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Abstract. The solar corona, the outermost layer of the Sun’s atmosphere, plays a
crucial role in understanding solar phenomena and their impact on space weather and
terrestrial systems. As advancements in solar observation technologies continue to pro-
duce high-resolution coronal images, the need for effective image processing methods
has become increasingly important. This paper highlights the significance of processing
techniques specifically designed for solar coronal images, which are essential for reveal-
ing intricate details of coronal structures, such as solar flares, coronal mass ejections,
and magnetic field configurations. We explore various image processing methodologies,
including event detection, contrast enhancement, and pattern analysis, that enhance
the quality and interpretability of coronal images. Additionally, we address the chal-
lenges associated with processing coronal images, such as the presence of unrelated
background, variability in data acquisition, and the complexity of coronal dynamics.
By reviewing recent advancements in new instruments and algorithms, this paper ex-
plains how improved technologies and developed processing methods can lead to more
accurate analyses of coronal phenomena, ultimately contributing to the broader field
of solar research and our understanding of the Sun’s influence on the solar system. The
findings emphasize the need for ongoing innovation in image processing methods to
unlock new insights into the behavior of the solar corona and its implications for space
weather forecasting and solar-terrestrial interactions.

Keywords: Sun: Corona, Sun: Activity, Sun: Magnetic Fields, Sun: Active Regions,
Sun: Coronal Holes, Sun: Coronal Loops, Techniques: Image Processing.

1 Introduction
The corona, with its complex structure and dynamic magnetic fields, provides considerable
challenges and opportunities for understanding physics of the Sun, especially using mag-
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netohydrodynamic (MHD) theory [1]. The corona has undeniable effects on space weather
through solar wind, flares, and coronal mass ejections (CMEs). These types of phenomena
disrupt Earth’s magnetosphere, disturb satellites and infrastructure, and turn out auroras,
while changing the interplanetary medium and radiation risks beyond Earth. Studying
this Sun-Earth-space connection is crucial for predicting space weather hazards, developing
instruments, and advancing both astrophysical knowledge and human endeavors in space
exploration (e.g., see [2–5]). Addressing critical questions about the physics of the corona
through manual and/or automated techniques is vital, including modeling coronal loops, un-
derstanding heating mechanisms in different regions with various temperatures, analyzing
acceleration processes of particles generated from different solar wind types, and surveying
the global maps of the corona’s magnetic field [6,7] associated with its local structures and
evolutions [8,9].

The word ”corona” means ”crown” in Latin and describes the faint halo seen around
the Sun during total solar eclipses (e.g., [10]). This halo is made of very hot, thin plasma
(millions of degrees Kelvin) and glows about as brightly as a full Moon. People have observed
the corona for hundreds of years, and ancient civilizations revered the Sun. For example,
Egyptians worshipped it, as shown by a design resembling the corona on King Tut’s chair
[11], while ancient Chinese thought eclipses were caused by a dragon eating the Sun and
employed astronomers to fight it [12,13].

Historically, observing the corona in white light was only possible during rare, brief total
solar eclipses because the photosphere is vastly brighter. This limitation led to the invention
of the coronagraph [14], which uses an occulting disk to block the Sun’s face, enabling regular
ground-based observations [14,15]. Space-based coronagraphs (e.g., Skylab, SMM, SoHO
[16], STEREO) greatly reduce stray light. The corona can also be directly observed in soft
X-rays and extreme ultraviolet (EUV) from space (missions like Skylab, Yohkoh, TRACE,
SoHO, Hinode, SDO; e.g., [16–20]) since Earth’s atmosphere blocks these wavelengths. The
eclipse corona forms when light from the Sun’s surface scatters off free electrons (called the
K-corona) and dust particles (called the F-corona) (e.g., [21,22]). Close to the Sun (within
about 2.3 solar radii), the K-corona dominates. Its brightness shows where the electron
density is highest. As seen in Figure 1, the corona’s structures during an eclipse are shaped
by the Sun’s magnetic field: loops trap plasma closer to the surface, while open field lines
are stretched out by the solar wind [23]. A major advance in understanding the corona
happened in the 1930s. Scientists found that many unusual light patterns (spectral lines)
seen in the corona came from known elements in extremely ionized states. This showed
the corona’s temperature must be several million Kelvin – hot enough to strip away most
electrons from atoms, even heavy ones. Because of this intense heat, the corona gives off
X-rays, allowing it to be seen directly in soft X-rays or EUV light using space telescopes
[15].

The inner corona’s electron density is typically around a few times 1014m−3 but can
be 5–20 times higher in some areas. It drops sharply with distance from the Sun, falling
to a few times 1012m−3 at one solar radius above the surface and below 1010m−3 at ten
solar radii. Explaining how the corona and chromosphere get so hot is a major challenge
in solar physics. Two leading theories involve magnetic waves carrying energy from below
or magnetic reconnection events [24,25]. Evidence for both waves (like Alfvénic waves) and
reconnection exists.

The corona experiences significant energy losses due to thermal conduction, radiation,
and mass outflow, with a total energy loss of approximately 1021 W, which constitutes only
0.001% of the solar luminosity, estimated at 3.86 × 1026 W. Coronal magnetic fields range
from a few to hundreds of Gauss and can be measured via radio waves or infrared line
splitting (e.g., [26]), allowing comparison with models [27,28]. We should note that the



Coronal Image Processing Methods 39

Figure 1: The solar corona was observed during the eclipse on August 11, 1999, in Isfahan,
Iran. The data is selected from a collection of photographs archived by Iraj Safaei (with the
permission).

corona’s shape, magnetic fields, and temperature change with the solar cycle [29,30]. At
sunspot maximum, streamers and CHs are spread across latitudes. At minimum, streamers
cluster near the equator while CHs dominate the poles (see [31–33]).

The corona’s global structure is divided into three main components based on magnetism
and radiation: Active regions (ARs) which are included areas of strong magnetic fields (1–4
MK), sunspots, and frequent eruptions. Quiet Sun (QS) which are areas of weaker, diffuse
closed magnetic fields, still dynamic. Coronal holes (CHs) which are darker areas of open
magnetic fields, sources of the fast solar wind. This structure reflects the balance between
magnetic energy storage, release, and connection to space [25,34].

Locally, main structures include dark CHs (open fields), bright coronal loops (closed
fields connecting opposite polarities), and small X-ray bright points (tiny magnetic loops;
e.g., [35]). A prominent feature is the coronal (helmet) streamer, a bright, dense structure
extending above the limb. It forms over prominences or ARs, with closed magnetic fields
at the base transitioning to open fields stretched by the solar wind, resembling a helmet
[36,37]. MHD models exist [38,39]. There are two main types: 1- Bipolar Streamers: Above
a single bipolar arcade, between opposite-polarity CHs. 2- Unipolar (Pseudo) Streamers:
Separate CHs of the same polarity, above a quadrupolar field [40,41].

Readers may consult reviews and dissertations covering interesting solar corona topics
for deeper exploration. These include: waves and oscillations in solar corona [42–48], the
coronal heating [34,49], Kinematic properties of waves in the solar corona and its kinetic
physics [50,51], ARs [52,53], CHs [31,33], flares [54–56], CMEs [57–61], and coronal bright
points (CBPs) [62–64].

Several solar phenomena, including flares, are systematically documented in dedicated
catalogs. For instance, solar flare events are cataloged in different resources. For in-
stance, the Geostationary Operational Environmental Satellite (GOES) Flare Catalog main-
tained by NOAA, is the definitive record of solar flares detected via X-ray flux measure-
ments from GOES satellites since 1975 [65–67]. It classifies flares by peak X-ray intensity
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(e.g., X, M, C-class) and provides start, peak, and end times of flares with their locations
(https://umbra.nascom.nasa.gov/goes/). The other known example is the Hinode Flare
Catalog [68]. The Hinode Flare Catalog documents solar flares observed by the Hinode
satellite. It combines high-resolution data from Hinode’s instruments – the Solar Opti-
cal Telescope (SOT), X-Ray Telescope (XRT), and EUV Imaging Spectrometer (EIS) –
to provide detailed flare characteristics, including timing, location, magnetic field evolu-
tion, and multi-wavelength imagery. This catalog complements broader flare databases
(e.g., GOES) by emphasizing fine-scale processes, such as magnetic reconnection dynam-
ics and plasma heating (https://hinode.isee.nagoya-u.ac.jp/flare−catalogue/). The Astro-
rivelatore Gamma a Immagini LEggero (AGILE) Flare Catalog [69] is one of the new ones
that records high-energy solar flares detected by the Italian AGILE satellite (launched
2007), specializing in gamma-ray and hard X-ray observations. It focuses on impulsive
solar events, providing timing, spectral data, and localization of flares, particularly those
associated with particle acceleration and gamma-ray emissions. Also, this catalog comple-
ments softer X-ray flare databases (e.g., GOES) by capturing rare and high-energy processes
(https://www.ssdc.asi.it/agilesolarcat/). The other database is Archival Solar flaRes Cata-
log (ASR) [70] which is not widely used in literatures. The ASR catalog is publicly available
at (https://github.com/helio-unitov/ASR−cat).

The other useful database is the Solar Demon database (e.g., see [71,72]). Solar Demon
is an automated, real-time solar feature detection system designed to identify and track
dynamic events in the Sun’s atmosphere using EUV imagery from the SDO. It specializes in
detecting phenomena such as Solar flares, Coronal dimmings, Coronal jets, EIT waves (large-
scale propagating disturbances). The database archives event detections, metadata, and pro-
cessed imagery, serving as a resource for solar physics research and space weather forecast-
ing. It also involves real-time processing (analyzes SDO/AIA data streams in near-real time
with the cadence of 1 – 2 minutes), multi-event detection (simultaneously tracks flares, dim-
mings, jets, and EIT waves using tailored algorithms), event catalogs (Provides timestamps,
locations, intensities, and morphological data for each detected event), and data products
(includes EUV images, difference maps, and event overlays for visualization). Solar Demon
employs thresholding, segmentation, and temporal tracking for solar activity detection: for
flare detection, it monitors EUV intensity spikes and triggers alerts when thresholds ex-
ceed baseline levels. Coronal dimmings are identified by tracking rapid EUV intensity drops
post-flare/CME and mapping regions via running difference images. EIT waves are detected
using spatiotemporal filtering to capture propagating brightenings/dimmings, while colli-
mated plasma jets are recognized through morphological filters analyzing ejection patterns.
To access the data, refer to the Solar Demon website (https://www.sidc.be/SolarDemon/).

Image segmentation partitions an image into meaningful regions sharing similar at-
tributes. Thresholding is the simplest method, separating pixels based on intensity values
relative to a chosen threshold. Otsu’s method (1979) automates this by maximizing inter-
class variance [73]. Edge-based segmentation identifies boundaries using gradient operators
like the Canny edge detector (1986), which optimizes noise reduction and edge localiza-
tion [74]. Region-based methods like seeded region growing [75] group adjacent pixels with
homogeneous properties, while clustering algorithms such as k-means (e.g., see [76] and ref-
erences therein) partition pixels into clusters based on feature space similarity. Watershed
segmentation [77] treats images as topographic maps, flooding basins from minima to sepa-
rate regions. These classical methods are computationally efficient but often struggle with
noise, intensity inhomogeneity, and complex textures.

To address limitations of classical techniques, active contour models ([78] and refer-
ences therein) evolve curves under energy constraints to fit object boundaries. Graph-based
segmentation like normalized cuts [79] models pixel relationships as graphs, partitioning
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them by minimizing edge weights between groups. The rise of deep learning revolutionized
segmentation: Convolutional Neural Networks (CNNs) like U-Net (e.g., see [80] and refer-
ences therein) use encoder-decoder architectures with skip connections for precise biomedical
segmentation. Instance segmentation methods (e.g., Mask R-CNN; [81]) extend CNNs to
identify object instances and their pixel-level masks. Transformer-based architectures (e.g.,
Transformer Networks; [82]) capture global context more effectively than CNNs. These
methods excel with complex data but require large labeled datasets and significant compu-
tational resources.

As we deal with stream of solar data, this is undeniable to make a connection between
two fields of image processing and solar physics. As an example, solar imagery – particularly
from instruments like SDO/AIA [83], SOHO/LASCO [84], and Hinode/XRT [85] – presents
unique challenges: low contrast between coronal structures, dynamic intensity ranges, and
complex magnetic topology. Classical methods like multiscale thresholding [73] and region
growing [75] are used to isolate ARs [86] but often fail with faint coronal loops. Edge-based
techniques [74] help detect CH boundaries [87]. New methods now dominate for segmenting
solar flares [88], CHs [89], and CMEs [90], leveraging their ability to learn hierarchical fea-
tures from multi-wavelength data. These advancements enable precise tracking of magnetic
activity and space weather forecasting.

Before we explore the review of coronal image processing, we briefly summarize the sig-
nificance of pre-processing methods for solar images, as detailed in an article provided by
Javaherian and Eskandari (2023) [91] (the interested reader also can find the details about
some studies in [92,93] and references therein). The role of image preprocessing techniques
in solar image analysis is crucial for effectively applying automated feature detection al-
gorithms. These procedures are designed to remove unwanted features, correct artifacts,
enhance significant structures, and standardize images for further analysis. Key aspects
of these pre-processing methods include correcting instrumental effects such as dark and
hot pixels from charge-coupled devices (CCDs), suppressing non-solar artifacts like cosmic
rays, and ensuring sufficient image resolution through deconvolution or resampling. More-
over, background subtraction, coordinate system alignment, and various image filtering tech-
niques are essential steps for improving feature detection accuracy. Techniques like speckle
imaging and phase diversity are utilized for image restoration, especially in ground-based
observations that are influenced by atmospheric distortions. The article also outlines specific
preprocessing tasks necessary for tracking features in sequential frames, including derotation
and the application of subsonic filters. By carefully addressing these factors, researchers can
greatly enhance the reliability and accuracy of their analyses of solar images. The paper is
organized as follows: We explained some main telescopes and instruments used for studying
the solar corona in Section 2. The types of solar coronal data are described in Section 3. We
present image processing methods in solar coronal data in Section 4. Concluding remarks
are given in Section 5.

2 Some Main Telescopes and Instruments for Studying
the Solar Corona

Here, we present some of the primary telescopes and instruments used to study the solar
corona. It’s a combination of diverse observatories that collaborate to provide us with the
clearest view of the Sun’s outer atmosphere. This incredible partnership utilizes advanced
technology, both on Earth and in space.
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2.1 Space-Based Telescopes and Instruments
Space-based telescopes are advantageous because they bypass the Earth’s atmosphere, which
distorts images and absorbs significant light, particularly in the EUV and X-ray wavelengths.
This provides us a much clearer view of the Sun.

2.1.1 Solar and Heliospheric Observatory (SoHO)

SoHO is a joint mission between ESA and NASA launched in 1995 [16]. Also, it has three
main instruments. 1- Large Angle and Spectrometric Coronagraph (LASCO): As we talked
about previously, LASCO is a coronagraph that blocks out the bright disk of the Sun, letting
us see the fainter corona in white light. It’s amazing for spotting CMEs and other large-
scale coronal structures [84,94,95]. 2- Extreme Ultraviolet Imaging Telescope (EIT): This
instrument takes EUV images of the Sun, similar to SDO’s AIA. It has fewer wavelength
filters, but has been operating for many years and given us invaluable data [96]. Solar Ultra-
violet Measurements of Emitted Radiation (SUMER): A spectrometer that measures EUV
light and helps understand the temperatures, densities, and velocities of coronal plasma.
SOHO has been essential in our understanding of the solar corona and how it interacts with
the solar wind and the Earth [97,98]. It has given us a long-term view of solar behavior
(https://sohowww.nascom.nasa.gov/).

2.1.2 Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI)

A NASA mission launched in 2002 aimed to study solar flares. Although it is no longer
operational, the data it collected has been invaluable. It has X-ray and Gamma-ray Spec-
trometer [99,100]. In fact, RHESSI’s main instrument was designed to measure hard X-rays
and gamma-rays emitted by the Sun, which are produced during solar flares. RHESSI was
extremely good at studying flares in their highest energy emissions [101]. It has been essen-
tial to our understanding of how flares release energy (https://hesperia.gsfc.nasa.gov/).

2.1.3 Sun Watcher with Active Pixels and Image Processing (SWAP)

One of the significant EUV solar telescopes which is on board ESA’s PROBA2 satellite is
SWAP. It was designed to observe the Sun’s middle corona (a region between the lower
corona and outer heliosphere), it captures high-cadence, wide-field EUV images to study
structures like coronal fans, eruptions, and EUV waves [102]. Using advanced active-pixel
sensor technology, SWAP provides continuous, uncompressed observations, enabling long-
term monitoring of solar activity across an 11-year solar cycle. Its innovations have sig-
nificantly advanced understanding of dynamic processes in the Sun’s extended atmosphere
(http://proba2.sidc.be/swap).

In a review article conducted by [103], the authors provide a comprehensive survey of
scientific contributions enabled by the SWAP. They synthesized research across three the-
matic areas: (1) long-lived structures like streamers, pseudo-streamers, and coronal fans;
(2) dynamic phenomena such as eruptions, jets, EUV waves, and shocks; and (3) mecha-
nisms driving coronal EUV emission generation. The review emphasized SWAP’s pioneering
role in advancing understanding of the middle corona – a previously underexplored region
– and highlighted its innovative imaging techniques (e.g., off-limb enhancement methods)
that improved observational clarity. By cataloging SWAP’s legacy, the authors underscored
its technical capabilities and lasting impact on solar physics, particularly in bridging gaps
between low-corona and heliospheric studies.

https://sohowww.nascom.nasa.gov/
https://hesperia.gsfc.nasa.gov/
http://proba2.sidc.be/swap/
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2.1.4 Hinode

A Japanese mission with international (NASA/ESA) collaboration (launched 2006), dedi-
cated to studying the Sun [19]. Its instruments are as follows: 1- EUV Imaging Spectrometer
(EIS): It takes spectral measurements of the solar corona in EUV light, which helps to mea-
sure temperature, density, and velocity of the plasma [104]. 2- Solar Optical Telescope
(SOT): It takes very high resolution images of the Sun in visible light [105–107]. 3- X-Ray
Telescope (XRT): It takes images of the solar corona in X-rays [85,108]. It enables us to
study the dynamics of various solar phenomena, particularly those originating in the photo-
sphere (e.g., see [109–112]. Hinode helps us understand the dynamics of the Sun, its activity
[113], and the connections between the different layers (https://hinode.nao.ac.jp/en/).

2.1.5 Solar Dynamics Observatory (SDO)

SDO is a NASA mission equipped with a comprehensive array of instruments designed to
observe the Sun [20]. It’s been a real workhorse since its launch in 2010. It involves three
main instruments. 1- Atmospheric Imaging Assembly (AIA): This is the star of the show,
taking high-resolution EUV images of the corona in multiple wavelengths. It has multiple
filters, giving us access to a wide variety of plasma temperatures in the corona [83]. 2- He-
lioseismic and Magnetic Imager (HMI): This measures the Sun’s magnetic fields and studies
the interior of the Sun using waves that travel through it. It isn’t technically measuring
the corona, but the magnetic field that it observes is very important to understanding the
corona [114,115]. 3- EUV Variability Experiment (EVE): This instrument measures the
Sun’s EUV irradiance. It does not make images, but measures the overall EUV output
of the Sun, and helps to understand how that energy affects Earth [116]. SDO provides
incredibly detailed images and data, helping us understand how the Sun’s magnetic field
affects the corona, solar flares, and CMEs. It gives us almost continuous coverage of the
Sun (https://sdo.gsfc.nasa.gov/).

2.1.6 Parker Solar Probe

The Parker Solar Probe (PSP) is a NASA spacecraft launched in 2018 to study the Sun’s
outer corona. It’s designed to get closer to the Sun than any previous mission, which al-
lows it to gather unique data on solar wind and the Sun’s atmosphere. the PSP doesn’t
have a traditional telescope. It’s a spacecraft with in situ instruments. Its closest ap-
proach is < 10 solar radii (0.046 AU, or ∼ 6.9 million km) from the Sun’s surface [117,118].
It has some instruments: 1- FIELDS: Measures the 3-component electric and magnetic
fields of the corona [119]. 2- Solar Wind Electrons Alphas and Protons (SWEAP): An-
alyzes solar wind particles (electrons, protons, and ions) [120]. 3- Integrated Science In-
vestigation of the Sun (IS

⊙
IS): Detects energetic particles [121]. 4- Wide-field Imager for

Solar PRobe (WISPR): Wide-field imager for coronal structures [122–124]. The main sci-
entific goals are tracing the origin of the solar wind, coronal heating, studying magnetic
field dynamics, plasma behavior, and dust populations (e.g., see [125–127]) near the Sun
(https://science.nasa.gov/mission/parker-solar-probe).

2.1.7 Solar Orbiter (SolO)

ESA’s mission, launched in 2020, to get closer to the Sun and observe it from different
angles. It has provided valuable insights into the solar corona, including evidence linking
coronal dimming to the Southern PCH [128]. It has some cool instruments for studying
the corona [129,130]. It involves four types of instruments. 1- The Extreme Ultraviolet

https://hinode.nao.ac.jp/en/
https://sdo.gsfc.nasa.gov/
https://science.nasa.gov/mission/parker-solar-probe/
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Imager (EUI): Captures high-resolution images of the solar corona across multiple EUV
wavelengths [131], enabling the characterization of transient phenomena such as small-scale
brightenings [132,133]. 2- Spectrometer for Helioseismic and Coronal Explorer (SPICE):
Measures the spectra of the solar corona in EUV light, to measure composition, tem-
perature, and velocity of the plasma [134–136]. 3- Metis: A coronagraph instrument for
imaging the corona in both polarized visible and UV light [137–139]. 4- Polarimetric and
Helioseismic Imager (PHI): Takes images of the solar magnetic field [140,141]. Solar Or-
biter is giving us new views of the Sun from different perspectives than we’ve seen be-
fore. It is helping us to understand how the Sun’s magnetic field interacts with the corona
(https://www.esa.int/Science−Exploration/Space−Science/Solar−Orbiter).

2.1.8 Aditya–L1

India’s Aditya–L1 solar observatory, launched in 2023, hosts three advanced instruments for
multi-faceted solar studies. The Aditya Solar wind Particle EXperiment (ASPEX) employs
dual spectrometers (SWIS: 100 eV – 20 keV; STEPS: 20 keV/nucleon – 6 MeV/nucleon) to
analyze solar wind protons, alpha particles, and energetic particles, with STEPS activated
post-launch and delivering L1-consistent data [142]. The Fluxgate Magnetometer (MAG),
positioned on a 6-m boom, measures interplanetary magnetic fields (±256 nT/axis at 125
ms intervals) to study space weather and detect CMEs, transmitting data daily via 12-
hour ground windows [143]. Meanwhile, the Solar Ultraviolet Imaging Telescope (SUIT)
captures full-disk and targeted solar imagery using 11 filters (200 – 400 nm), resolving
magnetic coupling in the Sun’s atmosphere and pioneering UV irradiance measurements
critical for stratospheric ozone studies [144]. Each payload uniquely supports coordinated
solar exploration at L1.

2.2 Ground-Based Telescopes and Instruments
Although they encounter atmospheric challenges, ground-based telescopes have some advan-
tages, such as being easier to maintain and upgrade. They are also often useful for observing
radio waves.

2.2.1 Coronal Multi-channel Polarimeter (CoMP)

A ground-based telescope located in Colorado, known as CoMP, specializes in observing the
solar corona using polarized light across various wavelengths [145–147]. It measures the mag-
netic field of the corona and velocity of the plasma (https://www2.hao.ucar.edu/instruments/coronal-
multi-channel-polarimeter-comp).

2.2.2 Owens Valley Solar Array (OVSA)

A radio telescope array in California, operated by the New Jersey Institute of Technology
[148]. OVSA observes radio waves (1–18 GHz) emitted by the Sun, which allows scientists
to study the acceleration of particles in solar flares and the structure of the corona [149,150]
(https://www.ovsa.njit.edu/).

2.2.3 Atacama Large Millimeter/submillimeter Array (ALMA)

A large international radio telescope array in Chile. Though known for observing the
distant universe, ALMA can also be used to observe the Sun at millimeter and submil-

https://www.esa.int/Science_Exploration/Space_Science/Solar_Orbiter
https://www2.hao.ucar.edu/instruments/coronal-multi-channel-polarimeter-comp
https://www2.hao.ucar.edu/instruments/coronal-multi-channel-polarimeter-comp
https://www.ovsa.njit.edu/
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limeter wavelengths [151,152]. This allows us to study the middle to lower solar corona
(https://www.almaobservatory.org/en/).

2.2.4 Daniel K. Inouye Solar Telescope (DKIST)

A very large ground-based solar telescope located in Hawaii, operated by the National Solar
Observatory. DKIST is still in the commissioning stage, but will give very high resolution
observations of the Sun in many different wavelengths of light [153,154]. This will enable
us to study the dynamics and magnetic fields of the photosphere and the corona, as well as
how they interact. (https://nso.edu/inouye-solar-telescope/).

Numerous missions have been conducted to gather solar coronal data, utilizing a range of
space- and ground-based instruments. For further study, readers may find more information
from: The Advanced Solar Coronal Explorer Mission (ASCE) [155], Mirror Coronagraph for
Argentina (MICA) [156], Giant Meterwave Radio Telescope (GMRT; see [157,158] and ref-
erences therein), the Nancay Radio Heliograph (NRH) [159], Very High Angular Resolution
Imaging Spectrometer (VERIS) [160], High-resolution Coronal Imager (Hi-C) [161,162] with
its extended applications in Refs. [163,164], Magnetic Activity of the Solar Corona (MASC)
[165], second flight of the Focusing Optics X-ray Solar Imager (FOXSI-2) [166], the Multi-
Slit Solar Explorer (MUSE) (e.g., see [167–169] and references therein), Mauna Loa Solar
Observatory (MLSO) [170], the Large Yield Radiometer (LYRA) (e.g., see [171,172]), the
PArtially Multiplexed Imaging Spectrometer (PAMIS) [173], and the COronal Solar Mag-
netism Observatory (COSMO) [174].

3 Solar Coronal Data
As the solar corona is basically the outer atmosphere of the Sun, and it’s super hot (millions
of degrees), it emits light in different wavelengths, and that’s what we use to study it. Each
type of data – EUV, X-ray, white light, radio, and spectroscopic – provides us a different
piece of the puzzle enhancing our understanding of the Sun’s amazing complexity.

3.1 EUV Images
EUV light is invisible to the human eye, but it’s perfect for seeing the hot plasma in
the corona. These images are usually captured by satellites orbiting Earth or the Sun.
EUV images are excellent for revealing the structure of the corona, including loops of mag-
netic fields, ARs (where sunspots are), and solar flares. It can be seen how the mag-
netic field is organized. Different wavelengths of EUV light will show different temperature
plasma [175]. As some examples, a wavelength around 171 Å is often used to see ma-
terial around 1 million Kelvin, which is good for seeing the general corona. A wavelength
around 193 Å is good for seeing higher temperature plasma, often around 1.5 million Kelvin.
Wavelengths around 94 Å show some of the hottest regions of the solar corona. Scientists
use these images to study how energy moves through the corona and how solar storms
form. They can see how those structures evolve over time. Also, EUV data is great for
making movies. The interested reader can check out NASA’s SDO [20], the AIA [83] sec-
tion for a vast amount of EUV images (https://sdo.gsfc.nasa.gov/). Also, the European
Space Agency’s Solar Orbiter has some awesome EUV instruments, including the EUI [131]
(https://www.esa.int/Science−Exploration/Space−Science/Solar−Orbiter).

https://www.almaobservatory.org/en/
https://nso.edu/inouye-solar-telescope/
https://sdo.gsfc.nasa.gov/
https://www.esa.int/Science_Exploration/Space_Science/Solar_Orbiter
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3.2 X-Ray Images
X-rays are even higher energy than EUV, and they’re emitted by the very hottest parts
of the corona, like during solar flares. X-ray images are especially valuable for detect-
ing non-thermal electrons [176] and intense solar flares that can affect Earth [177]. They
also help reveal the most energetic plasma [178]. By analyzing X-ray data, scientists
can study the process of how flares release significant amounts of energy and assess their
potential impacts on our planet [179]. It can be observed the specific regions that are
involved in the flare event, and follow how it evolves over time. The GOES (Geosta-
tionary Operational Environmental Satellite) satellites [180,181] are great sources of X-
ray data [182]. The interested reader can check out their website for some information
https://www.goes.noaa.gov/. The RHESSI spacecraft [99] was also a major player in X-ray
studies of the Sun (https://hesperia.gsfc.nasa.gov/).

3.3 White Light Images
These are images of the corona in the visible light spectrum. However, since the corona
is quite faint, they can usually only be observed during a total solar eclipse, or by using a
coronagraph, which blocks out the Sun’s bright disk so that we can see the dimmer corona
[183,184]. White light images provide a view of the overall shape and structure of the
solar corona (e.g., see [185], [186], and references therein for more details). You can see
things like coronal streamers (those long, thin structures), and CMEs - those huge clouds
of plasma being launched out into space [94,187,188]. These images are essential for under-
standing the large-scale dynamics of the corona, like where these big eruptions come from
and where they are headed [189]. The LASCO instruments [84] on the SOHO (Solar and
Heliospheric Observatory) spacecraft [16] have given us amazing white light images for many
years (https://sohowww.nascom.nasa.gov/). Also, the STEREO (Solar Terrestrial Relations
Observatory) mission [190] with a suite of scientific instruments (SECCHI: Sun Earth Con-
nection Coronal and Heliospheric Investigation) [191] have white light coronagraphs too,
allowing us to get a 3D view of the corona (https://stereo.gsfc.nasa.gov/).

3.4 Radio Observations
Radio telescopes are capable of detecting radio waves emitted by the solar corona (e.g., see
[26]), providing valuable insights into its density and magnetic fields. These radio observa-
tions enhance our understanding of how particles are accelerated in the corona and allow us
to observe details of solar bursts (e.g., see [192]) and their association with flares and CMEs.
They also show different layers of the solar corona. Radio data gives us a unique look at the
plasma in the corona, and gives us information that you can’t get from EUV or X-ray images
[193,194]. The Owens Valley Solar Array (OVSA) is a radio telescope [195,196] that’s great
for studying the Sun (https://www.ovsa.njit.edu/). Also, the ALMA can be used to study
the Sun [151]. It is in the millimeter and submillimeter wavelength range, not just the radio
range (https://www.almaobservatory.org/en/).

3.5 Spectroscopic Data
This data doesn’t represent an image; it decomposes light into its various wavelengths. It’s
similar to observing a rainbow, but with much higher resolution than the human eye can
perceive. The spectra allow scientists to measure the temperature, density, and velocity of
the plasma in the corona [197]. Also, they can identify the different elements in the corona,

https://www.goes.noaa.gov/
https://hesperia.gsfc.nasa.gov/
https://sohowww.nascom.nasa.gov/
https://stereo.gsfc.nasa.gov/
https://www.ovsa.njit.edu/
https://www.almaobservatory.org/en/
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and figure out how much of each are there. Scientists can figure out the exact conditions
of the plasma in the corona, which lets them understand how energy is transferred and
how different structures are formed. The Hinode spacecraft has an EUV imaging spec-
trometer (e.g., see [104,198]) that gives some great information about the coronal plasma
(https://hinode.nao.ac.jp/en/). The SUMER instrument [97,98] on SOHO was also a great
source of spectroscopic data (https://sohowww.nascom.nasa.gov/).

4 Image Processing Methods
In the era of big data, image processing methods are indispensable in all fields of astronomy
(e.g., see [199,200]) especially in solar data analysis. Solar observations, such as those from
satellites like SoHO or SDO, generate vast volumes of high-resolution imagery that capture
dynamic, complex phenomena (e.g., ARs, flares, coronal loops). Furthermore, raw solar
data often contains noise, instrumental artifacts (e.g., limb brightening), and variations in
brightness due to the Sun’s spherical geometry or observational conditions [201]. It seems
that the application of image processing techniques to solar data analysis dates back over
three decades, with seminal works including: identification of CHs in X-ray and EUV coronal
data [202,203], analysis of Yohkoh soft X-ray images [204–206], white-light image simulation
of coronal structures recorded by solar probe [207,208], detection of emission regions using
an Hα imaging coronagraph [209], emission measure variations in a QS [210], polarization
observations of corona [211,212], topology of magnetic field lines [213].

Since the early 2000s, automated image processing methods have been increasingly em-
ployed to analyze solar atmospheric data. One of the first investigations of multiwavelength
analysis in solar coronal, transition region, and chromospheric lines belongs to [214]. In this
paper, the emissions of the QS from different instruments were collected and various im-
age processing tasks like image reconstruction and cross-correlation method were employed
to achieve statistical results. In article [215], the author developed a novel multi-exposure
image compositing technique to capture the solar corona’s intricate details across extreme
brightness variations. In Ph.D. dissertation [216], the author leverages advanced image pro-
cessing techniques (using such as modified Hough transform, automatic thresholding, and
region-growing method) to study solar coronal dynamics, focusing on two phenomena: coro-
nal loop waves using automated analysis of high-cadence EUV/SXR imagery (Part I), and
CMEs applying detection method to coronagraphic white-light data (Part II). The disserta-
tion advances solar image processing by bridging observational data [217] with theoretical
models, enhancing the study of coronal waves and CMEs through automation and multi-
instrument synergy.

In reference [218], the author addressed challenges in solar image processing, particularly
flaws introduced by common re-sampling methods during tasks like co-alignment, reprojec-
tion, and solar rotation compensation. In this paper, it has been highlighted that while more
accurate techniques, long established in computer graphics, exist to minimize distortion ar-
tifacts, these remain underutilized in solar physics. To bridge this gap, the author developed
a mathematical framework for data re-sampling under arbitrary coordinate transformations
and proposed an optimized algorithm like locally optimized spatial filtering to improve ac-
curacy. They demonstrated the broader analytical potential of distortion techniques, such
as enabling advanced image analysis beyond basic corrections. Examples were provided to
illustrate how distortion can serve as a tool for scientific exploration. Finally, they intro-
duced freely accessible software to empower the solar physics community with these refined
methods, aiming to enhance data integrity and expand research capabilities.

In the other study [219], the authors developed an image processing method to isolate

https://hinode.nao.ac.jp/en/
https://sohowww.nascom.nasa.gov/
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solar dimmings from background noise and other structures. Here’s a concise breakdown:
1- Fixed Difference (FD) Image Creation: Subtracted a pre-event baseline image from sub-
sequent images to highlight dimmings, compensating for solar rotation to align structures
accurately. 2- Threshold-Based Pixel Maps: (a) Maximal Pixel Map: Identified pixels below
a weak threshold (−σ, where σ ≈ 150 counts derived from pre-event FD histograms), captur-
ing dimming regions but including noise. (b) Minimal Pixel Map: Selected the 1% darkest
FD pixels to isolate core dimming areas, then applied 5×5 median filtering to remove small
noise points, retaining only large, coherent structures. 3- Region-Growing with Constraints:
Used the filtered minimal pixel map as seeds for region-growing, expanding only into pixels
within the maximal pixel map. This ensured the final dimming region was simply connected
(no isolated fragments) and excluded noise. 4- Noise Suppression: Combined statistical
thresholding, median filtering, and connectivity constraints to distinguish true dimmings
from transient artifacts, achieving precise spatial extraction of dimming regions. This ap-
proach involves dual thresholds and morphological filtering to balance sensitivity (maximal
map) and specificity (minimal map), enhancing reliability in noisy solar imagery. The in-
terested reader, also, can refer to the related papers such as [220,221] explaining exploration
of EIT waves in the solar corona.

In [222], the authors developed an automated thresholding and region-growing (ATRG)
method to detect ARs or plages in solar images from the EGSO Solar Feature Catalogue.
Using Hα, Ca ii K3 (Meudon Observatory), and SOHO/EIT EUV data, their approach first
segments solar images by defining local intensity thresholds for each quadrant to identify
initial AR seeds. Median filtering and morphological operations refine the segmentation by
removing noise and merging fragmented regions. Centroids of these regions act as seeds for
region-growing, with dynamic local thresholds determining spatial boundaries. The auto-
mated results were compared to manually generated synoptic maps (Meudon Observatory
and NOAA) over 2 months in 2002 and 5 years of data. While the method showed moderate
correlation with manual detections, discrepancies highlighted inconsistencies in AR defini-
tions across datasets, underscoring the need for standardized criteria. The work emphasizes
improving reproducibility in solar feature identification through automated, statistics-driven
techniques.

In the other work, the authors propose a segmentation method for detecting solar struc-
tures (e.g., CHs, ARs) in EUV images. Unlike conventional methods that rely solely on
intensity, their approach integrates both intensity and multi-wavelength spectral data to ac-
count for luminosity variations. They demonstrate this using SOHO/EIT EUV images and
employ a Bayesian classifier for supervised segmentation. The method is computationally
efficient, enabling near-real-time tracking of dynamic solar features. By leveraging spectral
information, it improves robustness against brightness fluctuations, offering a streamlined
alternative to standard techniques [223].

In one of the studies related to identification of CMEs, the authors of [225] developed
an automated image processing framework to detect, track, and visualize CMEs in corona-
graph images, integrating physics-based criteria with computational techniques to address
challenges such as noise suppression, dynamic feature evolution, and ambiguous boundaries.
The pipeline began with preprocessing raw LASCO C2 images through exposure time nor-
malization, noise filtering, and masking to remove cosmic rays, stars, and telemetry gaps,
followed by polar coordinate transformation to align with the Sun’s radial geometry. Ini-
tial detection leveraged running-difference images to isolate CMEs as bright leading edges,
collapsing 2D angular-radial data into 1D intensity profiles and applying fixed thresholds
to identify core angles representing the brightest regions. These angles were expanded via
region-growing algorithms to estimate the full angular width of the CME, though limita-
tions arose when overlapping events or deflected solar streamers complicated segmentation.
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Figure 2: Full-disk SDO/AIA 171 Å (A) and 193 Å (B) observations from 25 June 2011
(13:00:36 UT) are shown. The top row (right panel) displays manually extracted AR (red
contours, C) and CH (green contours, D) maps. The second row outlines SPoCA-derived
AR (red, E) and CH (green, F) boundaries. The third row presents the proposed method’s
AR (red, G) and CH (green, H) detections using optimized (α, β) parameters. For further
information, see [224]. Image reproduced with permission from [224], copyright by Springer.

Tracking relied on temporal coherence, requiring consecutive detections and radial projec-
tions to define the leading edge through iterative criteria: max-height (peak brightness) and
half-max-lead/follow points were calculated, with constraints ensuring outward propagation
by enforcing monotonic increases in height and distance between features. Successive im-
ages were analyzed chronologically, adjusting search boundaries and suppressing false signals
from post-CME outflows using trailing-box masking and exponential smoothing. For visual-
ization, the leading-edge shape was approximated by thresholding pixel intensities within an
extended search region, applying mathematical morphology to remove noise and unify dis-
joint segments, then smoothing the upper boundary to outline the CME’s diffuse front. The
framework balanced sensitivity and specificity by iteratively refining thresholds and spatial
constraints, though challenges persisted in distinguishing faint CMEs near bright events,
resolving overlapping structures, and adapting to diffused or backtracking material. The in-
tegration of physics-driven assumptions – such as radial propagation and brightness-density
correlations – with computational methods like coordinate transforms, adaptive masking,
and morphological operations aimed to automate CME characterization while minimizing
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artifacts, highlighting the iterative interplay between solar physics and algorithmic opti-
mization in processing complex coronagraph data (e.g., see [226] and references therein).

In abstract [227], the authors developed a specialized method to track and visualized
motion in solar corona image sequences. They first preprocessed individual frames by re-
moving atmospheric light scattering, enhancing images via Gaussian filtering, and sharp-
ening contours. Next, they analyzed the sequence by aligning clipped regions, creating
maximal-brightness composite images, computing spatiotemporal gradients to determine
motion direction, and visualizing movement through color hue and saturation shifts for each
pixel.

One of the most fascinating studies of EUV image processing methods is work proposed
by [228]. They developed a technique to detect polar coronal holes (PCHs) by adapting and
refining existing techniques to account for challenges posed by solar limb geometry (which
can be found in [229]) and variations in EUV emission. They selected daily solar EUV images
near 0:00 UT across three wavelengths (171, 195, and 304 Å), calibrated them using stan-
dardized software (i.e., solar software abbreviated as SSW) to truncate pixel values between
0 and 1000, reducing storage demands without compromising detection. To enhance clarity,
images underwent spatial smoothing via morphological operations – Erode, Dilate, Open,
and Close – using a circular kernel to eliminate noise, BPs, and graininess while preserving
large-scale features. Adaptive thresholding was applied using wavelength-specific intensity
histograms to create binary images, isolating candidate PCH regions by setting thresholds at
empirically derived levels (e.g., 30% darkest pixels for 171 Å) tailored to limb observations,
intentionally overexposing equatorial regions to focus on polar boundaries. They shaped the
Sun’s visible surface into a ring covering the outer 6% of its radius. Areas beyond 60◦ lat-
itude were blocked to focus on the polar regions. Detected hole edges were translated into
Harvey coordinates, enabling perimeter tracking over solar rotation and aggregation over
33 days to map full boundaries and assess stability. Quality metrics discarded unreliable
results (i.e., for instance, the percentage of pixels marked as CHs within the candidate hole
boundary is considered less than 15% of all pixels in that region) to avoid false positives
from equatorial intrusion during solar activity. Method verification involved simulating a
synthetic CH with known parameters, testing detection accuracy under extreme projection
effects, and validating robustness against rotational tilt and limb beveling. They studied
the Sun’s outer edge to avoid data distortion and used smart morphological filters to adapt
to the variations of solar emission and measurement uncertainties.

In the study [230], the authors develop an image processing algorithm to detect low-
contrast solar features (e.g., CHs, filaments) in radioheliographic data. Their method in-
volves: 1- Noise reduction using an evolutionary Wiener-Tikhonov filter with adaptive pa-
rameters to smooth high-frequency noise while preserving structural details. 2- Contrast
enhancement via a high-frequency (HF) filter that sharpens boundaries of low-contrast for-
mations by amplifying brightness gradients. 3- Adaptive parameter selection, where filter
settings (e.g., regularization strength, mask size) are dynamically adjusted based on the
signal-to-noise ratio and spatial scale of the target features. 4- Software implementation to
automate the process, enabling reliable isolation of structures like filaments and CHs in 5.2
cm wavelength radio images from the Siberian Solar Radio Telescope.

In dissertation [231], the author develop advanced image processing techniques to detect
and analyze CMEs using data from the STEREO mission. First, multiscale methods were
applied to coronagraph images to identify and track CME fronts, characterizing their shape
as ellipses to precisely measure kinematics (e.g., acceleration) and morphology (e.g., angular
width changes). Second, these methods were extended with 3-D reconstruction using dual-
perspective STEREO observations, employing an elliptical tie-pointing technique to resolve
the true geometry and propagation of CMEs beyond traditional 2-D plane-of-sky limitations.
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Finally, this pipeline was automated to analyze large datasets, revealing key dynamics like
early acceleration, non-radial motion, and aerodynamic drag in the solar wind, critical for
improving space weather forecasting.

In the other related study, [232] built upon prior work by [233], who pioneered tex-
ture segmentation techniques on LASCO-C2 difference images to detect and track CMEs,
demonstrating that texture analysis could quantitatively distinguish coronal events from the
background. In this study, the authors focused on isolating coronal features through a bi-
partitioning segmentation approach, framing the problem in computer-vision terms. They
developed a supervised segmentation algorithm inspired by the region competition model,
utilizing a level-sets technique to track the evolving CME front. This quasi-automated
method required initial user input to define the CME boundary in the first image of a
sequence, after which the algorithm autonomously propagated this boundary across subse-
quent frames. By leveraging texture characteristics derived from Gray Level Co-Occurrence
Matrix (GLCM) analysis, the algorithm classified pixels as either belonging to the CME or
the background. Their method involves segmentation Algorithm, GLCM implementation,
and tracking, aimed to enhance objectivity in CME characterization by minimizing manual
intervention while maintaining adaptability to dynamic coronal structures.

In the other study provided by [234], the authors developed a solar feature identification
system that uses fuzzy logic principles (which handle uncertainty in data classification) to
detect CHs and ARs in images captured by the SDO’s AIA (SDO/AIA). Unlike traditional
methods, their fuzzy-based approach enables efficient processing of solar images of varying
sizes, making it both computationally lightweight and adaptable to different observational
scales. The system prioritizes speed and flexibility while maintaining accuracy in identifying
key solar structures.

In reference [235], the authors first cleaned up the solar image by replacing irregular
negative pixels with zeros or nearby average values. They then created multiple Gaussian
blur filters of different sizes (scales) to analyze the Sun’s features. For each filter size, they
calculated a ”local average brightness” image and a ”local brightness variation” image by
comparing the original image to the blurred version. This allowed them to normalize the
image at each scale, enhancing features relative to their surroundings. They applied an
arctangent transformation to limit extreme values and repeated the process across multiple
scales. Finally, they combined results from all scales (with optional weighting) and blended
them with a globally adjusted version of the image to balance fine details and overall contrast,
producing a clearer, more standardized solar image. The technique highlights small-scale
details without losing context from larger structures, smooths out noise, exposes hidden
features in faint outer regions (even at the image’s edge), and was also tested effectively on
white-light coronagraph data.

One of the robust application in the field of segmentation of ARs and CHs is the spa-
tial possibilistic clustering algorithm (SPoCA) which is presented by [236] based on works
done by [237] and [238]. In [237], the authors developed an unsupervised fuzzy clustering
algorithm to automatically segment EUV solar images into three categories: CHs, QS, and
ARs. The method uses multichannel data and incorporates spatial constraints to improve
accuracy. Fuzzy logic handles uncertainties in image noise and ambiguous boundaries be-
tween solar regions. In the following of the prior work (i.e., SPoCA for segmenting solar
EUV images into regions), [238] addressed limitations of SPoCA-notably, artifacts in results
caused by the original method. The main improvements of the algorithm are optimizing
clustering to better align with solar regions of interest, enhancing edge definition of clusters
for sharper, more accurate boundaries, and introducing methodological extensions, such as
automated AR tracking. At last, in [236], the authors introduce the SPoCA-suite, a compre-
hensive toolkit combining multiple clustering algorithms (e.g., Fuzzy C-means, Possibilistic
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Figure 3: Full-disk SDO/AIA 171 Å (A) and 193 Å (B) observations from 28 July 2011
(13:00:37 UT) are shown. The top row (right panel) displays manually extracted AR (red
contours, C) and CH (green contours, D) maps. The second row outlines SPoCA-derived
AR (red, E) and CH (green, F) boundaries. The third row presents the proposed method’s
AR (red, G) and CH (green, H) detections using optimized (α, β) parameters. For further
information, see [224]. Image reproduced with permission from [224], copyright by Springer.

C-means, SPoCA, and their variants) with pre- and post-processing routines to automat-
ically detect and analyze solar features (i.e., ARs, QS, and CHs) in EUV images. Based
on their prior works (which addressed artifacts and edge refinement), this suite integrates
both fuzzy and possibilistic clustering methods, including histogram-based adaptations. The
goal is to provide a consistent, automated framework for segmenting solar regions, enabling
large-scale, systematic studies of their properties (e.g., evolution over time, intensity pat-
terns). The SPoCA-suite employed fuzzy logic to handle noise and ambiguity in solar images,
spatial constraints and probabilistic models to refine cluster accuracy, and automated work-
flows (pre/postprocessing) to standardize detection. The second rows of both Figures 2 and
3 show the SPoCA results for ARs (panel E) and CHs (panel F). Readers interested in
SPoCA applications may refer to [172].

One of the automated approaches with acceptable accuracy has been proposed by [224] of-
fered a robust tool for solar feature detection in EUV images. They developed an automated
method to detect ARs in solar AIA 171 Å images and CHs in solar AIA 193 Å images using a
Bayesian probabilistic framework combined with Markov-Gauss processes and Potts model
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optimization. The process begins by assigning labels to pixels through weighted intensities
of neighboring pixels, leveraging Markov-Gauss processes to model spatial dependencies.
The image is then analogized as a lattice system, where pixel intensities and positions are
treated as atomic states and locations, respectively. This framework allows the computation
of Gibbs energy distributions and Hamiltonian terms via Markov random fields, represented
as an undirected graph. To optimize pixel-state assignments, the method iteratively applies
the Potts model, refining configurations to achieve the most coherent labeling (Figure 4). A
cellular learning automaton is subsequently used to finalize label assignments, producing a
binary image where interested areas (Ars or CHs) are marked as 1 and other regions as 0.
To minimize false positives, a size threshold (> 1400 arcsec2 for ARs and > 3000 arcsec2
for CHs) is applied, filtering out small bright and dark regions, respectively, misclassified as
ARs and CHs. However, the method has a limitation that there is slightly overestimation
in number of areas compared to manual detection (differences < 0.05%).

To compare the results of this method with the SPoCA outputs and manually detection
benchmarks, [224] selected full-disk SDO/AIA images from two observation times: 25 June
2011 (13:00:36 UT) and 28 July 2011 (13:00:37 UT), captured at 171 Å (Figures 2A, 3A)
and 193 Å (Figures 2B, 3B). ARs (Figures 2C, 3C) and CHs (Figures 2D, 3D) were first
manually delineated. For comparison, the HEK catalog’s SPoCA results (provided in [239])
at 171 Å (Figures 2E, 3E) and 193 Å (Figures 2F, 3F) were included. The authors of
[224] then applied their method to these wavelengths, using optimized parameters (α, β),
to extract ARs (Figures 2G, 3G) and CHs (Figures 2H, 3H), demonstrating its effectiveness
relative to established techniques. Additional examples of segmented images including ARs
and CHs are shown in Figures 5 and 6, respectively.

The validity of this method led to its use in [33] for statistical analysis of CHs during
Solar Cycle 24, particularly around the solar maximum. The authors observe that large CHs
do not form or vanish symmetrically in the Sun’s northern and southern hemispheres. This
asymmetry suggests differences in solar magnetic activity between the hemispheres. They
also found that CHs tend to migrate toward the poles within their respective hemispheres
over time, likely tied to the Sun’s magnetic cycle dynamics. For more examples of CHs
segmentation by the code presented by [224] see Figure 7.

In dissertation [240], an image segmentation method based on the Distance Regularized
Level Set Evolution (DRLSE) framework was developed which is tailored for processing
solar EUVI (Extreme Ultraviolet Imager) and magnetic field data. The standard DRLSE
approach was modified by jointly analyzing both EUVI and magnetic images, ensuring seg-
mentation respects physical boundaries by redesigning the edge function to prevent contour
crossings over magnetic neutral lines (regions where the magnetic field polarity transitions).
This adjustment forces the edge function to zero at neutral lines, effectively blocking con-
tour evolution across these critical boundaries. To optimize parameters (α and σ derived
from Gaussian function) controlling the segmentation sensitivity and smoothing, a training
set was used to select median values via comparison with consensus maps. They were val-
idated performance using leave-one-out cross-validation on a testing set. To address noisy
derivatives in optimization, a robust pattern-search algorithm was employed to initialize
with α = 0 and σ = 0.5. They were accelerated convergence by initializing segmentations
with the Henney-Harvey CH detection algorithm [229]. Additionally, a clustering step was
introduced to merge closely spaced CHs (based on a pixel-distance threshold) to avoid frag-
mentation, ensuring robust detection and matching of features. The method has enhanced
solar image analysis by integrating multi-modal data, preserving magnetic topology, and
improving computational reliability for segmenting dynamic structures like CHs.

In reference [241], the authors developed a modular software framework to automate
the detection, characterization, and tracking of solar features, addressing the challenge of
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Figure 4: The first panel shows SDO/AIA 171 Å observations of ARs captured on 27
November 2010 at 08:23:13 UT, processed with varying iteration counts in the α and β
parameter space. As iterations increase, AR structures are progressively identified, with
filling factors stabilizing after approximately 400 iterations, beyond which no significant
variation is observed. For details, refer to [224]. Image reproduced with permission from
[224], copyright by Springer.

processing vast image datasets from missions like the SDO. Their approach combined a hy-
brid algorithm integrating the snake model – a boundary-delineation and tracking technique
– with Particle Swarm Optimization (PSO), a stochastic optimization method known for
efficiency in image analysis and dynamic problem-solving. This PSO-Snake model leveraged
the snake model’s precision in feature segmentation and PSO’s adaptability to optimize
tracking parameters, enabling automatic solar feature monitoring while capturing detailed
characteristics. The framework was previously validated for tracking sunspots and coronal
bright points, demonstrating robustness. In this study, the authors applied the PSO-Snake
algorithm to calculate the solar corona’s rotational velocity, comparing their automated
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results against expert manual measurements to validate accuracy.
Among lots of software developed for detecting coronal features, there is an open-source

Python tool, called the CHMAP (CH Mapping and Analysis Pipeline), to detect CHs in EUV
images. Here is a concise explanation of how the CHMAP software works. It harmonizes
EUV images from instruments like AIA/SDO and EUVI/STEREO-A to create unified,
synchronic Carrington maps of the Sun. First, each raw image undergoes three critical
preprocessing steps: 1- PSF Deconvolution: A GPU-accelerated correction sharpens features
and reduces scattered light, enhancing image contrast. 2- Limb Brightening Correction:
Using a six-month average of equatorial pixels, CHMAP flattens intensity variations from
the Sun’s center to its limb, preserving structures like ARs and CHs. 3- Inter-Instrument
Transformation: A linear adjustment aligns brightness levels between different instruments,
ensuring consistency. Once preprocessed, images are combined into a single Carrington map.
CHs are then identified through an iterative thresholding scheme: a lower threshold ”seeds”
candidate regions, while a higher threshold refines their boundaries. This process accounts
for intensity gradients and instrument differences, enabling precise, automated detection of
CHs across the solar disk. The result is a standardized, multi-instrument view of CHs for
analysis. The interested reader can be found the details of this method in [89,242].

One of the most interesting topics in the image processing field is motion magnifica-
tion. Motion magnification, a technique to visualize subtle motions in videos, evolved from
early works like [243], which relied on explicit velocity field estimation and frame warping
but suffered from computational complexity and artifacts. [244] introduced Eulerian video
magnification, bypassing motion estimation by applying spatial decomposition and temporal
filtering to amplify small intensity changes and transverse motions, though it struggled with
noise amplification and limited motion magnification. [245] improved this with a phase-
based approach using complex steerable pyramids, amplifying temporal phase variations
to enhance transverse motions selectively while preserving intensity and achieving higher
magnification with better noise control. In work [246], the authors adapted these principles
but replaced steerable pyramids with the dual-tree complex wavelet transform (DTCWT),
leveraging its computational efficiency, shift invariance, and perfect reconstruction proper-
ties. Unlike prior narrowband-focused methods, their algorithm targets broadband motions
– ideal for analyzing multi-modal, non-stationary oscillatory processes (e.g., decaying or
modulated waves) common in solar structures (e.g., see [247]) – by amplifying a wider range
of temporal frequencies, thus enhancing the study of dynamic solar phenomena like coronal
loops and plasma flows.

Among lots of investigations for segmentation of coronal images, in paper [248], the au-
thors developed a convolutional neural network (CNN) based on the U-Net architecture to
segment CHs in solar images, adapting techniques from biomedical image processing to solar
physics. They implemented a U-Net-like network with an encoder-decoder structure, where
the input layer accepts 256×256-pixel grayscale solar images, and the output layer produces
a segmentation map of the same dimensions, assigning probabilities (0 to 1) to each pixel for
CH identification. The network architecture combines ConvBlocks – comprising two succes-
sive 3× 3 convolutional layers with exponential linear unit (ELU) activation, zero padding,
and dropout layers for regularization – to extract hierarchical features while minimizing
overfitting. Spatial resolution is reduced via MaxPooling layers and later restored using
TransposedConv layers (deconvolution with ELU activation), enabling the model to capture
both broad context and fine localization details. Skip connections between the encoder (con-
traction path) and decoder (expansion path) integrate multi-scale feature maps, enhancing
segmentation accuracy by preserving spatial context during upsampling. The final Conv
layer employs a sigmoid activation to output pixel-wise probabilities, interpreted as the
likelihood of CH membership. This approach leverages U-Net’s proven ability in 2-D seg-
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mentation tasks, optimizing it for solar data by balancing feature extraction, computational
efficiency, and robustness to noise through dropout and specialized layer configurations.

Figure 5: Additional examples of segmented images are provided, showcasing original
171 Å observations (panels A, B, C) alongside superimposed AR maps (panels D, E, F).
These overlays illustrate the spatial correspondence between the raw data and the detected
AR boundaries. The data correspond to observations from three dates: 22 January 2011
(left column), 24 February 2011 (middle column), and 31 March 2011 (right column). For
more information, see [224]. Image reproduced with permission from [224], copyright by
Springer.

In reference [249], the authors developed a fully automated image processing approach to
analyze the cyclic latitudinal evolution of solar coronal ARs using daily SOHO/EIT images
from 1995–2017. Their approach involved preparing and standardizing the image series, fol-
lowed by histogram normalization and limb brightening correction to address observational
intensity variations across the solar disk. In the next step, they segmented the images using
intensity thresholds derived from histogram analysis to isolate ARs, transformed the seg-
mented data into heliographic coordinates for spatial alignment with solar latitude-longitude
grids, and systematically generated latitudinal distribution profiles for each daily observa-
tion. This method enabled consistent, long-term tracking of AR dynamics while minimizing
manual bias, facilitating a robust analysis of their cyclic behavior over two solar cycles.

In the other novel work [250], the segmentation method applied to coronal images em-
ploys a neural network architecture called SCSS (solar corona structures segmentation)-Net,
which combines an encoder-decoder structure for feature extraction and reconstruction.
The encoder processes 256× 256-pixel input images through five convolutional blocks, each
containing two convolutional layers with 3 × 3 kernels, batch normalization, and ReLU
activation, followed by max-pooling to reduce spatial dimensions. The number of filters
increases from 32 to 512 across the blocks, enhancing hierarchical feature learning, while
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Figure 6: Additional examples of segmented images are provided, showcasing original
193 Å observations (panels A, B, C) alongside superimposed CH maps (panels D, E, F).
These overlays illustrate the spatial correspondence between the raw data and the detected
CH boundaries. The data correspond to observations from three dates: 22 January 2011
(left column), 24 February 2011 (middle column), and 31 March 2011 (right column). For
further details, refer to [224]. Image reproduced with permission from [224], copyright by
Springer.

dropout layers in the final three blocks mitigate overfitting by randomly deactivating units
during training. The decoder mirrors this structure with four deconvolution blocks, using
transposed convolutions and upsampling to reconstruct the spatial resolution, while skip
connections concatenate encoder feature maps to decoder layers, preserving localization
details. The network’s output layer applies a 1 × 1 convolutional kernel with a sigmoid
activation to produce pixel-wise binary classification (0 or 1) based on a threshold of 0.5,
generating a segmentation mask that isolates coronal structures. Optimization leverages the
Adam algorithm to minimize the binary cross-entropy loss, dynamically adapting learning
rates using exponential moving averages of gradients and squared gradients. Performance
is evaluated via the Jaccard index (Intersection over Union) and Dice coefficient (F1 score),
which quantify overlap and similarity between predicted masks and ground truth. Regu-
larization strategies include dropout layers and checkpointing to save models with minimal
validation loss, ensuring robustness against overfitting. Hyperparameter tuning via grid
search identified optimal settings: 256× 256 input size, 0.5 dropout rate, batch size 20, and
Adam optimization. The final output is a binary mask thresholded to distinguish foreground
(coronal features) from background, enabling precise visualization of segmented structures
overlaid on input images.
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The authors of paper [251] developed an enhanced approach for mapping PCH boundaries
by adapting and improving the perimeter-tracing algorithm originally introduced by [228]
(as mentioned before). They translated the algorithm into Python, optimized it for parallel
processing, and applied it to isolate PCHs by analyzing an annulus (ring-shaped region) near
the Sun’s limb. To address challenges caused by obscuration from EUV-emitting plasma –
which varies with solar viewing geometry and plasma scale heights – the method employs
morphological operations and an adaptive intensity threshold to define the hole boundary.
To overcome ambiguity in edge detection due to differing observational wavelengths, the
authors measured the PCH’s boundary where it intersects the solar limb and tracked these
positions over time as the Sun rotated. By aggregating limb measurements over 16.5 days
(half a solar polar rotation), they reconstructed the full perimeter of the hole. Extending
this to a full 33-day polar rotation allowed them to assess boundary stability by comparing
two independent measurements of the same hole separated by 16.5 days, providing insights
into temporal consistency and structural persistence of PCHs.

Figure 7: CH boundaries are superimposed onto full-disk AIA 193 Å images from two
examples: 27 October 2017 at 22:10 UT (panel a) and 26 June 2014 at 05:00 UT (panel b).
For more information, refer to [33]. Image reproduced with permission from [33], copyright
by Elsevier.

In studying the Sun, tomography can combine images from multiple spacecraft (e.g.,
SOHO, STEREO) taken at different viewpoints to reconstruct the 3-D structure of CMEs
or magnetic loops, enhancing understanding of solar dynamics. For instance, in references
[252], the authors employed rotational tomography to validate the (Stanford and Michigan)
MHD models of solar corona with the help of image processing methods such as using the
normalizing-radial-graded filter (NRGF). In the other study [253], the authors use tomo-
graphic reconstruction techniques to create 3-D maps of the electron density and tempera-
ture in the solar atmosphere using processing methods like Ensemble Kalman Filter. This
is achieved by combining 2-D images captured from multiple vantage points using ground-
based and space-based instruments.In the following, the reader can find the 3-D tomography
of the corona with different methods in references [254,255].

There are a set of useful references on these topics employed known image process-
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ing methods in their works. A collection of this kind of studies are using the deconvolu-
tion techniques to correct stray light from EUV images of corona [256,257], employing the
wavelet-based methods for both edge [258] and contrast enhancement [259], exploiting the
normalized radial gradient filter to correct the radial intensity gradient [260], grasping the
Fourier transformation and resampling filter to avoid introducing moiré artifacts [261], using
the Hough transform to statistically characterize the herringbone morphology within a radio
burst’s fine structure [262], providing gradient images for tracking and mapping a motion
[263], achieving intensity-based threshold for automatic detection of coronal brightenings for
characterizing their released energy [264], convolving signal with some methods like using
a narrow Gaussian kernel to preserve the events of interest at special ranges of frequencies
[265,266], extracting intensity profiles of CBPs for finding their rotation [267], exploiting
blind deconvolution associated with noise-adaptive fuzzy based equalization for image en-
hancement and then the cross-correlation registration [170], focusing on contrasting features
extracted from ”running difference” images – created by subtracting pixel intensities be-
tween consecutive time frames [90,268], using quantile radial normalization based on radial
graded filter (RGF), and then, radial histogram equalizing filter based on RGF and adaptive
histogram equalization for making images comparable with proposed model [269].

5 Conclusions
The solar corona, as the Sun’s outermost atmospheric layer, remains a focal point for un-
derstanding solar dynamics and their profound influence on space weather. Advances in
observational technologies, such as high-resolution imaging from spacecraft like the SDO
and the PSP, have generated vast datasets that demand sophisticated image processing
techniques to extract meaningful insights. Methodologies like contrast enhancement, multi-
scale filtering, and machine learning-driven event detection are indispensable for resolving
the corona’s faint structures – such as coronal loops, filaments, and eruptive events like solar
flares and CMEs – against the Sun’s bright background. These techniques not only improve
the visibility of magnetic field configurations but also enable precise tracking of transient
phenomena, which is critical for correlating coronal activity with in-situ solar wind mea-
surements. By refining the interpretability of coronal images, such methods enhance space
weather forecasting models, directly contributing to the protection of Earth’s technological
infrastructure, including satellites, power grids, and communication networks, from geomag-
netic disturbances. Furthermore, integrating multi-wavelength data through co-registration
algorithms provides holistic views of energy release mechanisms, advancing our grasp of
coronal heating and solar cycle variability.

Despite these advancements, challenges such as data variability from observational con-
straints (e.g., atmospheric interference, spacecraft orbital limitations) and the computa-
tional demands of processing ever-growing datasets underscore the need for adaptive, scal-
able solutions. Future progress hinges on merging physics-based models with observational
data, leveraging AI-driven analytics for real-time anomaly detection, and developing GPU-
accelerated frameworks to handle large-scale data efficiently. These innovations will bridge
gaps between theoretical predictions of coronal behavior and empirical observations, enabling
more accurate forecasts of space weather events. Beyond solar physics, the methodologies
developed for coronal image analysis – such as noise suppression and pattern recognition –
hold transformative potential for exoplanetary research and astrophysical signal processing.
As solar observation technologies continue to evolve, interdisciplinary collaboration across
astrophysics, computer science, and space engineering will ensure that image processing re-
mains central to unlocking the corona’s mysteries. Ultimately, these efforts will not only
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deepen our understanding of the Sun’s influence on the solar system but also strengthen
societal resilience to the Sun’s dynamic outbursts, safeguarding critical infrastructure and
fostering preparedness in an era increasingly reliant on space-based technologies.
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