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Abstract. In this study, we use three kinds of clustering methods based on c-means, k -
means, and fuzzy c-means (FCM) algorithms to segment solar ultra-violet (UV) images.
The methods are applied on a sequence of quiet-Sun photospheric observations at 525
nm images taken by Sunrise on 9 June 2009. The comparison between these three
algorithms represents a little bit differences in extraction of physical parameters (filling
factors, brightness fluctuations, size distribution, etc.) from images. On the basis of
FCM algorithm, the mean value of granule sizes is found to be about 1.8 arcsec2 (0.85
Mm2). Granules with sizes smaller than 2.8 arcsec2 cover a wide range of brightness,
while larger granules approaches a particular value. Granules may have lifetimes less
than 10 minutes in this part of the Sun. Investigation of local fractal dimension of
photospheric images shows that granulation pattern are approximately scale free in
some resolutions.
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1 Introduction

Lots of events are stochastically appeared on the solar surface such as granules, bright points
(BPs), etc. [1, 2] at times of both minimum and maximum solar activity [3]. Extracting
physical properties of features happening on photosphere is important subjects of solar field.
One of the features that has main role in solar activity is granulation pattern. It has been
accepted the solar granulation is resulting from a convective turbulent process [4].

To optimize statistical analysis of granulation patterns, it is necessary to develop auto-
matic detection techniques. The process of dividing data set into classes or clusters in the
feature space is data clustering so that features (elements) in the same class have similar-
ities but there is low resemblance between elements which are in various classes. One of
the significant methods for granules segmentation and finding non-granular regions is using
various kinds of clustering such as c-means and k -means. These algorithms are multichannel
unsupervised and able to automatically segment regions fast [5]. Different kinds of cluster-
ing (e.g., spatial possibilistic clustering algorithm and fuzzy c-means clustering) have been
applied on EUV solar images to segregate traditional regions into coronal hole (CH), quiet
Sun (QS), and active regions (AR). The estimations of these areas characterizations are
consistent with previous results [7]. We apply c-means, k -means, and fuzzy c-means (FCM)
algorithms on the Sunrise photospheric UV images recorded on 9 June 2009 and break down
this data set into regions that can be recognized as granule or non-granular region. The code
is able to segment N-dimensional gray-scale images into c classes (more than two classes) by
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implementation of the c-means (k -means) clustering algorithm. The comparison between
these two algorithms represents approximately the same results.

The paper is organized as follows: Data analysis is discussed in Section 2. Identification
methods for granules and non-granular regions by using c-means, k -means, and FCM are
explained in Section 3. The results are given in Section 4. The conclusions are discussed in
Section 5.

2 Data Analysis

The Sunrise balloon-borne solar observatory was launched on 8 June 2009 [8, 9]. The high-
resolution images in the UV and in the quiet Sun were begun to be recorded on 9 June 2009
[9]. Sunrise has a resolution of about 100 km (from a 1 m Gregory reflector telescope). This
observatory is equipped with Sunrise filter imager [10], imaging magnetograph experiment
[11], image stabilization and light distribution unit, and a correlating wave-front sensor
[12]. The Imaging Magnetograph eXperiment (IMaX) data produces 936 × 936 pixel with
resolution of 0.055 arcsec per pixel. IMaX uses a Zeeman triplet in the FeI 525.02 nm line.
The Sunrise together with its instruments provides 4 levels of data. Level-0 is raw data.
Level-1 data are fully reduced by phase-diversity reconstruction. Individual and averaged
wave-front corrections are exerted on both level-2 and level-3 data, respectively. We used a
sequence of IMaX (level-2) data (Figure 1A) recorded on 9 June 2009 (14:10-14:45 UT) at
525 nm to segregate granules and non-granular regions by three mentioned algorithms.

Using a subsonic filter, the global solar surface oscillations (e.g. 5-minute p-modes)
are removed from data by modifying horizontal speeds above 5 km/s in momentum and
frequency space.

3 Methods

3.1 c-Means Clustering

In c-mean clustering, called hard clustering, dataset is decomposed into certain classes
where each feature belongs to exactly one cluster. For image clustering, pixels’ brightness
constructs our feature space [13]. Depending on the number of clusters, pixels with similar
brightness set in the same class. As regions in this image set into two clusters, minimum and
maximum brightness of image will be centers of our two clusters in feature space and the
magnitude value of pixels brightness from centers will determine the class of each pixel. To
achieve more computational efficiency, the histogram of the image brightness is calculated
during the clustering process. When all of the pixels are clustered, mean of the each cluster
is computed. The result of applying c-means clustering on Sunrise image is represented in
Figure 1B.

3.2 k-Means Clustering

This algorithm, which is one of the unsupervised iterative non-deterministic learning algo-
rithms, aims to divide n features into k clusters wherein each feature belongs to certain
cluster with the nearest mean [13]. The purpose is minimizing an objective function, e.g. a
squared error function.

Assume we have a finite collection of n features, X = {x1, x2, . . . , xn},
1- k points are randomly chosen as a center of clusters and k clusters are generated.
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Figure 1: Sunrise/IMaX image (A) recorded on 9 June 2009 (14:16:00 UT). The segmented
images based on c-means (B), k -means (C), and FCM procedure (D).
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Figure 2: The filling factors of granules obtained by different clustering algorithms are
presented. About one-third of each image is covered by granules.

2- Using association of each point to the nearest centroid, their belonging to a given data
set is specified. Here, the objective function is introduced as

J =
k∑
j=1

n∑
i=1

‖ x(j)i − cj ‖
2 . (1)

3- By averaging all of the pixels, centers of clusters are recomputed.
4- Step 2 and 3 are repeated until the centers of clusters achieve to some convergency

(Figure 1C).

3.3 Fuzzy c-Means (FCM) Clustering

The FCM, which is rooted in fuzzy logic, aims to minimize an objective function such as
k -means algorithm. In the other words, we could label this flexible algorithm as an extension
of k -means clustering. Fuzzy c-means allows data points to be assigned into more than one
cluster. Each data point has a degree of membership (or probability) of belonging to each
cluster. We have an objective function with an extra parameter

J =
n∑
i=1

c∑
j=1

wmij ‖ x
(j)
i − cj ‖

2, (2)

where wij is a fuzzy membership qualification representing the membership of xi to j cluster
and m determines the degree of fuzziness:

wmij =
1∑c

k=1

(
‖xi−cj‖
‖xi−ck‖

) 2
m−1

. (3)

Each element belongs to any fuzzy set with a degree of membership which takes a real
value ranged from 0 to 1 [6]. Data points are given the partial degree of membership in
multiple nearby clusters and final segmented image is obtained (Figure 1D).
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Figure 3: The brightness fluctuations of granules by using c-means (A), k -means (B), and
FCM (C) algorithms are shown. The results approximately show the same behaviour of
brightness fluctuations of granules extracted from algorthms.

4 Results

By applying the codes of c-means, k-means, and FCM algorithms, the sequence of photo-
spheric images recorded by Sunrise/IMaX are segmented. Filling factors of granules (cov-
erage area in each image) are calculated (Figure 2). The mean values of their filling factors
derived from c-means, k -means, and FCM are about 0.34, 0.33 and 0.35, respectively. Fluc-
tuations of filling factors obtained by algorithms are consistent and represent comparative
results. Extracting the brightness fluctuations of granules from IMaX images show the same
behaviour of these algorithms (Figure 3). The average of brightness fluctuations of granules
is the same and equals with 112.5. The results represents that there is no preference in
using these three methods to segment photospheric images. After applying FCM method on
data (with membership degree of 0.5), the size distribution of granules is obtained (Figure
4). The power-law distribution is fitted with a power exponent α ≈ 0.12. The mean value
of granule sizes is found to be about 1.8 arcsec2 (0.85 Mm2). The scatter plot of granules
are shown in 5. It can be found granules follow two regimes that classifies them into two
groups. Granules with sizes smaller than 2.8 arcsec2 are more scattered in brightness, while
larger ones are approaching mean value of brightness (1.3). A set of granules are followed
from emergence up to disappearing in a series of images to attain lifetimes of granules with a
normal size. The lifetimes are ranged from 6 to 10 minutes. The Number of granules is man-
ually selected to compare with the results of these algorithms. It is found that false-positive
detection appeared when granules are fragmented or dissolved.

The box-counting method, the technique to analyse the fractal dimension (FD) of an
image, is employed to estimate changes between observations of detail and scale r by breaking
our dataset. The purpose is finding the slope of the logarithmic regression line for both the
number n and the size r of boxes. In this approach, by changing the resolution of box applied
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Figure 4: The size distribution of granules. The linear fit, N ∝ A−α, is presented on a log
scale with α ≈ 0.12.

on image pixels in each step (i.e., laying a series of grids), the size of elements that would be
elongated within the box frequently varies in a form of power-low distribution [14]. For 2D
(3D) images, if a power exponent is obtained with 2 (3), it shows random structure within
the data set. The less values of power exponent demonstrate that how much the pattern of
features captured in box is scale independence. In the case of local dimension box counting,
the box for each r is centred on each pixel of interest. In box sizes ranged 10 and 100 the
local FD goes to 1.8 (Figure 6). It can be said that granules appeared in grids with special
box sizes represents their scale independence.

5 Conclusions

In this paper, an automated detection and characterization of photospheric granules were
presented. Image processing methods and machine learning algorithms were applied to
recognize and determine the physical properties of granules. The processes of three kinds of
image segmentations (c-means, k -means, and FCM) were employed. The output images and
the average of brightness fluctuation of granules derived from segmentations demonstrate
that the detections of granules’ locations are exactly correct. On the basis of Figure 2, it
can be seen that one third of quiet-Sun is covered with granules. The mean value of granules
size is consistent with previous studies [15, 16]. Two regimes governed on granules describe
the turbulent eddies of smaller granules (< 2.8 arcsec2) [15, 16]. The mean value of granular
lifetimes is about 7 minutes in the quiet-Sun. Figure 6 indicates that it would be existed
a scale range [50, 100] in which the FD estimate D(r) shows the fractal characteristics of
granulation. The entire computing time of procedures has taken about 5 minutes for data
series in MATLAB environment. The top speed and high efficiency of unsupervised learning
algorithms is the characteristics of these applications and make them easy to use.



Segmentation of Photospheric Solar Images 75

0 1.5 3 4.5 6 7.5 9 10.5 12
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Size (arcsec
2
)

I G
ra

n
u

le
/<

I im
a
g
e>

 

 

Granules

Mean value 

Figure 5: The scatter plot of granules brightness vs. size. The overall mean value of the
scatter plot of the granule brightness is 1.35. For large granules, the brightness approaches
a particular value (1.3).
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Figure 6: Local scaling exponent. If fractal characteristics are appeared over a limited
range of box size r within the image, this can be demonstrated better by plotting the local
exponent, D(r) = −d lnnd ln r
.
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