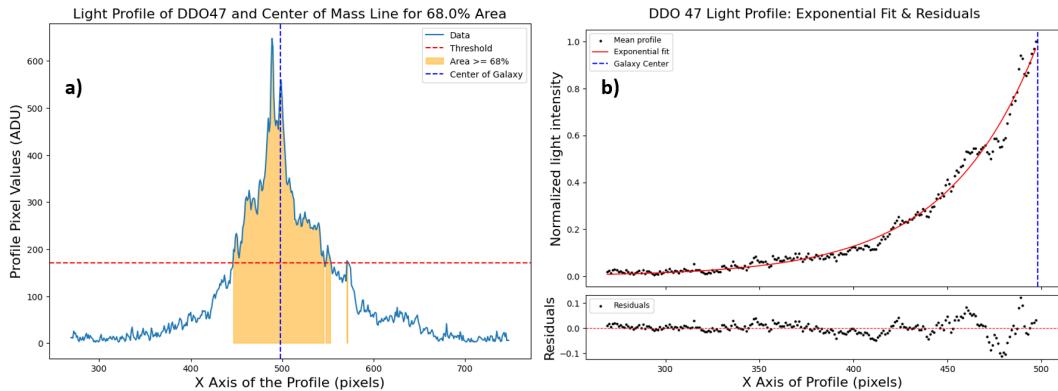


Figure 1: a) Light profile of DDO 47, plotted in ADU along the major axis. The shaded region contains 68% of the total integrated flux. The galaxy center is defined as the centroid of this region (dashed blue line), with the flux threshold used to define it shown in red. b) Normalized light profile of DDO 47 along the major axis, with exponential fit (red) and residuals. The galaxy center is marked by a dashed blue line.

To determine the half-light radius, we use the integrated intensity diagram of a galaxy based on a radial exponential intensity profile. The integral over pixels above a threshold I_l is

$$L(I_l) = 2\pi I_0 R_D^2 \left[1 - \frac{I_l}{I_0} - \ln\left(\frac{I_l}{I_0}\right) \right], \quad (2)$$

where I_0 and R_D are the central intensity and disk scale length. Assuming $\ln(I_l/I_0)$ is roughly constant at the galaxy edges yields

$$\frac{dL}{dI_l} \propto - \left[1 - \ln\left(\frac{I_l}{I_0}\right) \right], \quad (3)$$

implying a linear relation between L and I_l .

Including a uniform background I_b changes the derivative sharply,

$$\frac{dL}{dI_b} = \text{const} - \beta A \delta(I_l - I_b), \quad (4)$$

so for $I_l < I_b$, L is the total image intensity, and as I_l surpasses I_b , pixels above background define the galaxy contour. In practice, non-uniform noise broadens the spike in dL/dI_l near I_b , complicating L vs. I_l and underestimating size. We use this behavior to identify the outermost contour.

In the linear regime we fit a line, extracting slope a , intercept b , and uncertainty σ_b . We find the intersection of $L(I_l)$ with

$$aI_l + b + n_{\text{err}} \sigma_b, \quad (5)$$

fit an ellipse to that contour, and plot its semi-major axis R against n_{err} . The local minimum of $\frac{dR}{dn_{\text{err}}}$ marks a stable R giving the full-light radius and intensity. We then locate the contour where intensity is half the full-light value, fit an ellipse without constraining the position angle, and define its semi-major axis as the half-light radius $R_{1/2}^V$. The final values for all scale lengths and position angles are reported in Table 1 (see Section 4).

The original H_α frames, containing both the continuum and background stars, were used to align the continuum-subtracted images with those taken in the visible filter, ensuring a uniform pixel scale and resolution across all wavelengths. In this study, we use equation 15 [2] to calculate the SFR from recent star-forming activity, based on the total luminosity of H_α (L_{H_α}) emission in continuum-subtracted images,

$$\text{SFR} (M_\odot \text{ yr}^{-1}) = 5.96 \times 10^{-42} L_{H_\alpha} (\text{erg s}^{-1}). \quad (6)$$

The H_α luminosity, L_{H_α} , is derived from the galaxy's emission flux at this wavelength, F_{H_α} . Due to the noisy nature of the continuum-subtracted images, we adopted a threshold whereby only pixels with values ≥ 4 ADU contribute to F_{H_α} . Despite this cutoff, the images still exhibit a substantial amount of speckle noise. Since F_{H_α} is computed as an integral over all thresholded pixels, residual speckle noise introduces systematic uncertainty into the final luminosity estimate.

To address this, we evaluated four de-noising techniques to identify the most effective method for our dataset: the Median filter [14], Lee filter [15], Kuan filter [16], and the Non-Local Means (NLM) filter [17] (Figure 2).

Among the four techniques evaluated, the Non-Local Means (NLM) filter proved to be the most effective across our dataset, successfully reducing speckle noise while relatively preserving the original flux values.

The NLM denoising method is a type of non-local noise reduction algorithm that operates based on similarities between different regions of an image within a given radius. The algorithm used in this method has three variable parameters: p , defines the box dimensions used for noise removal, h , controls the intensity of speckle noise reduction, and d , which represents the radius within which the algorithm searches for similar patches.

The parameters we used are:

$$h = 1.15 \sigma, \quad p = 5, \quad d = 3,$$

where σ is the image standard deviation.

The error due to the NLM method was estimated by bootstrapping different sets of parameters. The galaxies' total flux in the H_α wavelength was then obtained by integrating

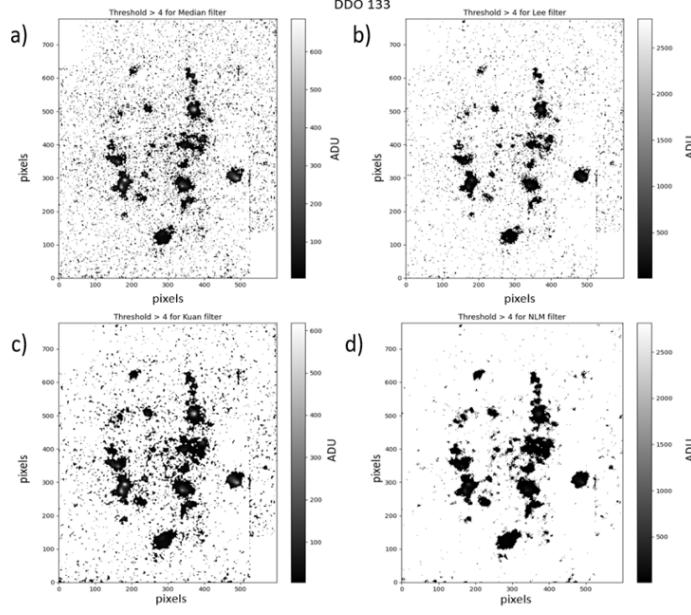


Figure 2: Results of applying four de-noising techniques to a continuum-subtracted image of DDO 133: a) Median filter, b) Lee filter, c) Kuan filter, and d) Non-Local Means (NLM) filter.

over all the pixels in their respective images after de-noising. The integration error was determined using the resampling with replacement method [18].

We corrected for internal reddening due to gas ($E(B-V)_g = 0.1$) and foreground reddening ($E(B-V)_f$), adopting values reported by Hunter and Elmegreen (2004) [2]. Both corrections were applied using the reddening law formulated by Cardelli, Clayton, and Mathis (1989) [19]. In this method, the wavelength-dependent extinction coefficient A_λ is computed using equation (7)

$$\left\langle \frac{A(\lambda)}{A(V)} \right\rangle = a(x) + \frac{b(x)}{R_V}, \quad (7)$$

where $x = 1/\lambda$ (in μm^{-1}) and $R_V = 3.1$, suitable for diffuse interstellar medium such as dwarf galaxies.

For the $H\alpha$ emission line ($\lambda = 6563 \text{ \AA}$), this corresponds to $x = 1.524 \mu\text{m}^{-1}$. The coefficients $a(x)$ and $b(x)$ are:

$$\begin{aligned} a(x) = & 1 + 0.17699y - 0.50477y^2 - 0.024247y^3 \\ & + 0.72089y^4 + 0.01979y^5 - 0.77530y^6 + 0.32999y^7, \end{aligned} \quad (8)$$

$$\begin{aligned} b(x) = & 1.14336y - 2.23836y^2 + 1.07233y^3 \\ & - 5.3834y^4 - 0.52215y^5 + 5.30260y^6 - 2.00909y^7, \end{aligned} \quad (9)$$

where y is defined as, $y = x - 1.82$.

To correct the observed flux F_{obs} for extinction, we applied the standard relation:

$$F_{\text{corr}} = F_{\text{obs}} \times 10^{0.4A(\lambda)}, \quad (10)$$

To compute the total galaxy luminosity ($L_{H\alpha}$), we first used the reported distances to each galaxy (see Table 1) along with the corresponding integrated exposure times (listed in Table 3) to obtain instrumental luminosities. These were then calibrated into physical units using star formation rate (SFR) values reported by Hunter and Elmegreen (2004) [2], from which we derived a calibration coefficient specific to each instrument used to capture the images in this study. Star formation rates were then calculated using equation 15 and reported in Table 2.

4 Results

The structural and photometric parameters derived in Section 3 are summarized in Table 1 which lists distances, foreground reddening, half-light and full-light position angles and scale-lengths in V and B filters for each galaxy.

Table 1: Scale-lengths and related parameters for our galaxy sample.

Object Name	D (Mpc) ^a	$E(B-V)_f$ ^b	PA1 (°) ^c	PA2 (°) ^d	$R_{1/2}^V$ (kpc) ^e	R_{25}^B (kpc) ^f	R_H^B (kpc) ^g	R_D^V (kpc) ^h
DDO 43	5.5	0.05	155.6	170.9	0.866 ± 0.026	0.947 ± 0.009	1.382 ± 0.005	0.372 ± 0.002
DDO 46	5.5	0.05	158.6	140.4	0.990 ± 0.130	0.961 ± 0.006	1.657 ± 0.009	0.704 ± 0.029
DDO 47	5.2	0.02	78	78.7	2.300 ± 0.428	1.966 ± 0.011	4.109 ± 0.026	1.389 ± 0.025
DDO 50	3.4	0.02	142.0	161.1	1.884 ± 0.028	3.056 ± 0.015	3.845 ± 0.015	0.870 ± 0.031
DDO 52	6.0	0.03	1.3	-4.3	0.368 ± 0.038	0.696 ± 0.005	2.029 ± 0.010	0.689 ± 0.011
DDO 63	3.8	0.01	0.8	30.7	1.640 ± 0.071	1.534 ± 0.040	2.409 ± 0.009	1.427 ± 0.150
DDO 69	0.8	0.00	77.8	70.3	2.891 ± 0.015	0.339 ± 0.002	0.562 ± 0.002	0.229 ± 0.025
DDO 87	6.7	0.00	102.8	208.9	0.237 ± 0.147	1.473 ± 0.074	1.970 ± 0.004	1.131 ± 0.061
DDO 101	9.0	0.01	82.6	69.1	1.653 ± 0.037	1.956 ± 0.011	2.930 ± 0.006	1.146 ± 0.039
DDO 126	4.9	0.00	19.4	40.1	1.056 ± 0.202	1.404 ± 0.007	2.745 ± 0.010	0.513 ± 0.019
DDO 133	6.1	0.00	0.8	1.7	2.720 ± 0.058	2.960 ± 0.003	4.147 ± 0.008	1.998 ± 0.099
DDO 154	4.3	0.01	149.7	144.4	0.832 ± 0.065	1.094 ± 0.010	1.785 ± 0.009	0.585 ± 0.125
DDO 155	2.2	0.01	126.3	51.0	0.333 ± 0.012	N/A	0.416 ± 0.002	0.154 ± 0.003
DDO 165	4.8	0.01	175.4	181.1	1.651 ± 0.063	2.237 ± 0.008	3.274 ± 0.007	1.515 ± 0.027
DDO 167	4.2	0.00	18.6	20.2	0.532 ± 0.034	N/A	0.584 ± 0.002	0.405 ± 0.007
DDO 168	3.5	0.00	30.1	28.7	1.135 ± 0.029	1.793 ± 0.008	2.643 ± 0.005	0.769 ± 0.015
DDO 187	2.5	0.00	144.9	157.1	0.445 ± 0.016	N/A	0.342 ± 0.004	0.287 ± 0.014
NGC 1156	7.8	0.17	148.9	136.8	2.966 ± 0.088	2.961 ± 0.015	3.803 ± 0.012	0.919 ± 0.103
NGC 1569	2.5	0.51	62.7	116.2	0.548 ± 0.009	0.628 ± 0.002	2.186 ± 0.006	0.191 ± 0.012
NGC 2366	3.2	0.04	148.5	144.3	1.946 ± 0.038	2.477 ± 0.014	4.257 ± 0.025	1.395 ± 0.002
NGC 4163	2.8	0.00	173.6	166.6	0.693 ± 0.010	0.772 ± 0.001	1.215 ± 0.002	0.244 ± 0.001
NGC 4214	2.9	0.00	40.9	49.2	1.205 ± 0.001	2.194 ± 0.004	3.617 ± 0.019	0.310 ± 0.004
UGC 8508	2.6	0.00	23.8	29.0	0.424 ± 0.010	0.690 ± 0.001	1.014 ± 0.001	0.286 ± 0.005
WLM	1.0	0.02	175.2	181.5	0.872 ± 0.023	1.171 ± 0.004	1.755 ± 0.003	0.749 ± 0.024

^a Distance to the object [2].

^b Foreground reddening [2].

^c Position Angle of the ellipse fitted to the half-light contour.

^d Position Angle of the ellipse fitted to the full-light contour.

^e $R_{1/2}^V$ is the half-light radius in the V band.

^f R_{25}^B is the radius at the 25 mag arcsec $^{-2}$ surface-brightness level in the reddening corrected B band.

^g R_H^B is the Holmberg radius based on the reddening corrected B band.

^h R_D^V is the exponential disk scale length in the V band.

ⁱ Not available. This galaxy's surface-brightness did not reach 25 mag arcsec $^{-2}$.

In Figure 3, we show the correlation between each pair of the scale lengths discussed in section 3. The strongest linear correlation is between R_{25}^B and R_H^B , where the Pearson coefficient is 0.91. This is expected, given that both quantities are derived from surface brightness measurements in the blue filter.

The strongest monotonic correlation is between R_{25}^B and $R_{1/2}^V$. Despite originating from different filters, both are sensitive to the size of the inner regions of the galaxy during a similar era.

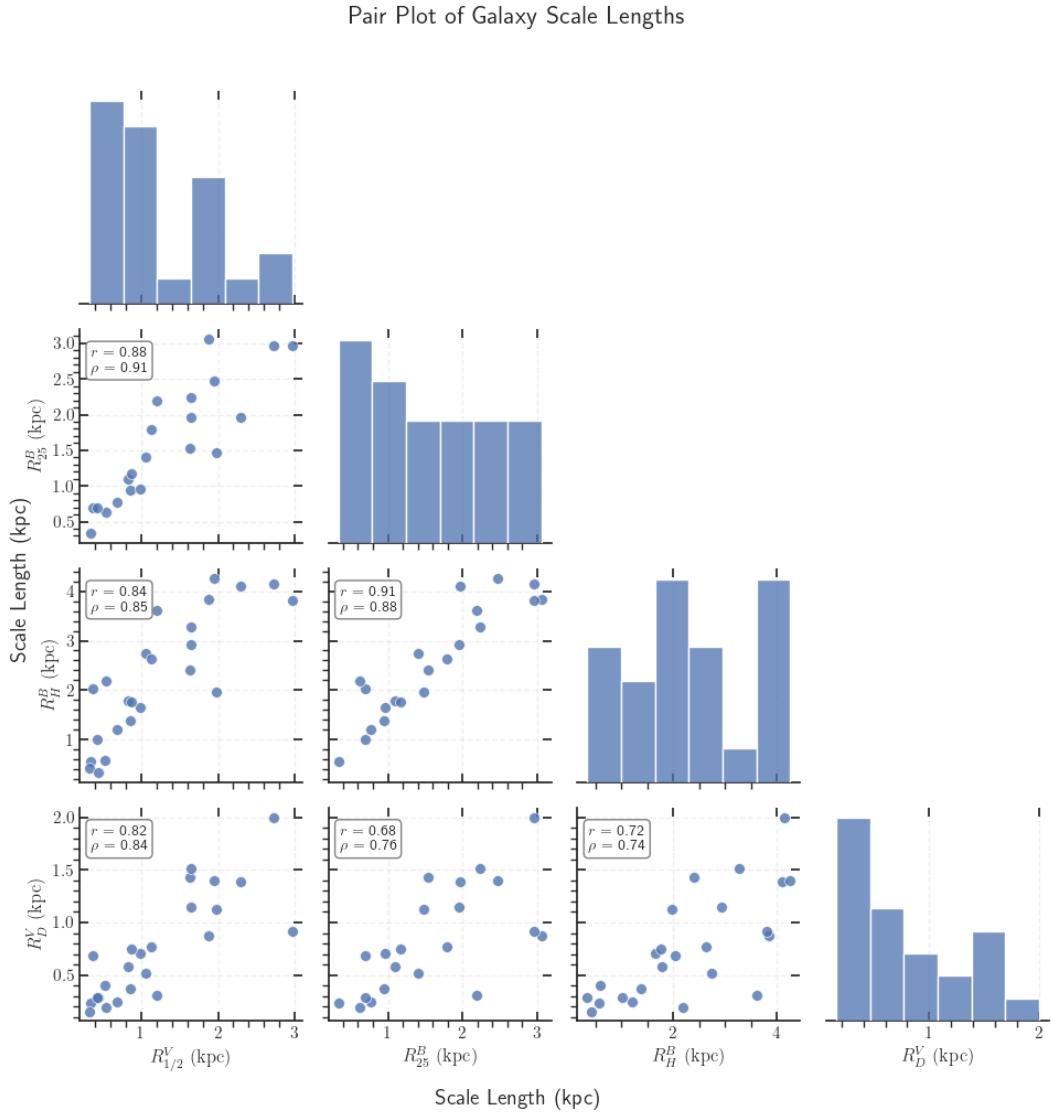


Figure 3: Cross-comparison of scale lengths $R_{1/2}^V$, R_{25}^B , R_H^B , and R_D^V (in kpc), analyzed using Pearson (r) and Spearman (ρ) correlation coefficients.

Both the half-light radius $R_{1/2}^V$ and the exponential scale length R_D^V are based on the assumption that dwarf galaxies exhibit an approximately exponential radial brightness profile. This theoretical similarity underlies the substantial correlation between these two parameters, where $r = 0.82$ and $\rho = 0.84$. Here, r is the Pearson correlation coefficient, which measures linear correlation, and ρ is the Spearman rank correlation coefficient, which captures monotonic relationships regardless of linearity.

Our model of a simple isotropic exponential profile suggests a constant ratio between the half-light radius and the exponential scale length. $R_{1/2}^V$ for our galaxy disk model can be calculated using the equations below, and equation 13 denotes the theoretical relationship

between the two values

$$L = \int_0^\infty 2\pi r I(r) dr = \int_0^\infty 2\pi r I_0 \exp\left(-\frac{r}{R_D^V}\right) dr = 2\pi I_0 (R_D^V)^2, \quad (11)$$

$$\begin{aligned} \frac{L}{2} &= \pi I_0 (R_D^V)^2 = \int_0^{R_{1/2}^V} 2\pi r I_0 \exp\left(-\frac{r}{R_D^V}\right) dr \\ &= 2\pi I_0 (R_D^V)^2 \left[1 - \exp\left(-\frac{R_{1/2}^V}{R_D^V}\right) \left(1 + \frac{R_{1/2}^V}{R_D^V}\right) \right], \end{aligned} \quad (12)$$

$$\exp\left(-\frac{R_{1/2}^V}{R_D^V}\right) \left(1 + \frac{R_{1/2}^V}{R_D^V}\right) = \frac{1}{2} \Rightarrow \frac{R_{1/2}^V}{R_D^V} \approx 1.68. \quad (13)$$

Figure 4 shows the histogram of the ratio $R_{1/2}^V/R_D^V$ for our galaxy sample. The theoretical value derived in Equation 13 is indicated by the red dashed line. Using the scale-length measurements reported in Table 1, we find a mean ratio of 1.802 with a standard deviation of 0.752. Overall, this agreement supports the validity of the exponential disk model, which provides a simple yet effective description of the galaxy intensity profile, successfully reproducing both the integrated intensity curve and the relationship between the exponential disk scale length, R_D^V , and the half-light radius, $R_{1/2}^V$.

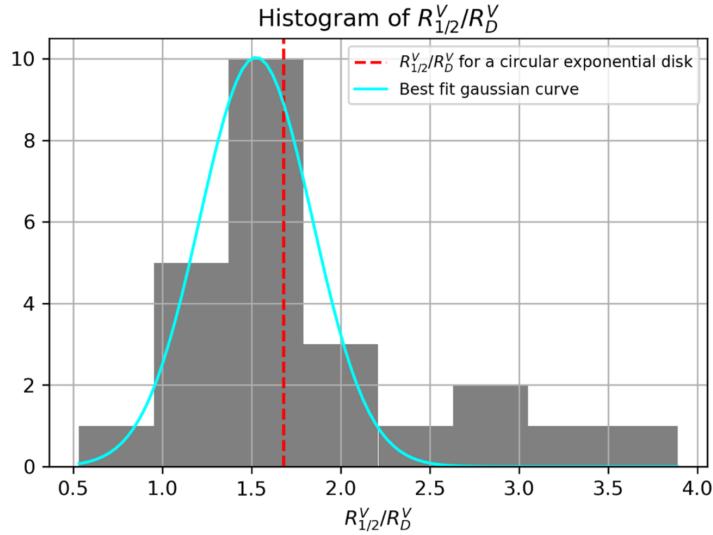


Figure 4: Histogram of the ratio $R_{1/2}^V/R_D^V$ for the galaxy sample. The red dotted line indicates the theoretical value expected for an exponential disk, while the cyan curve shows a Gaussian fit to the distribution.

Table 2 summarizes the star formation and atomic mass gas for our galaxy sample. It lists for each object the logarithm of the star formation rate $\log_{10} \text{SFR} \pm \text{Error}$ ($M_\odot \text{ yr}^{-1}$) and the logarithm of the total galactic atomic gas mass (Mass/ M_\odot) [2].

Figure 5 presents the correlation between the logarithm of recent star formation rates (SFR; ≈ 1 Myr) and four key galaxy properties: atomic gas mass (panel (a)), half-light

Table 2: Star formation and atomic gass mass for our galaxy sample.

Object Name	$\log_{10}\text{SFR} \pm \text{Error} (M_{\odot} \text{yr}^{-1})$	$\log_{10}(\text{Mass}/M_{\odot})^a$
DDO 43	-2.3042 ± 0.1410	8.10
DDO 46	-2.4526 ± 0.1407	8.26
DDO 47	-1.8070 ± 0.1179	8.73
DDO 50	-1.4680 ± 0.1632	8.99
DDO 52	-3.0816 ± 0.1324	8.10
DDO 63	-3.8183 ± 0.1773	8.31
DDO 69	-3.8183 ± 0.1565	7.13
DDO 87	-2.0934 ± 0.0655	8.37
DDO 101	-2.4146 ± 0.1213	7.40
DDO 126	-2.3666 ± 0.1417	8.27
DDO 133	-1.8812 ± 0.1521	8.71
DDO 154	-2.4684 ± 0.1444	8.62
DDO 155	-2.7664 ± 0.1556	7.13
DDO 165	-2.3876 ± 0.1401	8.32
DDO 167	-2.8590 ± 0.1419	7.39
DDO 168	-2.2641 ± 0.1611	8.48
DDO 187	-3.5539 ± 0.1383	7.48
NGC 1156	-0.6408 ± 0.1706	9.16
NGC 1569	-0.4364 ± 0.1757	8.12
NGC 2366	-1.1036 ± 0.1704	8.96
NGC 4163	-2.9662 ± 0.1631	7.31
NGC 4214	-0.8564 ± 0.0476	8.88
UGC 8508	-2.8380 ± 0.1315	7.54
WLM	-2.6982 ± 0.1600	7.90

^a Total galactic atomic gas mass. The H I mass has been multiplied by 1.34 to account for He [2].

radius in the V-band ($R_{1/2}^V$; panel (b)), apparent magnitude in the V-band (panel (c)), and the (B - V) color index (panel (d)). Each data point is shaped according to galaxy morphology, and color-coded by a third parameter, either the exponential disk scale length R_D^V or atomic gas mass.

In panel (a), recent star formation shows a strong positive correlation with atomic gas mass. This trend supports the expectation that galaxies with larger reservoirs of neutral hydrogen and helium are more capable of sustaining ongoing star formation. The color gradient, mapped to R_D^V , provides an additional sense of galaxy size and spatial extent.

Panels (b) and (c) examine how recent star formation activity relates to photometric properties in the V-band, which primarily trace older stellar populations (~ 1 Gyr). Panel (b) shows a moderate trend between star formation rate and half-light radius ($R_{1/2}^V$), suggesting that spatial extent may play a limited role in sustaining star formation. Panel (c), however, shows a clear and strong correlation between recent star formation rate and absolute V-band magnitude (M_V), with Spearman and Pearson coefficients of $\rho = -0.89$ and $r = -0.95$. The M_V values have been corrected for dust extinction using $A_V = 3.1 \times E(B - V)$. This result indicates that galaxies with brighter intrinsic optical luminosity tend to have higher current star formation rates.

In panel (d), the distribution exhibits a weak negative correlation between (B - V) color index and recent SFR. Redder galaxies (higher (B - V)) show systematically lower star formation rates, while bluer galaxies span a wide range of SFR values. This asymmetry

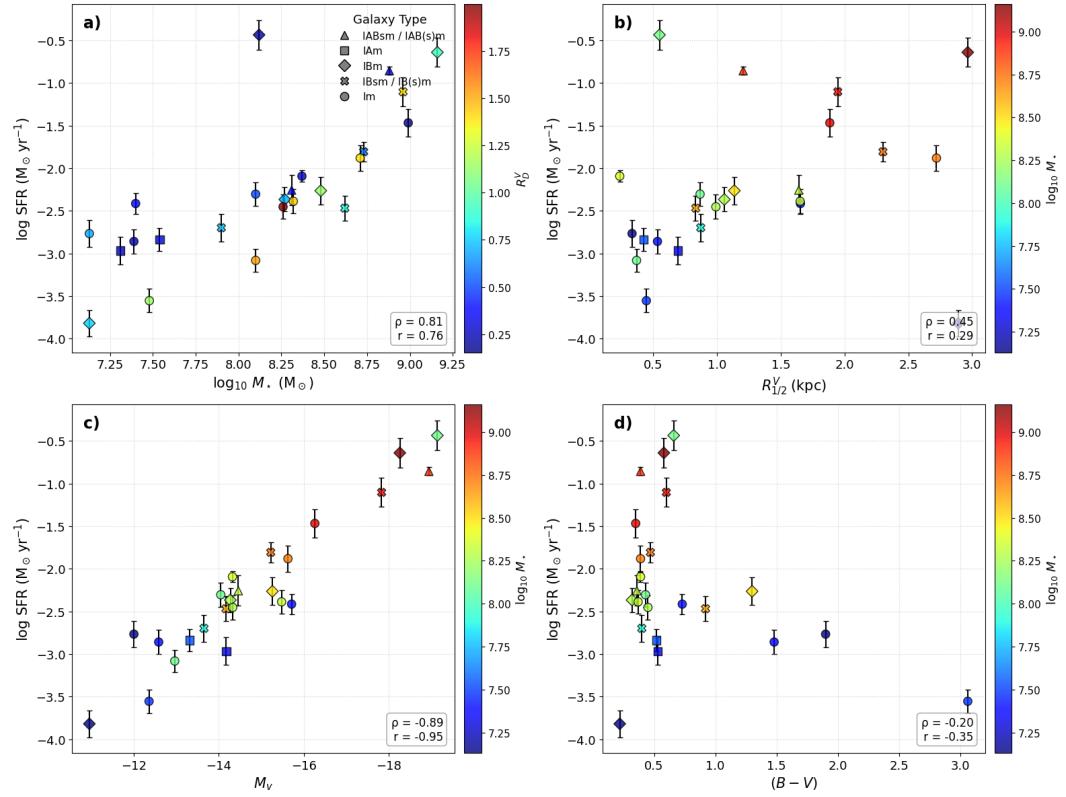


Figure 5: Comparisons between the logarithm of the star formation rate (SFR, in $M_{\odot} \text{ yr}^{-1}$) and key galaxy properties. Each panel shows individual galaxies with error bars and encodes two additional parameters: color and marker shape. (a) $\log(\text{SFR}/M_{\odot} \text{ yr}^{-1})$ vs. $\log(M_{*}/M_{\odot})$, colored by R_D^V (kpc). (b) $\log(\text{SFR}/M_{\odot} \text{ yr}^{-1})$ vs. $R_{1/2}^V$ (kpc), colored by $\log(M_{*}/M_{\odot})$. (c) $\log(\text{SFR}/M_{\odot} \text{ yr}^{-1})$ vs. V-band absolute magnitude M_V , colored by M_{*}/M_{\odot} . (d) $\log(\text{SFR}/M_{\odot} \text{ yr}^{-1})$ vs. $B - V$, colored by $\log(M_{*}/M_{\odot})$. In each panel, the Spearman rank correlation coefficient (ρ) and Pearson correlation coefficient (r) are annotated in the lower-right corner.

implies that although blue color is a necessary condition for high SFR, it is not sufficient and the sparsely populated region at high $(B - V)$ and high SFR further supports this interpretation. We acknowledge that this pattern may be influenced by the limited size of our sample, and plan to expand the dataset in future work to test the validity of this claim. It is worth noting that B-V color gradient map hints at different star formation epochs for each galaxy.

Furthermore, we examined the correlation between galaxy size and stellar mass. Figure 6 provides a visual representation of these relationships. Panel (a) shows the half-light radius, R_H^B , as a function of galaxy mass, $\log_{10}(M_{*}/M_{\odot})$, while Panel (b) explores the corresponding relation between R_{25}^B and galaxy mass. In both panels, we find a positive correlation between galaxy radius and stellar mass, as quantified by both Pearson and Spearman correlation coefficients. The solid lines indicate linear least-squares fits to the data, highlighting the overall trend of increasing galaxy size with increasing stellar mass.

The same strong correlation can not be found for $R_{1/2}^V$ and R_D^V since they are dependent

on many more factors other than just the total luminosity of the galaxy such as galaxy concentration in the center and density profile.

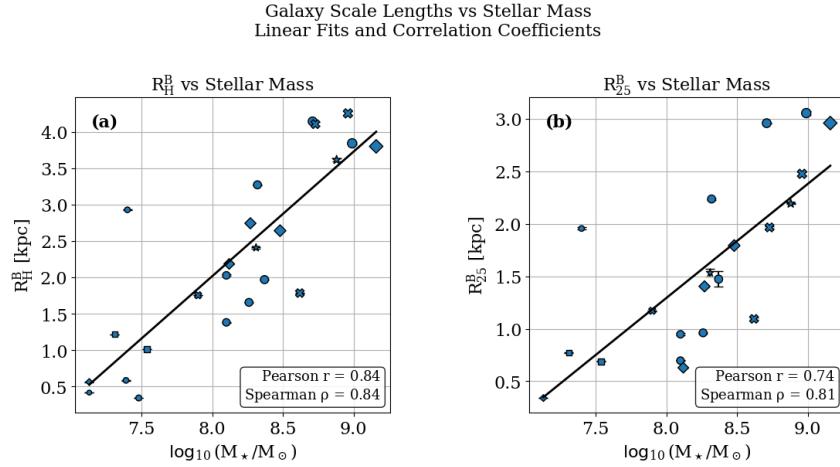


Figure 6: Correlation between galaxy size and stellar mass. Panel (a) shows the relation between the half-light radius R_H^B and galaxy mass, $\log_{10}(M_*/M_\odot)$, while Panel (b) presents the corresponding relation for R_{25}^B . In both panels, a positive correlation is observed, quantified using Pearson and Spearman correlation coefficients, with solid lines indicating linear least-squares fits.

5 Discussion

We compared our galaxy scale lengths (Table 1) with the corresponding values reported by Hunter and Elmegreen (2006) [3]. A visual representation of these comparisons is shown in Figure 7 as scatter plots. Panel (a) presents our measurements of the half-light radius against the reported values, Panels (b), (c), and (d) show comparisons for R_{25}^B , R_H^B , and the exponential radius to their respective, published values. The symbol sizes and shapes were chosen to represent the galaxy mass and type of each object. In all cases, our results demonstrate good consistency with those of Hunter and Elmegreen, indicating that our methodology is in agreement with established literature. In addition, we were able to determine values not reported in the original paper: R_{25}^B for DDO 87 and NGC 1569, and R_H^B for DDO 46 and NGC 1569.

The H_α star formation rate (SFR) calibration has evolved over the years in response to stellar population models, IMF assumptions, and the study of different galaxy types. The relation between L_{H_α} and recent star formation rate was introduced by Kennicutt in 1998 [20] for galaxies with continuous star formation, a Salpeter IMF [23], and typical spiral metallicities

$$\text{SFR} (M_\odot \text{ yr}^{-1}) = 7.9 \times 10^{-42} L_{H_\alpha} (\text{erg s}^{-1}). \quad (14)$$

Recognizing that dwarf irregular galaxies are metal-poor, have low dust content, and often very low SFRs, Hunter and Elmegreen [2] adapted Kennicutt's relation to these systems, lowering the coefficient to

$$\text{SFR} (M_\odot \text{ yr}^{-1}) = 5.96 \times 10^{-42} L_{H_\alpha} (\text{erg s}^{-1}). \quad (15)$$

Comparison of Scale Lengths vs. Values Reported in Hunter and Elmegreen 2006,
Sizes Determined by Galaxy Mass

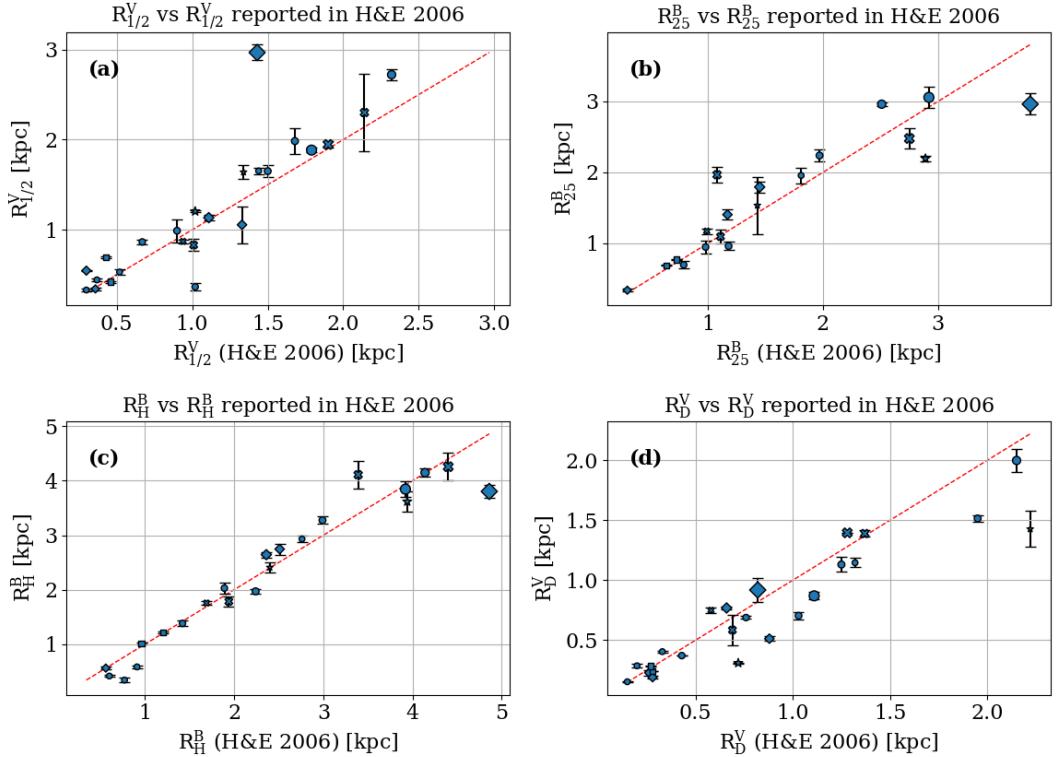


Figure 7: Comparison of scale lengths with Hunter & Elmegreen (2006) [2]: (a) $R_{1/2}^V$, (b) R_{25}^B , (c) R_H^B , (d) R_D^V , each against the published values. The size of each symbol is dictated by its $\log_{10}(\text{Galaxy mass})$.

to better reflect the ionizing photon production, extinction characteristics, and low-mass stellar populations of dwarf irregular galaxies. This calibration assumes a Salpeter IMF appropriate for dwarfs, where the lower bound for stellar mass is $0.1 M_\odot$ and the upper bound is set to $100 M_\odot$ [2]. Subsequent studies, including Murphy et al. (2011) [21] and Hao et al (2011) [22], have updated the calibration using modern stellar population synthesis models and a Kroupa IMF [24], which produce similar constants ($\sim 5-6 \times 10^{-42} M_\odot \text{ yr}^{-1}$ per erg s $^{-1}$). Since Equation 15 has been optimized specifically for dwarf irregular galaxies, and to maintain consistency, we adopted this calibration throughout our analysis.

We compared our recent star formation rate (SFR) measurements with those reported by Hunter and Elmegreen (2004) [2]. Figure 8 shows this comparison, where our $\log_{10}\text{SFR}$ values from Table 2 are plotted against the literature. Symbol sizes scale with galaxy mass, colors indicate the instrument used to obtain the H_α image, and shapes distinguish galaxy types. Our results demonstrate strong consistency with the values reported in their study (Pearson $r = 0.98$).

We further compared our SFR measurements with those of Karachentsev and Kaisina (2013) [25], who also studied star formation in nearby dwarf irregulars. Eighteen galaxies

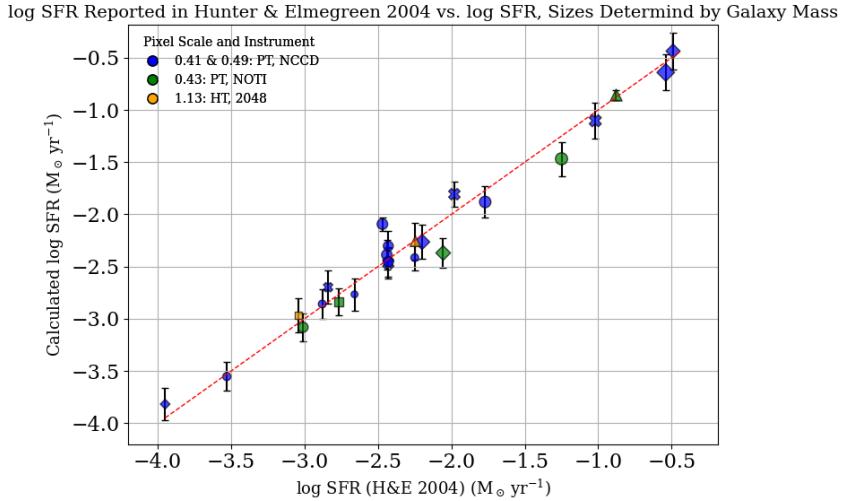


Figure 8: Comparison of our \log_{10} SFR values with those reported by Hunter and Elmegreen (2004). Symbol sizes scale with $\log_{10}(\text{Galaxy mass})$, colors denote instrument, and shapes represent galaxy type.

are common to both samples. Unlike the Hunter & Elmegreen comparison, the H_{α} imaging in their work originates from independent databases and telescopes, making this comparison particularly significant. All the observations were carried out at the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS) with the Bol'shoi Teleskop Azimutal'nyi (BTA) 6-m telescope equipped with the SCORPIO focal reducer [26]; a 2048×2048 CCD provides a $\sim 6.1'$ field of view with a scale of $0.18'' \text{ pixel}^{-1}$ and an average seeing of $\sim 1.8''$. The images in $H_{\alpha} + [\text{N II}]$ were obtained through a narrow-band interference filter H_{α} ($\lambda_{\text{eff}} = 6555$, $\Delta\lambda = 75$), and the stellar continuum was removed using two medium-band filters bracketing H_{α} (SED607: $\lambda = 6063$, $\Delta\lambda = 167$; SED707: $\lambda = 7063$, $\Delta\lambda = 207$) [27]. Typical exposure times were 2×600 s in H_{α} and 2×300 s in the continuum. It is important to note that Karachentsev and Kaisina report SFRs using the Kennicutt calibration (Equation 14), whereas we adopt the dwarf-optimized Equation 15; nonetheless, the resulting SFRs are in excellent agreement (Pearson $r = 0.96$). Figure 9 presents this comparison, with symbol sizes scaling with galaxy mass and shapes indicating galaxy type. The strong consistency across independent datasets attests to the robustness of our SFR determinations.

6 Summary

In this study, we used data from optical and H_{α} wavelengths to better understand the star formation process in local Dwarf Irregular galaxies. We find that scale lengths derived from V -band images, including the half-light radius and exponential disk scale length, show strong correlations not only with each other but also with scale lengths calculated from B -band data, such as R_B^{25} and the Holmberg radius (Fig. 7). We also compare recent star formation rates, traced by H_{α} emission, with optical properties such as the half-light radius and V -band magnitude.

Our results are compared with Hunter & Elmegreen (2004, 2006) [2,3], with whom we

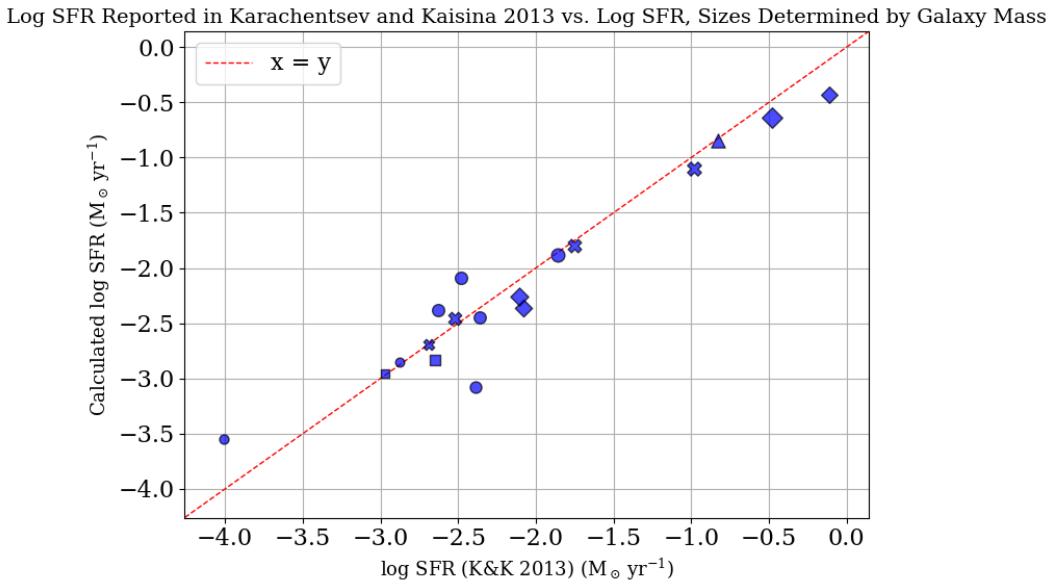


Figure 9: Comparison of our $\log(\text{SFR})$ values with those reported by Karachentsev and Kaisina [25]. Symbol sizes scale with $\log_{10}(\text{Galaxy mass})$ and Symbols denote galaxy type. For a description of symbols, please refer to 5

share the LITTLE THINGS dataset, as well as with Karachentsev & Kaisin (2013) [25], who employed independent H_{α} data [27]. Our analysis reveals a strong correlation between recent SFR and V -band properties, suggesting a link between gas dynamics and stellar scale lengths. This correlation implies that recent star formation over the past few million years is connected to older star formation activity (~ 1 Gyr), hinting that the formation of older stars may influence or trigger new star formation in dwarf irregular galaxies.

Authors' Contributions

All authors have the same contribution.

Data Availability

All FITS files used in this study are publicly available on the National Radio Astronomy Observatory (NRAO) website.

Conflicts of Interest

The authors declare that there is no conflict of interest.

Ethical Considerations

The authors have diligently addressed ethical concerns, such as informed consent, plagiarism, data fabrication, misconduct, falsification, double publication, redundancy, submission, and other related matters.

Funding

This research did not receive any grant from funding agencies in the public, commercial, or nonprofit sectors.

Appendix A: Observational Details

Table 3: Observational details for all the objects utilized for this paper.

Object	Type	Filter	Exposure (s)	Instrument	Pixel Scale (")
DDO 43	Im	B	1800	LO1.1m	1.13
		V	900	LO1.1m	1.13
	H _α	3000	PT, FP, NCCD		0.49
		H _α (cont. sub)	3000	PT, FP, NCCD	0.49
DDO 46	Im	B	1800	LO1.1m	1.13
		V	1200	LO1.1m	1.13
	H _α	3000	PT, FP, NCCD		0.49
		H _α (cont. sub)	3000	PT, FP, NCCD	0.49
DDO 47	IB(s)m	B	1800	LO1.1m	1.13
		V	1200	LO1.1m	1.13
	H _α	3000	PT, FP, NCCD		0.49
		H _α (cont. sub)	3000	PT, FP, NCCD	0.49
DDO 50	Im	B	2400	LO1.1m	1.13
		V	1200	LO1.1m	1.13
	H _α	1800	PT, 4:1, NOTI		0.43
		H _α (cont. sub)	1800	PT, 4:1, NOTI	0.43
DDO 52	Im	B	1800	LO1.1m	1.13
		V	900	LO1.1m	1.13
	H _α	2700	PT, 4:1, NOTI		0.43
		H _α (cont. sub)	2700	PT, 4:1, NOTI	0.43
DDO 63	IAB(s)m	B	1900	LO1.1m	1.13
		V	1200	LO1.1m	1.13
	H _α	1800	HT, 2048		1.13
		H _α (cont. sub)	1800	HT, 2048	1.13
DDO 69	Ibm	B	2400	LO1.1m	1.13
		V	1200	LO1.1m	1.13
	H _α	3000	PT, FP, NCCD		0.49
		H _α (cont. sub)	3000	PT, FP, NCCD	0.49
DDO 87	Im	B	2400	LO1.1m	1.13
		V	1200	LO1.1m	1.13
	H _α	3000	PT, FP, NCCD		0.49
		H _α (cont. sub)	3000	PT, FP, NCCD	0.49
DDO 101	Im	B	1800	LO1.1m	1.13
		V	1200	LO1.1m	1.13
	H _α	2400	PT, FP, NCCD	0.49	

Continued on next page

Table 3 – Continued from previous page

Object	Type	Filter	Exposure (s)	Instrument	Pixel Scale (")
DDO 126	IBm	H_{α} (cont. sub)	2400	PT, FP, NCCD	0.49
		B	1800	LO1.1m	1.13
		V	1200	LO1.1m	1.13
		H_{α}	1800	PT, 4:1, NOTI	0.43
DDO 133	Im	H_{α} (cont. sub)	1800	PT, 4:1, NOTI	0.43
		B	1800	LO1.1m	1.13
		V	1200	LO1.1m	1.13
		H_{α}	2700	PT, FP, NCCD	0.49
DDO 154	Ibsm	H_{α} (cont. sub)	2700	PT, FP, NCCD	0.49
		B	1200	LO1.1m	1.13
		V	600	LO1.1m	1.13
		H_{α}	2700	PT, 4:1, NCCD	0.41
DDO 155	Im	H_{α} (cont. sub)	2700	PT, 4:1, NCCD	0.41
		B	1800	LO1.1m	1.13
		V	1200	LO1.1m	1.13
		H_{α}	1800	PT, 4:1, NCCD	0.41
DDO 165	Im	H_{α} (cont. sub)	1800	PT, 4:1, NCCD	0.41
		B	1800	LO1.1m	1.13
		V	1200	LO1.1m	1.13
		H_{α}	2300	PT, FP, NCCD	0.49
DDO 167	Im	H_{α} (cont. sub)	2300	PT, FP, NCCD	0.49
		B	1200	LO1.1m	1.13
		V	900	LO1.1m	1.13
		H_{α}	3000	PT, FP, NCCD	0.49
DDO 168	IBm	H_{α} (cont. sub)	3000	PT, FP, NCCD	0.49
		B	1800	LO1.1m	1.13
		V	1200	LO1.1m	1.13
		H_{α}	2400	PT, FP, NCCD	0.49
DDO 187	Im	H_{α} (cont. sub)	2400	PT, FP, NCCD	0.49
		B	1800	LO1.1m	1.13
		V	1200	LO1.1m	1.13
		H_{α}	3000	PT, FP, NCCD	0.49
NGC 1156	IBm	H_{α} (cont. sub)	3000	PT, FP, NCCD	0.49
		B	1800	LO1.1m	1.13
		V	1200	LO1.1m	1.13
		H_{α}	3000	PT, FP, NCCD	0.49
NGC 1569	IBm	H_{α} (cont. sub)	3000	PT, FP, NCCD	0.49
		B	180	KPNO4m	0.42
		V	60	KPNO4m	0.42
		H_{α}	3000	PT, FP, NCCD	0.49
NGC 2366	IB(s)m	H_{α} (cont. sub)	3000	PT, FP, NCCD	0.49
		B	480	KPNO4m	0.42
		V	180	KPNO4m	0.42
		H_{α}	1800	PT, FP, NCCD	0.49
NGC 4163	IAm	H_{α} (cont. sub)	1800	PT, FP, NCCD	0.49
		B	1800	LO1.1m	1.13
		V	1800	LO1.1m	1.13
		H_{α}	1800	HT, 2048	1.13
		H_{α} (cont. sub)	1800	HT, 2048	1.13

Continued on next page

Table 3 – Continued from previous page

Object	Type	Filter	Exposure (s)	Instrument	Pixel Scale (")
NGC 4214	IAB(s)m	B	480	KPNO4m	0.42
		V	180	KPNO4m	0.42
		H_{α}	900	PT, 4:1, NOTI	0.43
		H_{α} (cont. sub)	900	PT, 4:1, NOTI	0.43
UGC 8508	IAm	B	1800	LO1.1m	1.13
		V	1200	LO1.1m	1.13
		H_{α}	1800	PT, 4:1, NOTI	0.43
		H_{α} (cont. sub)	1800	PT, 4:1, NOTI	0.43
WLM	IB(s)m	B	2400	LO1.1m	1.13
		V	1200	LO1.1m	1.13
		H_{α}	3000	PT, FP, NCCD	0.49
		H_{α} (cont. sub)	3000	PT, FP, NCCD	0.49

Values reported from Hunter and Elmegreen (2006) [3] and Hunter and Elmegreen (2004) [2] for optical and H_{α} data, respectively.

References

- [1] Hunter, D. A., Ficut-Vicas, D., Ashley, T., et al. 2012, AJ, 144, 134.
- [2] Hunter, D. A., & Elmegreen, B. G. 2004, AJ, 128, 2170.
- [3] Hunter, D. A., & Elmegreen, B. G. 2006, ApJS, 162, 49.
- [4] Leroy, A. K., Bigiel, F., de Blok, W. J. G., Bolatto, A. D., Brinks, E., Madore, B., & Murphy, E. 2012, AJ, 144, 3.
- [5] de Vaucouleurs, G. 1959, in Handbuch der Physik, 53, 275.
- [6] de Vaucouleurs, G., de Vaucouleurs, A., Corwin, H. G., Buta, R. J., Paturel, G., & Fouqué, P. 1991, Third Reference Catalogue of Bright Galaxies (New York: Springer) (RC3).
- [7] Holmberg, E. 1958, Meddelanden från Lunds Astronomiska Observatorium, Ser. II, 136, 1.
- [8] de Vaucouleurs, G., de Vaucouleurs, A., & Corwin, H. G. 1976, Second Reference Catalogue of Bright Galaxies (Austin: Univ. Texas Press) (RC2).
- [9] Freeman, K. C. 1970, ApJ, 160, 811.
- [10] de Jong, R. S. 1996, A&AS, 118, 557.
- [11] Caldwell, N., & Bothun, G. D. 1987, AJ, 94, 1126.
- [12] Impey, C., Bothun, G., & Malin, D. 1988, ApJ, 330, 634.
- [13] Kennicutt, R. C., Jr. 1998, ARA&A, 36, 189.

- [14] Rosenfeld, A., & Kak, A. C. 1976, Digital Picture Processing (New York: Academic Press).
- [15] Lee, J. S. 1980, IEEE Trans. Pattern Anal. Mach. Intell., 2, 165.
- [16] Sharma, A., Bhateja, V., & Tripathi, A. 2016, in Information Systems Design and Intelligent Applications, ed. S. C. Satapathy et al., Advances in Intelligent Systems and Computing, Vol. 434 (New Delhi: Springer), 663.
- [17] Buades, A., Coll, B., & Morel, J.-M. 2005, in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), 2, 60.
- [18] Efron, B. 1979, Ann. Statist., 7, 1.
- [19] Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245.
- [20] Kennicutt, R. C., Jr. 1998, ARA&A, 36, 189.
- [21] Murphy, E. J., Condon, J. J., Schinnerer, E., Kennicutt, R. C., Calzetti, D., Armus, L., et al. 2011, ApJ, 737, 67.
- [22] Hao, C.-N., Kennicutt, R. C., Jr., Johnson, B. D., Dale, D. A., Calzetti, D., Moustakas, J., et al. 2011, ApJ, 741, 124.
- [23] Salpeter, E. E. 1955, ApJ, 121, 161.
- [24] Kroupa, P. 2001, MNRAS, 322, 231.
- [25] Karachentsev, I. D., Kaisin, S. S. 2013, AJ, 146, 46.
- [26] Afanasiev, V. L., & Moiseev, A. V., 2005, Astronomy Letters, 31, 194.
- [27] Karachentsev, I. D., Kaisin, S. S., 2010, AJ, 140, 1241.