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Abstract. Evaluating the energy loss of an electrically (color) charged particle cross-
ing a high-temperature QED (QCD) plasma at its thermal equilibrium is studied. The
average energy loss depends on the particle characteristics, plasma parameters, and
QED (QCD) coupling constant α (αs). All processes through which the energy of a
particle changes can be categorized into two main mechanisms: elastic collisions and
radiation through bremsstrahlung. We have introduced the final results of collisional
and radiation energy loss for an electrically charged particle in a QED plasma, as well
as a quark in a QCD plasma. The suppression due to radiation is presented using the
Landau-Pomeranchuk-Migdal effect.
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1 Introduction

Studying the dynamics of charged particles while traveling through a medium is an exciting
problem in both theoretical and experimental views. A particle may contain an electric
and/or color charge, so we have to apply QED and/or QCD theories to model the particle-
medium interaction [1]. The energy of charged particles changes through well-known interac-
tions, divided into collisional and radiation processes. According to the particle specifications
(its mass, initial energy, and so on) and medium identifications (density, temperature, ...),
some possible interactions become dominant. Thus, theoretical evaluation of the problem
depends on the initial conditions of charged particle and the medium. For example, the
main contribution to the energy loss for a low energy heavy particle with electric charge
in a color singlet state (like protons) is due to collisions with individual atomic electrons,
while for light electrically charged particles (like electrons) with similar energies, the energy
loss is occurred due to radiation through bremsstrahlung process. The same situations may
happen for heavy (light) color-charged particles.

The primary situation in which energy loss plays a crucial role is passing an energetic
particle through a hot (ultra)relativistic QED (QCD)plasma. The first studied problem was
the energy loss of a heavy muon traveling through a QED plasma. Note that the QED
coupling parameter α does not depend on the medium temperature, and it is constant in
a vacuum. The electromagnetic waves have only transverse polarization, and the photon
is massless in a vacuum. In usual media, the longitudinal component has to be zero to
satisfy the gauge invariance of QED. When there are enough fermions in the universe,
photons interact with the medium due to the vacuum polarization and acquire a dynamically
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generated mass because of its interaction with the fermions. In this situation, the QED
coupling parameter α becomes a function of temperature due to its interaction with the
medium. Calculation of energy loss for a relativistic heavy fermion in a hot QED plasma
is an interesting problem that has been widely investigated [2, 3]. A similar problem may
happen if a particle carrying color charge passes through a hot QCD medium. If the medium
temperature T is very high (T � λQCD), this medium is a quark-gluon plasma (QGP), i.e.,
a system of quarks and gluons with a small effective Coulomb-like interaction. It is expected
to find the QGP in relativistic heavy-ion collisions or in the core of high-density astronomical
objects like neutron stars or quark stars [4] . The most detailed evaluation of energy loss
for a fast muon in QED plasma and heavy quark in the QGP has been done by Braaten
and Thoma [2, 5]. The first signature of heavy flavor energy loss has been calculated by
Bjorken [6], which has now been well-established through RHIC and LHC experiments [7, 8].
A similar effect for low energy cold nuclear matter also has been observed in some other
experiments [9, 10]. Calculations show that the dominant energy loss mechanism for a light
particle in QCD (QED) plasma is gluon (photon) radiation [11, 12, 13]. For heavy quarks,
radiation is further suppressed and the relative contribution of collisional losses is dominant
[14]. When the particle mass is not too large, i. e. M �

√
αET (M �

√
αsET ) in QED

(QCD) case, and the travel distance L is not too small, radiative energy loss still dominate
over collisional loss.

Studying the energy loss of a colored charge particle produced in a QGP is of phenomeno-
logical interest to heavy-ion collisions. However, it is also instructive to discuss the problem
of energy loss in QED. Thus, we introduce the results of particle energy loss in QED and
QCD plasmas. The collisional contribution to the energy loss in QED and QCD plasmas
is studied in section 2. In sections 3 and 4, we discuss the radiative energy loss in high
temperature QED and QCD plasmas respectively. The section 5 is devoted to conclusions
and remarks.

2 Collisional energy loss

At first, we consider an electrically charged relativistic particle with mass M in a QED
plasma consisting of electrons, positrons and photons. The particle may lose its energy
through Coulomb scattering with electrons and positrons, or Compton collisions with pho-
tons. It is shown that the energy loss due to Coulomb and Compton scattering are of
the same order. It may be noted that, Compton scattering is rare but, it is very efficient
in energy transfer between particle and plasma environment. Summing the Coulomb and
Compton contributions to the collisional energy loss becomes [3]
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function and its derivative. For light particle energy loss due to Compton scattering (the
term ln ET

M2 ) is negligible.
The first calculation of quark collisional energy loss has been done by Bjorken [6]. He

calculated the energy loss of a massless quark due to elastic scattering off the QGP con-
stituents by averaging the cross section for elastic scattering times the mean energy transfer
over the thermal distribution. The result is as follows
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where p is the particle momentum, T is the QGP temperature and kD =
√

3mg while

m2
g = 4παsT

2

3 (1 +
nf
6 ).

The energy loss also has been calculated by combining techniques of plasma physics and
high temperature QCD. The induced chromoelectric field in the wake of a high energy quark
is used to calculate dE

dx . That induced field is related to the longitudinal and transverse di-
electric functions, which can be expressed in turn in terms of the gluon self-energy. Through
this method, we have
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in which kmax ≈ 4pT√
p2+M2−p+4T

while p is the particle momentum.

In another method, the energy loss of a quark with energy E has been calculated for

two different limits: E � M2

T and E � M2

T . The heavy quark has a kinetic energy much

greater than QGP temperature T . In the limit E � M2

T , contributions to the energy loss
has been obtained from the corresponding QED calculation [2]. For converting results into
QCD problem, ”e” in QED calculations is replaced by the gs = 4

3

√
4παs [15]. The thermal

photon mass m = eT/3 also is replaced by the thermal gluon mass mg = gsT

√
1+nf/6

3 where

nf is the number of active flavors in the QGP. In this condition, we have
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where B(v) is a smooth function starts from B(0) = 0.604, increases up to B(0.88) = 0.731
and then decreases to B(1) = 0.629 [2].

In the limit E � M2

T soft and hard contributions in the energy loss have been calculated
separately and then added to each other to find
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For intermediate region E ≈M2/T we have to use two limits which connected smoothly in

Ecross. Calculations show that we can use (4) up to Ecross = 1.8M
2

T and then switch to (5).

3 Radiative energy loss

Moving particle in a QED/QCD plasma radiates energy through bremsstrahlung process. In
QED case, we consider an energetic charged particle entering the plasma with its shell. Then,
we evaluate the radiative energy loss of an on-shell charged particle traveling through hot
QED plasma. We will assume that particle energy is greater than the plasma temperature,
i. e. E � T . Also, we assume that particle energy is greater than the photon thermal
energy: µ ≈ eT � M , where M is the particle mass. The charged particle is scattered
by the plasma constituents, changes the direction of its motion and emits bremsstrahlung
photons. We consider a thin plasma layer L which is very smaller than the particle mean free
path λ i. e. L � λ. In this situation, the probability that the charged particle undergoes
a Coulomb scattering, (Lλ � 1) is negligible, and thus, the particle will lose its energy only
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Figure 1: Collisional energy loss as functions of particle momentum in a QGP at thermal equilibrium.

through the radiation process. For a light particle, and considering the Bethe-Heitler (BH)
approximation, the radiation energy loss becomes

−dE
dx
≈ α2ET ln

µ2

M2
(6)

For a massive particle (M � µ ≈ eT ), the intensity of the BH radiation is suppressed by

the factor µ2

M2 . Thus radiation energy loss for a heavy quark in a thin layer of QGP becomes

−dE
dx
≈ α3T 3 E

M2
(7)

The radiative energy loss for a quark also can be calculated using the reaction operator for-
malism (DGLV) [16, 17] and employing the generalized dead cone approach [18]. The DGLV
formalism is based on siutably expansion of the quark energy loss in terms of the number of
the scatterings experienced by the propagating quark. In the single hard scattering limit,
only the leading order term is considered and the radiative energy loss of a heavy quark in
a QGP is calculated as
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coupling constant itself is a function of plasma temperature as

αs(T ) =
6π

(33− 2nf ) ln
(

19T
Λm̄s

) (9)

while Λm̄s can be taken as 0.08GeV .

Figure 2: Radiative energy loss as a function of particle momentum in a QGP at thermal equilibrium.

For light charged particles, the difference in the behavior of energy loss in QED and QCD
is mostly due to the different problem setting and initial conditions. In QED, we study the
energy losses of a charged particle (like electron) coming from infinity. In QCD case, the
quantity of physical interest is the medium-induced energy loss of a parton produced within
the QCD plasma. In the case of an electrically charged particle produced within a QED
plasma, the medium-induced radiative energy loss behaves similar to the radiation energy
loss in the QCD plasma, despite the photon and gluon radiation spectra being drastically
different because the bremsstrahlung cones for soft gluons are broader than for soft photons.
On the other hand, the average radiative loss of an ’asymptotic light parton’ crossing a
QCD plasma is similar to that of an asymptotic charged particle crossing a QED plasma.
For heavy particles, the difference between radiative energy loss in QED and in QCD is
more pronounced, even when the same physical situation is considered.

4 Time evolution of particle spectra

In some astrophysical phenomena, particles with initial distribution function fi(p) traveling
through a QED/QCD plasma in its thermal equilibrium state with temperature T . It
is possible that plasma temperature change in time because of expansion due to its high
internal pressure. At the same time, the momentum distribution function f(p) of incident
particles evolves because of their Brownian motion in the expanding plasma. we can look at
this process as an interaction between equilibrium and nonequilibrium degrees of freedom.
For example, consider heavy quarks (HQ) passing through expanding quark-gluon plasma.
We can study the time evolution of HQ distribution function by solving the Fokker-Planck
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(FP) equation [19]. For a uniform plasma the FP equation becomes

∂f(p)

∂t
=

∂

∂p

[
pA(p)f(p) +

∂

∂p
D(p)f(p)

]
(10)

where A and D are drag and diffusion coefficients. The drag coefficient can be calculated as
follows

A(p) = −1

p

dE

dx
(11)

The diffusion parameter is calculated by the Einstein relation as D(p) = ETA(p) [20].
Let us study the time evolution of particle distribution functions while traveling in a

thermally equilibrated dense QGP. We have used expressions (2), (4) and (5) to calculate
drag and diffusion coefficients. The Gaussian distribution has been chosen as HQ initial con-
dition. Figure 3 demonstrates variation of HQ distribution function using (2) for calculating
drag and diffusion coefficients. Profile of HQ distribution function uniformly expands in
time, while changing rate of distribution function for HQs with higher momentum is greater
as compared with probability of finding low momentum HQs. It is interesting that the peak
of distribution function shifts toward higher momentum values. Figure 4 demonstrates time
evolution of Gaussian initial distribution function if we calculate the drag and diffusion coef-
ficient using (4) and (5). Similar to previous calculations, the distribution function expands
in time, but changing rate is not uniform. According to this figure, the population of HQs
with higher momenta is rapidly damped while changing rate of population for particles with
lower energy is slower. It may be noted that, energy loss for high and low momentum HQs
in this approach is defined with different relations.

Figure 3: Time evolution of HQ distribution function if we calculate the drag and diffusion coefficient by
(2). Initial distribution is the Gaussian function.

Figure 3 shows that rate of energy loss respect to the particle momentum calculating by
the equation (3) is uniform. But the rate of energy loss calculated by equations (4) and (5)
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Figure 4: Time evolution of HQ distribution function if we calculate the drag and diffusion coefficient by
(4) and (5). Initial distribution is the Gaussian function.

is not uniform. Energy loss for low momentum particles is not equal to the energy loss for
fast particles.

5 Conclusion and Remarks

Collisional and radiation energy loss of charged particle while passing through QED/QCD
dense plasmas is an important phenomenon in high energy physics and astrophysics. We have
introduced presented relations for these issues using different approaches. A straight forward
method to calculate energy loss of a massless charged particle due to elastic scattering off the
QED/QGP plasma is averaging the cross section for elastic scattering times the mean energy
transfer over the thermal distribution, which has been introduced by Bjorken. Another
method is presented by employing the induced chromoelectric field in the wake of a high
energy particle to calculate the energy loss. Induced field is related to the longitudinal and
transverse dielectric functions. Radiative energy loss for charged particle is calculated using
the reaction operator formalism and considering the generalized dead cone approach.

We have used these relations to calculate the drag and diffusion coefficient for numerically
solving the time evolution of particle distribution function as traveling through a thermal
bath using the Fokker-Planck equation. We showed that the Bjorken approach provides a
uniform changing distribution function rate while its peak shifts toward higher momentum
values. We cannot find a straight and exact relation for the particle energy loss in the
chromoelectric field approach. Thus, it calculated for low energy and high energy limits.
Using these relations provide different profile for the time evolution of particle distribution
function.

Several problems could be investigated in further studies. It is interesting to apply these
results in more realistic situations in QED/QCD plasmas. Time evolution of cosmic rays’
distribution function while passing through the earth atmosphere is an interesting problem.
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Explaining the creation of shock profiles in the core of super dense astrophysical objects
can be investigated using the quark energy loss in a QCD plasma. These issues can be
investigated in further works.
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