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Abstract. We study a five-dimensional braneworld cosmology in the Palatini for-
malism, where a bulk scalar field couples non-minimally to the Ricci scalar. The bulk
contains a delta-function brane with Z2 symmetry that confines standard matter fields.
We derive generalized field equations and obtain the effective Friedmann and Raychaud-
huri equations on the brane, which display key differences from the metric formulation.
Non-minimal coupling of Palatini Ricci scalar and scalar field corrections significantly
modify both early- and late-time dynamics: in the high-energy regime, the non-minimal
coupling reshapes the effective scalar potential, altering slow-roll parameters and the
duration of inflation—negative couplings flatten the slope and enhance inflation, while
positive couplings steepen it, with further modulation from the bulk cosmological con-
stant. To test the viability of the model, we constrained its parameter space using the
Planck 2018 datasets to obtain the observationally viable ranges for the model’s pa-
rameter. At low energies, the system approaches scalar-dominated or vacuum de Sitter
solutions, where the effective Newton constant and cosmological constant emerge from
the interplay of brane tension, scalar potential, and bulk contributions. This structure
naturally realizes a generalized Randall–Sundrum fine-tuning and supports late-time
acceleration.

Keywords: Braneworld, Cosmology, Palatini Formalism, Non-Minimal Coupling, Infla-
tion, Dark Energy.

1 Introduction
Theories of gravitation beyond General Relativity (GR) have been extensively explored as
possible frameworks to address open problems in cosmology, such as the origin of inflation,
the nature of dark energy, and the unification of gravitational and quantum phenomena.
Among these, the modified gravity theories in Palatini formalism have attracted a lot of
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attentions. In the Palatini approach, the metric and affine connection are treated as in-
dependent variables in the action, leading to field equations that differ from those of the
standard metric formalism for nonlinear extensions of GR. This framework often yields
second-order field equations even for higher-order curvature invariants, thereby avoiding
certain instabilities such as the Ostrogradsky ghost [1,2]. Moreover, the Palatini formalism
can introduce effective matter–curvature couplings that significantly alter the dynamics of
scalar fields in gravitational theories [3–5].

Scalar fields play a central role in modern cosmology, both as drivers of early-universe
inflation and as candidates for late-time cosmic acceleration. When coupled minimally
to curvature, scalar fields yield dynamics governed solely by their potential and kinetic
terms. However, in many high-energy theories, including those arising from dimensional
reduction of higher-dimensional gravity or string-inspired models, scalar fields naturally
couple non-minimally to curvature via terms of the form f(ϕ)R [6,7], where f(ϕ) is an
arbitrary function of the scalar field. Such couplings can arise as quantum corrections,
from renormalization in curved spacetime, or from the effective low-energy limits of more
fundamental theories [8,9]. Non-minimal couplings modify the gravitational sector and can
generate rich phenomenology, including variations in the effective gravitational constant,
new inflationary mechanisms [10,11], and late-time acceleration without introducing exotic
matter [12,13].

In higher-dimensional settings, scalar fields in the bulk have been explored in a va-
riety of contexts, from stabilization of extra dimensions [14] to brane inflation [15] and
domain-wall cosmologies [16]. Minimal coupling cases have been widely examined [17,18],
while non-minimally coupled bulk scalars have received comparatively less attention despite
their potential for rich gravitational dynamics [19,20]. The introduction of such couplings
within the Palatini framework can furthur modify the scalar field dynamics by introducing
curvature-dependent terms into the effective potential.

Braneworld scenarios, inspired in part by developments in string theory and M-theory,
propose that our observable universe is a (3 + 1)-dimensional hypersurface (brane) em-
bedded in a higher-dimensional bulk spacetime. In these models, ordinary matter remains
confined to the brane, while gravity is free to propagate through the whole spacetime. The
cosmological evolution of the brane is governed by an effective Friedmann equation that
accounts for the bulk’s influence in a nontrivial way. The seminal Randall–Sundrum models
[21,22] demonstrated that extra dimensions could be noncompact yet consistent with four-
dimensional gravity at large scales. Cosmological models in this framework reveal modified
Friedmann equations [23,24], high-energy corrections in the early universe, and possible ex-
planations for late-time acceleration [25]. Extensions to include bulk scalar fields [26,27]
further enrich the phenomenology, though most studies have been limited to minimal cou-
pling and metric formulations.

More recently, a small number of works have explored modified gravity in Palatini for-
malism in braneworld scenarios, primarily within thick brane configurations [28–31]. While
these studies provide valuable insights into the gravitational structure of such models, they
focus mainly on the pure gravity sector and do not address the cosmological dynamics of
thin branes. In particular, the role of a non-minimally coupled bulk scalar field in shaping
the effective four-dimensional cosmology within the Palatini framework remains unexplored.
The purpose of this work is to formulate and analyze such a model, deriving the bulk and
brane field equations, generalized junction conditions, and examining its implications for
both early- and late-time cosmic evolution.

The paper is organized as follows. In Sec. 2, we introduce the action for a scalar field
non-minimally coupled to the Ricci scalar in the Palatini formalism, and derive the gen-
eralized Einstein equations, the scalar field equation of motion, and the modified junction
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conditions. In Sec. 3, we apply these junction conditions to obtain the effective on-brane
field equations and scalar evolution. In Sec. 4, we investigate the resulting cosmological
dynamics at early and late times, providing a unified framework for inflation and late-time
acceleration. Finally, Sec. 5 summarizes our main results. Throughout this work, capital
Latin letters {M,N, · · · } denote the five-dimensional coordinate indices running from 0 to
4 and Greek letters {µ, ν, · · · } denote the four-dimensional coordinates running from 0 to 3.

2 Setup and Field Equations
We consider the five-dimensional action

S =

∫
d5x

√
−g

[
f(ϕ)

2κ2
5

R(Γ)− 1

2
gMN∂Mϕ∂Nϕ− V (ϕ)− Λ5

]
+

∫
Σ

d4x
√
−h(Lbrane−λ), (1)

where √
−g is the determinant of the metric gMN , κ2

5 = 8πG5 is the gravitational coupling,
and Λ5 denotes the bulk cosmological constant. The framework is set in D = 5 with
signature (− + + + +), a torsion-free independent connection ΓP

MN (Palatini formalism),
and a thin brane Σ with induced metric hµν . The parameter λ is the brane tension, while
Lbrane represents the ordinary matter sector localized on the brane. The Ricci scalar R(Γ) is
constructed solely from the independent connection ΓC

AB . The brane is placed at x5 ≡ y = 0,
modeled by a delta-function distribution and subject to a Z2 symmetry across it. The scalar
field ϕ couples to R(Γ) through a general function f(ϕ), allowing for rich phenomenology in
both cosmology and gravity.

Varying the action (1) with respect to the metric yields the generalized Einstein equations

f(ϕ)RMN − 1
2f(ϕ)R gMN = κ2

5 TMN , (2)

where TMN = T
(bulk)
MN + T

(brane)
MN . The bulk energy-momentum tensor is defined as

T
(bulk)
MN = ∂Mϕ∂Nϕ− 1

2gMN ∂Pϕ∂Pϕ− gMN

(
V (ϕ) + Λ5

)
. (3)

The brane contribution to the energy-momentum tensor takes the form

T
(brane)
MN = Sµν e

µ
MeνN δ(Σ), (4)

where eµM are the tangential projectors and we have defined

Sµν ≡ − 2√
−h

δ

δhµν

∫
Σ

d4x
√
−hLbrane . (5)

For a perfect fluid localized on the brane with energy density ρb and pressure pb, we have

Sµν = −λhµν + τµν , (6)

with
τµν = (ρb + pb)uµuν + pb hµν . (7)

Here, we assume that the perfect fluid components have no explicit dependence on ϕ.
Contracting Eq. (2), we obtain

T = −3f(ϕ)

2κ2
5

R, (8)
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where T is the trace of the energy-momentum tensor. This relation shows that the gravi-
tational sector and the matter sector are connected through an algebraic relation. Varying
the action (1) with respect to the scalar field yields the scalar field equation of motion,

∇2ϕ− V,ϕ(ϕ) +
1

2κ2
5

f,ϕ(ϕ)R = 0, (9)

where ∇ denotes the covariant derivative with respect to the metric gMN . Using Eqs. (8)
and (9), we find

∇2ϕ− V,ϕ(ϕ)−
1

3f(ϕ)
f,ϕ(ϕ)T = 0 . (10)

The above equation implies that, in non-minimally coupled Palatini braneworlds, the brane,
bulk, and scalar field are dynamically coupled. In particular, the non-minimal Palatini
interaction induces an exchange of energy between the brane sector and the bulk scalar
field.

Variation with respect to the independent connection yields the compatibility condition

∇Γ
P

(√
−gf(ϕ)gMN

)
= 0. (11)

where ∇Γ
P denotes the covariant derivative associated with ΓP

MN . Introducing the confor-
mally related metric

qMN = f(ϕ)
2
3 gMN , (12)

one finds that √
−q qMN =

√
−g f(ϕ) gMN . (13)

Equation (11) then implies
∇(Γ)

C (
√
−q qAB) = 0 , (14)

which shows that Γ is the Levi-Civita connection of the conformal metric qMN . Conse-
quently, the Palatini Ricci tensor can be expressed in terms of the metric Ricci tensor
RMN (g) as

RMN = RMN (g)− 1

f(ϕ)
∇M∇Nf(ϕ) +

4

3f(ϕ)2
∇Mf(ϕ)∇Nf(ϕ)− 1

3f(ϕ)
gMN□f(ϕ) (15)

and the Palatini Ricci scalar becomes

R = R(g)− 8

3f(ϕ)
□f(ϕ) +

4

3f(ϕ)2
∇Mf(ϕ)∇Mf(ϕ), (16)

where ∇M is the covariant derivative compatible with gMN , □ ≡ gMN∇M∇N is the corre-
sponding d’Alembertian, and R(g) denotes the Ricci scalar constructed from the spacetime
metric gMN . Using the above relations, the Palatini field equations (2) can be recast into
the form of the usual Einstein equations with an effective source,

GMN = RMN − 1

2
R gMN =

κ2
5

f(ϕ)
T

(eff)
MN , (17)

where T eff
MN contains the modifications induced by the non-minimal coupling, together with

the bulk and brane matter contributions defined in (3) and (5), and is given by

T
(eff)
MN =

1

κ2
5

[
∇M∇Nf(ϕ)− gMN□f(ϕ)−

4

3f(ϕ)
∇Mf(ϕ)∇Nf(ϕ) +

2

3f(ϕ)
gMN∇P f(ϕ)∇P f(ϕ)

]
+ TMN + T

(brane)
MN .

(18)
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Because of the delta-function source (thin brane formalism) and the imposed Z2 symmetry,
the metric and scalar field must satisfy appropriate matching conditions. The distributional
part of Eq. (17) leads to the generalized Israel junction conditions,

[
Kµν −K hµν

]
0
= − κ2

5

f(ϕ0)

(
Sµν − 1

3
hµνS

)
, (19)

where Kµν is the extrinsic curvature of the brane, S = Sµ
µ is the trace of the brane energy-

momentum tensor, and
[A]0 ≡ A(0+)−A(0−),

denotes the jump of a quantity A across the brane. For a Z2-symmetric brane, one has
[Kµν ] = 2K

(+)
µν . Furthermore, integrating the Palatini scalar equation of motion across the

brane yields a relation between the jump of the normal derivative of ϕ and the jump of the
trace of the extrinsic curvature. In compact form, this reads

[ϕ′]0 +
f,ϕ(ϕ0)

κ2
5

[K] = 0, (20)

where ϕ0 ≡ ϕ(0, t) denotes the scalar field evaluated on the brane. It should be emphasized
that the brane energy-momentum tensor does not contain independent scalar-field contri-
butions; hence, the scalar jump is induced purely through geometric effects of the Palatini
non-minimal coupling.

3 Equations of Motion on the Brane
Since we are interested in cosmological solutions, we consider the following metric in Gaus-
sian normal coordinates,

ds2 = −n2(y, t)dt2 + a2(y, t)γijdx
idxj + dy2, (21)

where γij is the metric of a maximally symmetric three-space with curvature k = 0,±1, and
the gauge choice n(0, t) = 1 has been imposed. The extra-dimensional coordinate is y, with
the brane located at y = 0. From the metric (21), we obtain the nonvanishing components
of the Einstein tensor as

Gtt = 3n2

[
H2 +

k

a2
− a′′

a
− F 2

]
, (22)

Gty = 3
ȧ n′ − n ȧ′

an
, (23)

Gyy = 3

[
F 2 − k

a2
−H2 +H

ṅ

n2
− ä

a n2

]
, (24)

Gij = gij

[
F 2 + 2F

n′

n
−H2 + 2H

ṅ

n2
− 2

ä

a n2
+

k

a2

]
, (25)

where a dot and a prime denote differentiation with respect to the time coordinate t and the
fifth coordinate y, respectively. We have also defined H ≡ ȧ

a n and F ≡ a′

a . The components
of the energy-momentum tensor of the bulk (3) are then found to be

Ttt =
1

2
ϕ̇2 +

1

2
n2ϕ′2 + n2 (V + Λ5), (26)
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Tyy =
1

2
ϕ′2 +

1

2

ϕ̇2

n2
− (V + Λ5), (27)

Tij = gij

(
1

2

ϕ̇2

n2
− 1

2
ϕ′2 − (V + Λ5)

)
, (28)

Tty = ϕ̇ ϕ′, (29)

under the assumption that ϕ = ϕ(t, y). The brane energy-momentum is localized on the
hypersurface y = 0, and the nonvanishing components of the tensor (5) are

T
(brane)
tt = (ρb + λ) δ(y), T

(brane)
ij = (pb − λ)hij δ(y), (30)

where the brane energy density and pressure depend only on time, and hij = a20(t) γij is the
induced spatial metric on the brane. Plugging the above equations into the field equations
(17), we obtain the equations of motion in the following form

3n2

(
H2 +

k

a2
− a′′

a
− F 2

)
+ 3

(
ȧ

a

ḟ

f
− n2 a

′

a

f ′

f

)
− n2 f

′′

f
+ 2

ḟ 2

f2
− 2n2

3

f ′2

f2

=
κ2
5

f

[
1
2 ϕ̇

2 + 1
2n

2ϕ′2 + n2
(
V + Λ5

)]
+

κ2
5

f0
(ρb + λ) δ(y), (31)

3f

(
ȧ

a

n′

n
− ȧ′

a

)
− ḟ ′ +

ṅ

n
f ′ +

4

3f
ḟ f ′ = κ2

5 ϕ̇ ϕ′, (32)

3f

[
F 2 − k

a2
−H2 +H

ṅ

n2
− ä

a n2

]
− 1

n2

(
f̈ − ṅ

n
ḟ + 3

ȧ

a
ḟ − 2

3f
ḟ 2

)
− n′f ′

n
+ 3

a′

a
f ′ +

2

3f
f ′2

= κ2
5

(
1
2ϕ

′2 + 1
2

ϕ̇ 2

n2
− (V + Λ5)

)
, (33)

γij

{
f

[
F 2 + 2F

n′

n
−H2 + 2H

ṅ

n2
− 2

ä

a n2
+

k

a2

]
− 1

n2

(
f̈ − ṅ

n
ḟ + 2

ȧ

a
ḟ − 2

3

ḟ2

n2

)

−
(
nn′f ′ − 2

a′

a
f ′ − f ′′ + 2

3f
′2
)}

= γij κ
2
5

[
1
2

ϕ̇2

n2
− 1

2ϕ
′2 − (V + Λ5) +

f

f0
(pb − λ) δ(y)

]
,

(34)

where f0 ≡ f(ϕ(0, t)). On the other hand, the equation of motion for the scalar field takes
the form

−
1

n2

(
ϕ̈−

ṅ

n
ϕ̇+ 3

ȧ

a
ϕ̇

)
+ϕ′′ +

(
n′

n
+ 3

a′

a

)
ϕ′−V,ϕ(ϕ)−

f,ϕ(ϕ)

3f(ϕ)

[
3

2

ϕ̇2

n2
−

3

2
ϕ′2 − 5

(
V (ϕ) + Λ5

)]
= 0. (35)

Now we consider the junction conditions on the brane. For the metric (21), the nontriv-
ial components of the extrinsic curvature are Kt

t = n′

n and Ki
j = a′

a δij . Applying the
generalized Israel conditions (19) to the temporal and spatial components gives[

a′

a

]
0

= − κ2
5

6f0
(ρb + λ), (36)
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[
n′

n

]
0

=
κ2
5

6f0
(2ρb + 3pb − λ). (37)

Finally, from the scalar junction condition (20), we obtain

[ϕ′]0 =
f,ϕ(ϕ0)

3f0
(ρb − 3pb + 4λ), (38)

where f0 ≡ f(ϕ0).
Evaluating the (tt) component of the field equations on the brane and applying the

junction conditions, yields the following Friedmann equations:

H2
0 =

κ4
5

36 f2
0

(ρb + λ)2 +
κ2
5

6f0

[
1

2
ϕ̇2
0 + V0 + Λ5

]
+

C

a40
− k

a20
, (39)

and
ä

a
= − κ4

5

36f2
0

(ρb + λ)(ρb + 3pb − 2λ)− κ2
5

3f0

(
ϕ̇ 2
0 − V0)− Λ5

)
− C

a40
. (40)

Here, a0(t) ≡ a(y = 0, t), V0 = V (ϕ0), H0 = ȧ0/a0, and C/a40 represents the “dark radiation”
term arising from the bulk Weyl tensor. Note that the non-minimal coupling f0 modulates
the effective gravitational strength on the brane, effectively replacing G5 by G5/f0 and
altering the relative contributions of matter and scalar fields. If the bulk scalar is frozen
(ϕ̇ = ϕ′ = 0), such that f(ϕ) ≡ f0 remains constant on and near the brane, the scalar
energy-momentum tensor reduces to

T
(ϕ)
MN = −

(
V0 + Λ5

)
gMN .

For a flat vacuum brane (ρb = 0, k = 0, C = 0, H0 = 0), equation (39) yields

V0 + Λ5 = − κ2
5

6 f0
λ2. (41)

This relation corresponds to the Randall–Sundrum fine-tuning condition, modified by the
replacement κ2

5 → κ2
5/f0.

In addition to the Friedmann equations, the brane continuity equation is modified by
the Palatini coupling and takes the form

ρ̇b + 3H0(ρb + pb) = Q(t). (42)

where Q(t) = − f,ϕ(ϕ0)
f0

(
ρb − 3pb + 4λ

)
ϕ̇0. This equation has important implications: even

if ρb is initially large and matter-dominated, energy can flow between the brane fluid and
the bulk scalar. This exchange modifies the redshifting of ρb, thereby shifting the epoch
when the quadratic ρ2b term becomes subdominant and the late-time scalar/tension regime
is reached. Meanwhile, for radiation (pb = ρb/3), the matter-only source term vanishes, and
the radiation redshifts as usual (unless the tension term is included). For dust (pb = 0), the
source term acts as a multiplicative correction to the standard dilution law and can either
slow down or speed up the dilution depending on the sign of f,ϕ(ϕ0)

f0
.

4 Cosmological evolution
To analyze the cosmological evolution, we assume that the bulk fields vary slowly in the
normal direction near the brane (i.e., bulk gradients are small compared to the on-brane
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curvature scales). Under this assumption, the equation of motion for the scalar field can be
recast in the following form

ϕ̈0 + 3H0ϕ̇0 + V,ϕ(ϕ0) =
f,ϕ(ϕ0)

3f0

(
3
2 ϕ̇

2
0 − 5

(
V0 + Λ5

))
. (43)

We now turn to the study of the cosmological dynamics on the brane, focusing separately
on the early- and late-time regimes.

4.1 Early-time cosmology
In braneworld cosmology, the early-time regime typically corresponds to ρb ≫ λ and, in
some cases, κ4

5ρ
2
b

36f2
0
≫ κ2

5V0

6f0
, so that the quadratic term dominates the Friedmann equation.

Regarding the possibility of inflation at early times, there are two distinct mechanisms by
which accelerated expansion may occur:

I. High-energy brane-driven inflation: If ρb is dominated by a brane scalar or fluid with
an equation of state yielding negative effective pressure in the Raychaudhuri equation,
the ρ2b term can more readily drive inflationary expansion than in standard four-
dimensional cosmology. However, the time dependence of f0 alters the required energy
scale.

II. Bulk scalar-driven inflation: If the bulk scalar field (evaluated on the brane) possesses a
large potential energy, e.g. V (ϕ0) ∼ mϕ2

0, and satisfies slow-roll conditions (ϕ̇2
0 ≪ V ),

then the scalar contribution in the Friedmann equation can dominate and lead to
inflation. In this case, the non-minimal coupling Palatini source terms on the right-
hand side of (43) may modify the slow-roll conditions.

4.1.1 Dominant brane-matter:

If ρb ≫ λ and dark radiation is negligible, the Friedmann equation reduces to

H2
0 ≃ κ4

5

36f2
0

ρ2b . (44)

Since f0 depends on ϕ0, the coefficient is time-dependent if ϕ0 evolves. Using the continuity
equation (42) for a perfect fluid with equation-of-state parameter w, i.e. pb = wρb, we obtain

ρ̇b + 3H0(1 + w)ρb =
f,ϕ
f0

ϕ̇0 [(1− 3w)ρb + 4λ] . (45)

For radiation with w = 1/3, the matter-only source term on the right-hand side of (45)
vanishes, and one finds ρb ∝ a−4, which is identical to the usual scaling in standard four-
dimensional cosmology. However, when the brane tension is included in the exchange term,
the continuity equation acquires an additional source, Q(t) =

f,ϕ
f0

4λ ϕ̇0, so that even radi-
ation can exchange energy with the bulk scalar. In this case, the redshifting of radiation
deviates from the pure a−4 law, unlike the standard 4D case, where radiation dilution is
unaffected by additional couplings. Thus, the presence of the Palatini coupling allows the
brane tension to mediate energy transfer between the bulk scalar and radiation, modifying
its cosmological evolution.

In the case of dust matter with w = 0 and ρb ≫ λ, the continuity equation can be
rewritten as

d ln ρb
dt

= −3H0 +
f,ϕ
f0

ϕ̇0. (46)
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If ϕ0 evolves slowly, one can integrate the above equation approximately to obtain

ρb(t) ≈ ρb,∗ a
−3(t) exp

(∫ t

t∗

f,ϕ
f0

ϕ̇0 dt

)
= ρb,∗ a

−3(t)
f0(t)

f0(t∗)
, (47)

i.e. ρb ∝ a−3f0 if f,ϕϕ̇0 varies slowly.
In standard four-dimensional cosmology without Palatini coupling, dust dilutes purely as

ρb ∝ a−3. Here, however, the additional factor of f0(t) modifies this scaling: if f0 increases
with time, dilution is slowed down, while if f0 decreases, dilution is accelerated. Thus, the
scalar field ϕ effectively controls the rate of matter dilution on the brane.

4.1.2 Scalar-dominated early Universe

If the bulk scalar (evaluated on the brane) possesses a large potential energy and evolves
under slow-roll conditions, the scalar contribution in the Friedmann equation can dominate
and drive inflation. However, the Palatini source terms appearing in the evolution equations
modify the usual slow-roll dynamics. In particular, if the scalar potential energy dominates,
equation (39) reduces to

H2
0 ≃ κ2

5

6f0
V0, (48)

so that the slow-roll conditions are altered by the Palatini source term in (43).
Assuming the standard slow-roll approximations (ϕ̇2

0 ≪ V , |ϕ̈0| ≪ H0|ϕ̇0|), the scalar
field equation can be written in the approximate form

3H0ϕ̇+ V,ϕ ≃ −5

3

f,ϕ
f

(V0 + Λ5) , (49)

Hence, the effective slope driving ϕ acquires an additional term − 5
3
f,ϕ
f (V0 + Λ5). This

modification affects both the slow-roll conditions and the number of e-folds. We define the
slope of the potential as follows:

S(ϕ) ≡ V,ϕ +
5

3

f,ϕ
f

(V0 + Λ5) . (50)

Under this definition, the time derivative of the field is approximately ϕ̇ ≃ −S/(3H0). We
now consider the Hubble slow-roll parameters, defined as

ϵ ≡ − Ḣ0

H2
0

, η ≡ 1

H0

ϕ̈

ϕ̇
. (51)

From the scalar-dominated limit Ḣ0 ≃ −(κ2
5/6f)ϕ̇

2, and Eq. (48), it follows that

ϵ ≃ ϕ̇ 2

V0
≃ 2f

3κ2
5

S(ϕ)2

V (ϕ)2
. (52)

To estimate η, we differentiate the slow-roll relation which leads to

η ≃ ϵ+
2f0
κ2
5

S,ϕ

V0
. (53)
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As a specific example, we consider a quadratic form for the non-minimal coupling function,
f(ϕ) = 1 + αϕ2, and assume the scalar potential to be of the form V (ϕ) = mϕ2. The slope
of the potential is therefore given by

S(ϕ) = 2mϕ+
5

3

2αϕ

1 + αϕ2

(
mϕ2 + Λ5

)
. (54)

Substituting these expressions into (52) and (53) yields closed forms for the slow-roll pa-
rameters (ϵ, η). Inflation ends when ϵ(ϕend) ≃ 1. The number of e–folds is defined by

N ≡
∫ tend

tini

H0 dt ≃
∫ ϕini

ϕend

H0

|ϕ̇|
dϕ ≃

∫ ϕini

ϕend

κ2
5 V0

2 f0 S(ϕ)
dϕ. (55)

For V0 = mϕ2
0 and f0 = 1 + αϕ2

0, the integrand is a rational function of ϕ0(V0 + Λ5)
through S(ϕ), allowing analytic estimates in relevant parameter regimes (e.g., |α|ϕ2

0 ≪ 1 or
|α|ϕ2

0 ≫ 1).

Small coupling regime |α|ϕ2
0 ≪ 1. Keeping only the leading terms, we find

S(ϕ0) ≃ 2mϕ0 +
10

3
αϕ0 (mϕ2

0 + Λ5), (56)

ϵ ≃ 2

3κ2
5

[
2mϕ0 +

10
3 αϕ0(mϕ2

0 + Λ5)
]2

m2ϕ4
0

, (57)

η ≃ ϵ+
2

κ2
5mϕ2

0

[
2m+ 10

3 α(3mϕ2
0 + Λ5)

]
. (58)

The sign of the non-minimal coupling constant α directly controls the evolution. A negative
α reduces the effective slope S(ϕ0) and thus ϵ, prolonging inflation, whereas a positive α
steepens the roll.
Strong–coupling tail |α|ϕ2

0 ≫ 1. In this regime, we have f ≃ αϕ2
0 and f,ϕ/f ≃ 2/ϕ0, which

leads to
H2

0 ≃ κ2
5

6

m

α
, (59)

that is quasi–constant. Additionally, we obtain the following results

S(ϕ0) =
16

3
mϕ0 +

10

3

Λ5

ϕ0
, (60)

ϵ =
2α

3κ2
5

(
16m+ 10Λ5/ϕ

2
0

)2
9m2

. (61)

If α < 0, ϵ is suppressed and a quasi–de Sitter phase arises (H2
0 nearly constant). For α > 0,

ϵ is enhanced, causing inflation to end more rapidly and thus narrowing the viable slow-roll
window. To assess the inflationary viability, we note that the condition ϵ ≪ 1 together
with (55) determines the admissible initial field range for given parameters (α,m,Λ5, κ5).
Qualitatively, a negative α flattens the effective slope via S(ϕ) and increases N for a fixed
ϕini, whereas a positive α steepens the roll and reduces N . Furthermore, a negative Λ5

lowers S(ϕ0) through the (5/3)(f,ϕ/f0)Λ5 term, which aids the slow-roll conditions, while a
positive Λ5 has the opposite effect. In all cases, inflation ends when ϵ(ϕend) ≃ 1.

Moreover, the appropriate behavior of the slow-roll parameters leads to observationally
consistent values for the perturbation parameters. This provides a useful criterion for testing
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the viability of the model. In this regard, we consider the following relations for the scalar
spectral index and the tensor-to-scalar ratio

ns = 1− 6ϵ+ 2η , (62)

r = 16ϵ , (63)

where the parameters ϵ and η in our model are given by equations (57) and (58). Note
that, in general, the tensor-to-scalar ratio is expressed as r = 16ϵcs, with cs being the
sound speed. However, under the slow-roll approximation, we may set cs = 1, which re-
duces the expression to r = 16ϵ. The parameters r and ns are crucial since they are
tightly constrained by observational data. The constraint on ns reported by the Planck
2018 TT, TE, EE+lowE+lensing+BAO+BK14 dataset is ns = 0.9658± 0.0038, within the
ΛCDM+r+ dns

d ln k framework [32]. This dataset also provides an upper bound on the tensor-
to-scalar ratio as r < 0.072 [32]. A stronger upper limit, r < 0.036, has been obtained from
the Planck 2018 TT, TE, EE+lowE+lensing+BAO+BK18 dataset [33]. These constraints
allow us to test our model against observations and derive bounds on its parameter space.

To perform the observational analysis, we first use equation (55) to express the scalar
field in terms of the e-folding number N . Substituting this into equations (57) and (58), we
obtain ϵ and η as functions of N . Finally, we use these relations to evaluate (62) and (63) nu-
merically. Based on the observational data, we identify the viable domain of the parameters
N and α, illustrated in Figure 1. As shown, the model is consistent with observational con-
straints in certain regions of its parameter space. This represents an improvement compared
to the simple single-field inflation model with a quadratic potential. While the quadratic
potential in the standard single-field scenario is observationally disfavored [32], our non-
minimal Palatini framework with the same potential remains consistent with data. We also
derive constraints on the parameter α for several sample values of N , which are summarized
in Table 1.

Table 1: Constraints on the parameter α for some sample values of N , which lead to the observationally viable
values of the scalar spectral index and tensor-to-scalar ratio. These constraints are based on Planck2018 TT, TE,
EE+lowE+lensing+BAO+BK14 data and Planck2018 TT, TE, EE+lowE+lensing+BAO+BK18 data.

N Allowed range of α
40 −8.3× 10−3 ≤ α ≤ −6.0× 10−3

50 −6.8× 10−3 ≤ α ≤ −4.2× 10−3

60 −5.6× 10−3 ≤ α ≤ −3.4× 10−3

70 −4.8× 10−3 ≤ α ≤ −2.9× 10−3

4.2 Late-time cosmology
In the late-time (low-energy) regime, where ρb ≪ λ and dark radiation is negligible, the
system often converges to a scalar-dominated or effective vacuum de Sitter solution.

4.2.1 Low-Energy Limit and Effective 4D Cosmology.

In the low-energy regime, where the matter energy density on the brane is much smaller
than the brane tension, we can expand the quadratic term in the Friedmann equation (39)
as

κ4
5

36 f2
0

(ρ+ λ)2 =
κ4
5λ

2

36 f2
0

+
κ4
5λ

18 f2
0

ρ+O(ρ2) . (64)
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Figure 1: The observationally viable region of N and α, leading to the observationally viable values
of the scalar spectral index and tensor-to-scalar ratio, based on different datasets.

The first term of the above equation acts as an effective 4D cosmological constant, while the
second term reproduces the usual linear-in-ρ behavior of standard Friedmann cosmology.
One can thus identify:

Λ
(eff)
4 =

κ4
5λ

2

12 f(ϕ0)2
+

κ2
5

2f0

[
V0 + Λ5

]
. (65)

Here, Λ(eff)
4 plays the role of the effective 4D cosmological constant observed on the brane,

incorporating contributions from both the brane tension and the bulk scalar/bulk cosmo-
logical constant. Furthermore, the effective Newton’s constant on the brane, G(eff)

4 , can be
defined as

8πG
(eff)
4 =

κ4
5λ

6 f2
0

. (66)

Since f0 = f(ϕ0(t)) and V0 may evolve in time, both Λ
(eff)
4 and G

(eff)
4 are generally time-

dependent, unless the scalar field freezes. Note that these quantities are instantaneous
—evaluated at the current on-brane value ϕ0—and reduce to the usual constants only if
ϕ0 is constant. Neglecting the O(ρ2) high-energy corrections and the dark radiation term
C/a40, the Friedmann equation (39) reduces to

H2
0 =

Λ
(eff)
4

3
+

8πG
(eff)
4

3
ρ− k

a20
. (67)

This is precisely the form of the standard 4D FRW equation, but with effective gravitational
and cosmological constants determined by the higher-dimensional parameters κ2

5, λ, Λ5, V0,
and f0.
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4.2.2 Late-time acceleration analysis

The condition for an accelerating universe is ä/a > 0. Considering Eq. (40), the necessary
and sufficient condition for acceleration is

− κ4
5

36f2
0

(ρb + λ)(ρb + 3pb − 2λ)− κ2
5

3f0

(
ϕ̇ 2
0 − V0 − Λ5

)
− C

a40
> 0. (68)

We can interpret the three contributions as follows:

• Matter/tension term (junction contribution): Its effect depends on the sign of
ρb + 3pb − 2λ; it can either decelerate or accelerate the expansion. In particular, for
ρb → 0, it gives a positive contribution κ4

5λ
2/(18f2

0 ), corresponding to vacuum-driven
acceleration from the brane tension.

• Scalar/bulk term: This term accelerates the brane if the combined potential energy
and bulk cosmological constant dominates over the scalar field’s kinetic energy:

V0 + Λ5 > ϕ̇ 2
0 .

As a result, at low energies, the scalar potential together with Λ5 effectively behaves
as dark energy.

• Dark radiation term (C/a4): Always decelerates the expansion if C > 0.

In the special case where the brane contains only tension (negligible matter at late times),
one can set ρb → 0, pb → 0, k = 0, and assume C negligible. Then (40) reduces to

ä

a
=

κ4
5

18f2
0

λ2 − κ2
5

3f0

(
ϕ̇ 2
0 − V0 − Λ5

)
. (69)

Hence, late-time acceleration (ä/a > 0) requires

κ4
5

18f2
0

λ2 >
κ2
5

3f0

(
ϕ̇ 2
0 − V0 − Λ5

)
, (70)

or equivalently,

V0 + Λ5 > ϕ̇ 2
0 − κ2

5λ
2

6f0
.

If the scalar has settled so that ϕ̇0 ≈ 0, the condition simplifies to

V0 + Λ5 > −κ2
5λ

2

6f0
,

which is typically satisfied unless the right-hand side is large and negative.

5 Conclusion
In this work, we constructed a braneworld model that incorporates a scalar field non-
minimally coupled to gravity via the term f(ϕ)R within the Palatini formalism, in which
the metric and connection are treated as independent variables. The independent variation
leads to a conformally related metric connection and modified bulk and brane field equa-
tions, as well as a modified equation of motion for the scalar field. We derived generalized
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junction conditions that allow consistent embedding of the brane with matter and scalar
fields. Interestingly, the Palatini coupling changes the structure of the scalar boundary con-
ditions: even with a constant brane tension and no explicit dependence of standard matter
fields on ϕ, the geometry (extrinsic curvature jump) sources a jump [ϕ′] unless f,ϕ(ϕ0) = 0.

We obtained the modified Friedmann and Raychaudhuri equations and analyzed the
scalar dynamics on the brane, which are distinctly different from the metric formulation.
These modifications introduce new features into the cosmological evolution at both early
and late times, providing a framework to address inflation and late-time cosmic acceleration
in a unified manner.

In the high-energy, scalar-dominated regime, the Palatini corrections modify the effective
slope S(ϕ) governing the scalar dynamics, leading to altered slow-roll parameters ϵ and η, and
the total number of e-folds N . Both small (|α|ϕ2 ≪ 1) and strong (|α|ϕ2 ≫ 1) non-minimal
couplings f(ϕ) = 1+αϕ2 were analyzed, showing that negative α flattens the slope and pro-
longs inflation, while positive α steepens it. We found that the bulk cosmological constant
Λ5 further modulates slow-roll, enhancing inflation if negative and suppressing it if positive.
In addition, modifications to the slow-roll parameters consequently alter the main perturba-
tion parameters—the scalar and tensor spectral indices. This can ultimately determine the
model’s viability in light of recent observational data. To test the model’s viability, we con-
strained its parameter space using the Planck2018 TT, TE, EE+lowE+lensing+BAO+BK14
data and Planck2018 TT, TE, EE+lowE+lensing+BAO+BK18 data to obtain the observa-
tionally viable ranges for the model’s parameter α. Our analysis shows that the non-minimal
Palatini brane-world formulation provides a natural mechanism for reconciling quadratic-
type potentials with observational data. Although the quadratic potential in the standard
single-field scenario is observationally disfavored [32], the same potential within our non-
minimal Palatini framework remains consistent with data.

At late times, in the low-energy regime (ρb ≪ λ) with negligible dark radiation, the sys-
tem approaches a scalar-dominated or effective vacuum de Sitter solution. The effective 4D
Newton constant G(eff)

4 and cosmological constant Λ(eff)
4 were identified, showing that brane

tension, scalar potential, and bulk contributions jointly determine the late-time dynamics.
Importantly, the interplay between the effective Newton constant and brane tension realizes
a generalized Randall-Sundrum fine-tuning condition, ensuring a small effective cosmolog-
ical constant on the brane while maintaining consistent gravitational coupling. Late-time
acceleration is generically achieved when the scalar kinetic energy is subdominant and the
scalar potential plus bulk cosmological constant dominate. Furthermore, we showed that
energy exchange between the brane fluid and the bulk scalar alters the redshifting of matter,
leaving radiation unaffected but modifying dust dilution in a coupling–dependent way.

Overall, our analysis demonstrates that the Palatini brane-world setup with a bulk scalar
provides a consistent and unified framework for both early-universe inflation and late-time
acceleration. The dynamics are controlled by the interplay of brane tension, scalar poten-
tial, non-minimal coupling, and bulk cosmological constant, while the Palatini formalism
introduces distinctive corrections to the Friedmann equations and scalar dynamics.
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