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Abstract. To consider the cosmic magnetic effects on the rate of cosmic inflation, in-
stead of unknown dark sector of matter/energy, some authors presented non-minimally
coupled exotic Einstein-Maxwell (EM) gravity theories which we address in this work.
We use one of these models and add Dirac action functional interacting with gauge
Maxwell field to the exotic EM gravity and then investigate the formation and stability
of a relativistic fermion star by using the dynamical system approach. Mathematical
calculations predict important role of frequencies of the Dirac waves in formation of
the Dirac star and whose critical energy density. Dirac star is a particular kind of
fermionic relativistic star which has spherically symmetric static metric field. In this
context, the directional interaction parameter between the gravity, and the electromag-
netic fields play more important role, particularly in size of the star. Large values of
that parameter makes larger Dirac star. Furthermore, we apply the dynamical system
approach to find stabilization conditions of the Dirac star. These conditions are linked
to specific values of the total angular momentum quantum numbers (including both
spin and orbital contributions).

Keywords: Relativistic Stars, Fermionic, Dirac Spinor, Stability, S-Mode Wavs, Dy-
namical Systems.

1 Introduction
To describe the expansion of the universe via particle physics perspective where gravity
plays a dominant role, usually the standard model is generalized by the general theory
of relativity as gravity side of the system. Such models are called scalar-vector-tensor-
spinor gravity theories, where the combination of spinor fields with the electromagnetic field
and metric tensor fields play a crucial role in achieving appropriate models that describe
expanding universe [1–3]. Such models are also used to describe how compact stellar objects
form. See for instance [4,5] for formation of star and wormhole respectively with baryonic
matter. For application of the Yang-Mills theory coupled with the Einstein metric field
equations, one can see [6]. Finster et al. used numerically method in ref [7], to solve
Einstein-Dirac (ED) equations and found regular and well-behaved metric solutions which
describe a neutral spherically symmetric coupled static compact stellar system with two
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singlet spin-1/2 fermions. They used Einstein-Dirac-Maxwell (EDM) equations to study the
effects of gauge field for star formation the references [8]. [9,10] are similar works but by
using the perturbation method. Solitonic particle-like stable solutions of the EDM gravity
called as Dirac stars (DS) are found in presence of spinor self-interaction [11–22]. Similar
research has been done to achieve the concept of boson stars (BS) [23]. Both BS and DS are
proposed as approximate descriptive models for microscopic objects in the early universe [24].
Investigations in the classical approach of field theories predict that there are no different
properties between DS and BS [4,25], but in the quantum approach, a rotating BS can have
a black hole horizon inside it, unlike a DS [4]. Moreover, macroscopic BSs are believed
to exist in nature while microscopic DSs are considered purely mathematical abstractions.
The stability of the spinor field has been investigated in excited states [4,7,8,21,26,27], in
addition to the ground state, as well as in the states coupled with the scalar field to form
Dirac-boson stars (DBSs) [28].
Coupling of the ED field with Maxwell field to form charged DS can lead to more stable
solutions [8]. In this manner, researchers found solutions for the ground state of the rotating
charged DS [24,29].
Some other applications of the EDM gravity in presences of interaction potentials can be
followed in Refs. [22,30–37]. In all of studies above the field equations are nonlinear usually
and hence the methodologies fall into two categories are two different kinds: numerical
studies or perturbation analytical studies. To study stability situations of the obtained
solutions one usually uses systems approach (See for instance [38] or Introduction section of
Ref. [39] and as an application in the stability of boson star see [40]). In this approach, one
find linear order perturbation solutions of the fields near the critical points. Methodology
of this approach has 5 steps:

a All higher order derivatives of the field equations are called with new fields such that all
equations reach to first order differential equations in phase space. Dimensions of such
a phase space are number of first order derivative of the fields which we can consider
that they are components of a vector field in assumed phase space. In that case in
vector field representation we can write

˙⃗
Λ =

dΛ⃗

dt
= F⃗ (Λ⃗, t), (1)

in the phase space. If F⃗ is independent of the parameter t which we assume here is
the time then, the equation (1) is called as autonomous but if not be, then it is called
as non-autonomous. Usually non-autonomous kind reaches to chaotic systems where
stable critical points are attractor or absorber chaotic system [41].

b The second step is determination of the critical points which are obtained by solving the
equation ˙⃗

Λ = 0.

c The third step is linear making of the equation (1). This is done by calculating the Jacobi
matrix

Jji =
∂Fi
∂Λj

∣∣∣∣
critical point

(2)

at the critical points.

d After to have numeric form of the Jacobi matrix (2) then, we apply to solve the following
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set of linear order differential equations instead of (1).

Λ̇i =
dΛi
dt

=

n∑
j=1

Jji Λj . (3)

e To investigate which of the obtained linear order solutions of the equation (3) are stable,
we must determine sign of eigenvalues s of the Jacobi matrix (2) by solving its secular
equation det{Jji − sδji } = 0. There are two different cases for numeric values of the
eigenvalues. If they are real, then the system is stable, if all real roots have negative
sign, but the system is quasi stable, if some of roots have negative sign and some
others have positive sign. In the case, where the roots of the secular equation give us
some complex numeric values for the eigenvalues, then, the system will be spiral stable
(see figure 1(d)) if real part of these complex numeric eigenvalues be negative but the
system will be quasi-spiral stable when some of real parts of the complex eigenvalues
have negative and some other have positive sign. The system under consideration will
be unstable if all real roots of secular equation have positive sign or when they are
complex numeric, then all real parts of them have positive sign.

Our motivation in this work is to use the dynamic system approach above to investigate
stability conditions of a Dirac star defined by a non-minimal interacting EDM gravity model
[42]. Importance of such a gravity model is outlined below, which was applied previously to
describe cosmos. Layout of the paper is as follows:
In section 2, we define the gravity model, and give out the equations of the fields. Also
we define particular choice of the Dirac matrices which make hermitian the Dirac Hamilton
operator. This is very important to separate radial and angular parts of the Dirac fields
versus the spherical harmonic eigenfunctions. In sections 3, we set all Einstein, Maxwell and
the Dirac field equations for a spherically symmetric static metric background. In subsection
3.1, we notify the charge conjugation operator. In subsection 3.2, we give out radial part of
the Dirac fields. Section 4 denotes to nonzero components of stress tensor of the fields and
use them to generate field equations of the system under consideration in Section 5. In the
latter section we find some suitable formulas for the energy density and directional pressure
of the Dirac star. Also we make eight-dimensional phase space of the system with eight first
order differential equations by according the description which is given in the introduction
section for the dynamical system approach. Also we obtain Jacobi matrix, critical points
and eigenvalues of the Jacobi matrix. In subsection 5.1, we solve just one choice of four kind
possible solutions of the Dirac equation, i.e., the spinor have up spin. In Subsection 5.2, we
estimate the radius of the obtained Dirac star versus the interaction coupling constant of
the action functional. The final section of the paper is dedicated to concluding remarks and
outlook of the work.

2 The gravity model
Let us call the exotic modified EM gravity given by [42] and add the Dirac spinor action
functional in which total action is now

I =

∫
d4x

√
g

[
R

16π
+

1

4
FµνF

µν + αFρµR
µ
ηF

ηρ + β(ψ̄γµ∇µψ −mψψ̄ψ) + ηAµj
µ

]
. (4)

With β = 0 = η, this model proposed firstly by Turner to investigate cosmic magnetic field
effects on cosmic inflation where conformal symmetry breaking and gauge symmetry break-
ing cause to be dominant the cosmic magnetic field energy density versus the usual vacuum
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(a) (b)

(c) (d)

Figure 1: (a) Permissible values for eigenvalues in stable state of the Dirac star. Negative values of the
eigenvalues s < 0 for each of quantized states λ = 1, 2, 3, 4 · · · describe stable state of the system , (b)
Variation of energy density difference vs radial coordinate. There are two different branches of the solutions
which describe decreasing density which diverge to infinite value at center τ → −∞ of the star. (c) Source
(unstable) nature in phase space. (d) Sink (stable) nature in phase space. The arrow diagrams show that
the system is in quasi stable state.
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(unknown) dark energy density. This comes from the exotic non-minimal directional inter-
action α term. While the ordinary Einstein Maxwell gauge invariant gravity theory is not
a suitable model to do so. According to this motivation, we encouraged to use this model
to study the effects of exotic directional coupling interaction part between gravity and the
electromagnetic field in formation and stability of a fermionic star in this work.
In the above action functional the interaction parameter between the gravity and the elec-
tromagnetic fields α has dimension of (length)2 in the geometric units c = G = 1, and
other interaction parameters β and η between the Dirac fermions and the gravity and the
electromagnetic fields are dimensionless.. The mass of Dirac particles mψ has an inverse
length dimension and the vector potential is dimensionless field. The Dirac spinors have
dimensions of (length)−1/2. In the above action the electric current density jµ defined in
terms of the Direct versus the Dirac spinor ψ and corresponding adjoint spinor

ψ̄ = ψ†(−iγ̃t), (5)

and its electric charge qe such that

jµ = iqeψ̄γ
µψ, (6)

where we use the convention of reference [43] to define the adjoint spinor form above, but in
more common usage, the imaginary unit ‘i‘ is suppressed by changing the Dirac γ-matrices
as γµ → iγµ. In the latter case, we must use the convention given in [43] again, for repre-
sentation of the Dirac γ-matrices which in the flat Minkowski spacetime with a Cartesian
coordinates system are

γ̃0 = i

(
I 0
0 −I

)
= iσ3 ⊗ I, γ̃j = i

(
0 σj

−σj 0

)
= −σj ⊗ σ2, (7)

in which

I =
(

1 0
0 1

)
, 0 =

(
0 0
0 0

)
, (8)

and j ≡ 1, 2, 3 or x, y, z respectively and σj are Pauli matrices such that

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
+i 0

)
, σ3 =

(
+1 0
0 −1

)
. (9)

It is obvious that the difference between (7) and γ- matrices represented in field theory
books is only the factor of ‘i‘. As we see below, usage of the above representation makes
that the Dirac Hamiltonian operator to be hermitian and so will be commutes with others
such as angular momentum and spin-orbit coupling operator. This is very important to make
separable the radial part with angular part of the Dirac field in the spherically symmetric
space time. As we see at below that the angular part of the Dirac field by regarding the choice
(7) will be can be expressed in terms of the spherical harmonic eigenfunctions. In the above
action functional, g is the absolute value of the determinant of the metric field gµν . The non-
minimal susceptibility tensor [44] and in extended version can be defined by the Reimann
and Weyl tensors. Rµν(R) is Ricci tensor (scalar). The β parameter is coupling constant
between the Dirac field and the gravity gµν . γµ is Dirac γ-matrix in curved spacetime. mψ

is mass parameter for the Dirac particles. The η parameter is coupling constant between the
electromagnetic vector potential Aµ and the four electric current density jµ. Substituting
the Dirac equation of motion (25) one can show that jµ satisfies the covariant conservation
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condition ∇µj
µ = 0. Hence by keeping β = η it is convenient to move the last η term of the

action functional (4) into the covariant derivative ∇µ such that

Dµ = ∇µ + iqeAµ = ∂µ + iqeAµ − Γµ, (10)

in which Γµ is spinor connection [45–48]

Γµ = −1

4
γ̃aγ̃bωabµ, (11)

and the spin connection ωabµ is defined by

ωabµ = ηacω
c
bµ = eαβ∇µe

β
b = gβαe

β
α ∇µe

β
b ,

ωabµ = −e νb (∂µe
a
ν − Γλµνe

a
λ). (12)

The spin connection is antisymmetric with respect to the two Minkowski indices a and b,
i.e.,

ωabµ = −ωbaµ, ωaaµ = 0. (13)

The vierbein fields or tetrads e µa relate the metric tensor field in Minkowski space-time to
the metric tensor field in curved space-time, such that [49]

ηab = e µa e
ν
b gµν , gµν = eaµe

b
νηab, (14)

where, the indices a and b correspond to Minkowski space-time, and the indices µ and ν
correspond to curved space-time. By considering Dµ instead of ∇µ the electromagnetic part
of the action functional (4) remains unchanged because

Fµν = DµAν −DνAµ = ∇µAν −∇νAµ = ∂µAν − ∂νAµ, (15)

where the last equality is valid just for torsion free Riemannian geometries. Thus we do
not consider the last η term in the action functional (4), when we calculate equation of
motion of the fields in what follows but we must regard Dµ instead of ∇µ in the Dirac
equations of motion. In the above equation γ̃a is γ-matrix in the flat Minkowski space
ηab = diag(−1,+1,+1,+1) defined in the Cartesian coordinates, and it relates to the γ-
matrix in curved space through the vierbein

gµν = eaµe
a
ν , ηab = eaµe

µ
b , (16)

such that
γµ = e µa γ̃

a, (17)

and so
{γµ, γν} = 2gµν , {γ̃a, γ̃b} = 2ηab, (18)

where {x, y} = xy + yx is the anti-commutator. Varying the action functional (4) with
respect to the metric tensor field gµν , the Einstein metric field equation is found as follows.

Gµν = 8πT totalµν = 8π(TEMµν + αΘµν + βTDiracµν ), (19)

where
Gµν = Rµν −

1

2
gµνR, (20)
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is the Einstein tensor defined by the Ricci tensor Rµν and the Ricci scalar R = gµνRµν ,

TEMµν = −1

8

[
FµαF

α
ν + FβνF

β
µ − 1

2
gµνFαβF

αβ

]
, (21)

is traceless electromagnetic Maxwell fields stress tensor,

Θµν = Φµν +∇ηΩ
η
µν −

∇µΩ
η
ην

2
+

∇νΠµ
2

+
gµν∆

2
,

Φµν = FνξR
ξηFηµ,

Ωηµν =
∇µ(

√
gOη

ν)√
g

,

Oη
ν = F ηλFνλ,

Πµ = Ωηηµ − Ωηµη,

∆ = Φµµ −∇ξΩηηξ, (22)

is gravity-photon interaction stress tensor and

TDiracµν = −1

4
[ψ̄γµDνψ + ψ̄γνDµψ − (Dµψ̄)γνψ − (Dνψ̄)γµψ], (23)

is the Dirac spinor matter field stress tensor in which

Dµψ = ∂µψ + (iqeAµ − Γµ)ψ, Dµψ̄ = ∂µψ̄ + (iqeAµ + Γµ)ψ̄. (24)

Also, by varying the action functional (4) with respect to the adjoint Dirac field ψ̄ and
the Electromagnetic Maxwell tensor field Fµν we obtain corresponding equations of motion
respectively such that

γµDµψ −mψψ = 0, (25)

and
∇ν F̃

µν = 2βjµ, (26)

where we define modified anti-symmetric Maxwell tensor field as

F̃µν = Fµν − 2α
(
RνηF

ηµ −RµηF
ην
)
, (27)

and for arbitrary anti-symmetric tensor Oµν defined in torsion free curved spacetimes, we
have

∇µO
µν =

∂µ(
√
gOµν)
√
g

. (28)

After presenting the gravity model under consideration, we set the dynamical equations for
a spherically symmetric static curved line element in the subsequent section.

3 Spherical Dirac spinors
We consider a general form of spherically symmetric static curved spacetime whose line
element is given by

ds2 = −e2U(r)dt2 + e2V (r)dr2 + r2(dθ2 + sin2 θdφ2), (29)
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where the spacetime can be foliated by time-independent spatial hypersurfaces Σt. Induced
metric γij on Σt and the future directed, timelike normal unit vector field nµ to Σt are [50]

γij = diag(e2V (r), r2, r2 sin2 θ), nµ = (e−U(r), 0, 0, 0). (30)

Because of intrinsic spin property of a single Dirac fermion, the spherically symmetric prop-
erty cannot be preserved in the Dirac spinors ψ. In other words, since the spin of a fermion
has an intrinsic orientation in space, a system consisting of a single Dirac particle cannot be
spherically symmetric. To have spherical spinors two different approaches are presented in
the scientific literature (see [43] and references therein). The first (old) approach is based on
the first quantization approach, i.e., the relativistic quantum mechanics which is in accord
with the Finster et al works where the authors consider two fermions having opposite spin (a
singlet spinor state) [51]. To realize the latter picture (twin up/down fermion model), they
considered the electromagnetic interaction with them in ref. [52]. To see other extensions of
this approach, i.e., time dependent curved spacetimes and so on, one can follow papers given
by [43], but the second approach considers the quantum field theory perspective (the second
quantization) which is applicable even if we have a single Dirac field. This is presented by
Ben Kain who is author of the work [43]. He preserved spherical symmetry by focusing on
excitations of the vacuum with zeroth total angular momentum. In his construction, static
spherically symmetric self-gravitating configurations of spin-1/2 particles in quantum field
theory include the presence and expectation value of stress tensor operator for a population
of identical quantum particles treated as a fermionic matter source in the Einstein metric
equation. In our work, we adopt this latter approach our studies about stability condition of
a fermion-electromagnetic-spherically symmetric static stellar object. To obtain exact form
of the Dirac equation (25) for the line element (29) for which ψ(t, r, θ, φ) could be separa-
ble into a multiplication of four functions with ‘one‘ variable, we must first obtain explicit
forms of the Dirac matrices (17), spin connections (12) and spinor connections (11) and
other quantities versus the spherical coordinate system in curved spacetime (29). It is easy
to show that the Dirac matrices (7) can be represented in the spherical polar coordinates
system of a Minkowski space-time by the following polar transformations

γ̃t = γ̃0,

γ̃r = γ̃1 sin θ cosφ+ γ̃2 sin θ sinφ+ γ̃3 cos θ,

γ̃θ = γ̃1 cos θ cosφ+ γ̃2 cos θ sinφ− γ̃3 sin θ,

γ̃φ = −γ̃1 sinφ+ γ̃2 cosφ. (31)

At last, to have their representations in curved spacetime (29) we need tetrads or vierbein
fields of the line element (29) defined by (14). With ηab = diag(−1,+1,+1,+1) defined in
the Cartesian coordinates, the identities (14) for the line element (29) reduce to the following
vierbein field components.

eµa =

(
e−U(r), e−V (r),

1

r
,

1

r sin θ

)
,

eaµ = (eU(r), eV (r), r, r sin θ), (32)

where a ≡ {0, 1, 2, 3} ≡ {t, x, y, z} and µ ≡ {t, r, θ, φ}. Substituting (32) into the vierbein
transformation (17) we obtain

γt = e−U(r)γ̃t, γr = e−V (r)γ̃r, γθ =
γ̃θ

r
, γφ =

γ̃φ

r sin θ
. (33)
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Using the explicit form of the Vierbein field (32) and relations (12) and (13),and some
mathematical calculations to find non-vanishing components of the spin connections (12),
one find finally, explicit form of the spinor connections (11) for the line element (29), such
that

Γt =
U ′

2
eU−V γ̃tγ̃r,

Γr = 0,

Γθ =
1

2
(1− e−V )γ̃θγ̃r,

Γφ =
1

2
(1− e−V ) sin θγ̃φγ̃r,

which by using (33) read to the following scalar

γµΓµ = e−V
[
eV − 1

r
− U ′

2

]
γ̃r. (34)

Although there is other choice of the Vierbein field (see eq. 21 and Appendix C in ref. [43])
it is not suitable for our goal in this work. That is because with the vierbein field (32),
the Dirac equation can be solved by separation of variables method in which we see next,
that its angular part is defined by spherical Harmonic Polynomials. By having the above
results we are in position to solve the Dirac equation (25) for spherical spinors. This is
done in what follows, by using the separable of variables method. To have ortho-normal
(normalized orthogonal) mode solutions of the Dirac equation we point that the line element
(29) is time-independent having a time like Killing vector field ξµ = (1, 0, 0, 0). The existence
of such a vector field generates coordinate independent positive (negative) frequency Dirac
mode solutions χ+(χ−) [45,46,53] such that we have

ξµ∂µχ
∓
ℓ = ∂tχ

∓
ℓ = ±iωχ∓

ℓ , (35)

for real positive ω and orthogonality condition

(χ+
j , χ

+
ℓ ) = (χ−

j , χ
−
ℓ ) = δjℓ,

(χ+
j , χ

−
ℓ ) = (χ−

j , χ
+
ℓ ) = 0, (36)

where j and ℓ denote to symbols of different quantum numbers and ( , ) denotes to inner
product of two mode solutions on the spatial hypersurface Σt as

(ψ1, ψ2) =

∫
Σt

d3x
√
det(γij)ψ

†
1ψ2 =

1

qe

∫
Σt

d3x
√
det(γij)nµj

µ. (37)

In the above relation jµ = iqeψ̄1γ
µψ2 and dx3 = drdθdφ and det (γij) = e2V r4 sin2 θ with

nµ are given by (30). By regarding the orthogonality conditions (36) we can now express
the series expansion form of the Dirac spinors, such that

ψ(t, r⃗) =
∑
ℓ

∫
dω[aℓ(ω)χ

+
ℓ (t, r⃗ ;ω) + bℓ(ω)χ

−
ℓ (t, r⃗ ;ω)], (38)

where the coefficients aℓ(ω) and bℓ(ω) are complex numbers. When ψ treats as operator
in quantum field theory perspective then they should describe creation and anhiliation of
quantum particles which is not our goal to consider in this paper (see [43]).
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At first step, we generate Schrodinger like form of the Dirac equation (25) for electrostatic
case, i.e., Aµ = A0(r)δ

0
µ, by multiplying γt = e−U γ̃0 from left side and by substituting (10)

and (34) such that
i∂tψ = Ĥψ, (39)

in which the Hamilton operator is

Ĥ = (iγ̃0)

[
eU Ĝ+ [qA0(r)(iγ̃

0)−mψ]I − e−V
(
eV − 1

r
− U ′

2

)
γ̃r
]
, (40)

and

Ĝ = e−V γ̃r∂r +
γ̃θ∂θ
r

+
γ̃φ∂φ
r sin θ

= (e−V − 1)γ̃r∂r + γ⃗ · ∇⃗. (41)

We now study more the operator γ⃗ · ∇⃗ which by substituting (7) can be written versus the
Pauli spinors, such that

γ⃗ · ∇⃗ =

(
O iσ⃗ · ∇⃗

−iσ⃗ · ∇⃗ O

)
, (42)

in which O is two dimensional zero matrix. From quantum field theory we have relation
between the spin operator and Pauli spinors σ⃗ as

ˆ⃗
S =

ˆ⃗σ

2
, (43)

for two component spinors and

Ŝ =
Σ̂

2
,

Σ̂1 =

(
σ1 O
O σ1

)
, Σ̂2 =

(
σ2 O
O σ2

)
, Σ̂3 =

(
σ3 O
O σ3

)
, (44)

for four component spinors, which in the Dirac representation of gamma matrices (7) reads

Σ̂j = −iγ̃j γ̃1γ̃2γ̃3, (45)

where we use ℏ = 1 = c units. However, with this, we can write σ⃗ · ∇⃗ = 2S⃗ · ∇⃗ or in
momentum operator format σ⃗ · ∇⃗ = 2iS⃗ · ⃗̂p. Using the identity (σ⃗ · a⃗)(σ⃗ · b⃗) = a⃗ · b⃗ = iσ⃗ · a⃗× b⃗

for every arbitrary vectors a⃗ and b⃗ the equation σ⃗ · ∇⃗ reads

σ⃗ · ∇⃗ = iσ⃗ · ⃗̂p = i(σ⃗ · r⃗)(σ⃗ · r⃗)(σ⃗ · ⃗̂p)
r2

= i
(σ⃗ · r⃗)
r2

[r⃗ · p⃗+ iσ⃗ · (r⃗ × ⃗̂p)]

= i
(σ⃗ · r⃗)
r2

[r⃗ · ⃗̂p+ iσ⃗ · ⃗̂L], (46)

in which

σ⃗ · ⃗̂L = 2
⃗̂
S · ⃗̂L = Ĵ2 − L̂2 − Ŝ2 = K̂, (47)
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is the well known spin-orbit angular momentum coupling operator. With this result one can
infer that the operator (42) reads

γ⃗ · ∇⃗ =

(
∂r −

K̂

r

)(
O iσ⃗ · n̂

−iσ⃗ · n̂ O

)
≡
(
∂r −

K̂

r

)
γ̃ · n̂. (48)

Substituting the above result into the operator of Ĝ we can write explicit form of the
Hamilton operator (40) as

Ĥ =

[
eU−V ∂r +

(e−V − 1− eU − K̂)

r
+ e−V

U ′

2

]
γ̃r + qA0(r)(iγ̃

0)−mψI, (49)

where we use the identity γ̃ · n̂ = γ̃r. We clime that the above Hamiltonian operator is
Hermitian, i.e., Ĥ† = Ĥ, because the following operators are Hermitian.

(iγ̃0)† = iγ̃0, (γ̃j)† = γ̃j (γ̃r)† = γ̃r, (K̂)† = K̂, I† = I, (50)

which can be checked easily by using (7). This study shows that the operators i∂t, Ĥ, Ĵ2,
Ĵz and K̂ commute with one another and so they have a simultaneous eigenfunctions, i.e.,
the tensor-spherical harmonics given by (57). In the latter case we can write

i∂tψ = ωψ,

Ĥψ = ωψ,

K̂ψ = κψ,

Ĵ2ψ = j(j + 1)ψ,

Ĵzψ = mjψ, (51)

where

s =
1

2
,

l = 0, 1, 2, 3, · · · ,

j = l + s =
1

2
,
3

2
,
5

2
, · · ·

mj = mℓ +ms = −j,−(j − 1),−(j − 2), · · · − 3

2
,−1

2
,
1

2
,
3

2
, · · · j − 2, j − 1, j

ms = −1

2
,
1

2
mℓ = −ℓ,−ℓ+ 1, · · · − 2,−1, 0, 1, 2, · · · ℓ (52)

and κ is eigenvalues of the operator K̂ such that

κ±(j, ℓ) = j

(
j +

1

2

)
− ℓ

(
ℓ+

1

2

)
− 1

2

(
1 +

1

2

)
, (53)

are corresponding eigenvalues and K− and K+ denote to two different coupling states be-
tween the spin ⃗̂

S and the orbital angular momentum ⃗̂
L respectively as j = ℓ− 1

2 and j = ℓ+ 1
2

respectively with exact quantum values

κ− = −j − 3

2
= −(1 + λ); ℓ = j +

1

2
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κ+ = j − 1

2
= +(λ− 1); ℓ = j − 1

2
. (54)

In the above quantum numbers we have λ = j + 1
2 = 1, 2, 3, · · · . Defining the Dirac spinor

versus separable of variables two components spinors as

ψ(t, r, θ, φ) =

(
ϕ1(r, θ, φ)
ϕ2(r, θ, φ)

)
e−iωt =

(
ξ(r)A(θ, φ)
ζ(r)B(θ, φ)

)
e−iωt, (55)

K̂

(
A(θ, φ)
B(θ, φ)

)
= κ±(j, ℓ)

(
A(θ, φ)
B(θ, φ)

)
, (56)

where A(θ, φ) and B(θ, φ) can take on both of these coupling states and so we can write
them versus the spherical Harmonic eigenfunctions as

Ymj

j=ℓ∓ 1
2

(θ, φ) ≡ Yj=ℓ±
1
2

ℓ (θ, φ) = ±

√
ℓ±mℓ +

1
2

2ℓ+ 1
Y
mℓ− 1

2

ℓ (θ, φ)

(
1
0

)

+

√
ℓ∓mℓ +

1
2

2ℓ+ 1
Y
mℓ+

1
2

ℓ (θ, φ)

(
0
1

)
. (57)

Thus, for two dimensional spinors ϕ1,2 we must choose two different states such that

ϕ1± = ξ±(r)Y
j± 1

2

ℓ (θ, φ), ϕ2± = ζ±(r)Y
j± 1

2

ℓ (θ, φ), (58)

and so four dimensional Dirac spinors will be

ψ+
− =

(
ϕ1+
ϕ2−

)
, ψ−

+ =

(
ϕ1−
ϕ2+

)
. (59)

Furthermore, the operator

σ̃r = ⃗̃σ · n̂ =

(
cos θ sin θe−iφ

sin θeiφ − cos θ

)
, n̂ =

r⃗

r
, (60)

commute with the operator K̂ (see [43]) and by according to proof which is given in [54] we
have

σ̃rYj±
1
2

ℓ = −Yj∓
1
2

ℓ . (61)

This means that Yj±
1
2

ℓ are same eigenfunctions of the both operators γ̃r and K̂. However
we can use (59) to write

γ̃rψ = i

(
O σ̃r

−σ̃r O

)(
ξ±(r)Y

j± 1
2

ℓ

ζ∓(r)Y
j∓ 1

2

ℓ

)
e−iωt = i

(
−ζ∓Y

j± 1
2

ℓ

ξ±Y
j∓ 1

2

ℓ

)
e−iωt. (62)

Before determining explicit form of the radial parts of the Dirac spinors, we should discuss
important property of eigenfunctions of anti-fermions which are generated from fermion
eigenfunctions via charge conjugation operator.
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3.1 Charge Conjugation
In the quantum field theories in curved space, concept of charge conjugation is accepted to
be same as one which is in flat space quantum field theory. By regarding the convention (5),
it is given by [43]

ψc = γ̃yψ∗, (63)
where C = iγ̃tγ̃y is charge conjugation operator and ψc is Dirac wave function of anti-fermion
for each fermion ψ with complex conjugate ψ∗. There is proven both of ψc and ψ satisfy the
Dirac equation of motion in absence and also in presence of the electromagnetic fields but
with opposite sign of charge (see for instance [43]).It is easy to check that (γ̃y)∗ = γ̃y for
which (63) can be rewritten as (ψc)∗ = γ̃yψ. This means that by having exact form of the
Dirac waves for fermions we in fact can generate corresponding Dirac waves for ani-fermions
via (ψc)∗ = γ̃yψ. Now, we investigate radial parts of the Dirac waves, i.e., u(r) and v(r)
given by (55).

3.2 Radial dependent part of the Dirac spinors
Substituting (55), into the Schrodinger like of Dirac equation (39) and by regarding the
identities (49), (58), (59) and (62) we find two coupled ordinary differential equations for
radial part of the Dirac field in which spherical Harmonic functions drop from two sides of
the equations, such that

(ω + qA0(r) +mψ)ξ± =

[
(1− e−V + κ∓e

U )

r
− U ′

2
e−V − eU−V ∂r

]
(iζ∓)[

(1− e−V + κ±e
U )

r
− U ′

2
e−V − eU−V ∂r

]
ξ± = (ω + qA0(r)−mψ)(iζ±). (64)

Adding side by side of the above equations we obtain suitable forms of the equations such
that [

1− e−V − (1− λ)eU

r
− U ′

2
e−V − eU−V d

dr
− (ω + qA0(r))

]
χ
κ+

1 = mψχ
κ+

2 , (65)

for κ+ = λ− 1 and[
1− e−V − (1 + λ)eU

r
− U ′

2
e−V − eU−V d

dr
− (ω + qA0(r))

]
χ
κ−
1 = mψχ

κ−
2 , (66)

for κ− = −(λ+ 1) respectively where we defined new spinors

χ
κ∓
1 = ξ∓ + iζ±, χ

κ∓
2 = ξ∓ − iζ±. (67)

These equations can be solved to present explicit form of the functions ξ(r) and ζ(r) if the
Maxwell field A0(r) and the metric fields U(r) and V (r) are known. Thus we should find
explicit form of the Einstein equations and the Maxwell equations. Then, we solve them
together. To have right side of the metric equation (19) we need explicit form of the stress
tensors (21), (22) and (23). After some mathematical calculations they are found as follows
respectively.

4 Stress tensors
In this section, we try to find stress tensor components of the Dirac field and the Maxwell
field for spherically symmetric static Dirac star.
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4.1 Dirac star stress tensor
Although straightforward way to find explicit form of the Dirac field stress tensor for the
line element (29) is substitution of the obtained results above into the stress tensor (23) and
these calculations are very long and tedious, fortunately there are details in scientific papers
for instance [55]. At a first step, we rewrite ϕ1,2 given by the Dirac spinor (59) versus their
two components with the following ansatz

ξ±(r)Y
j± 1

2

ℓ =

(
−f(r)Yj±

1
2

ℓ

∓if(r)Yj∓
1
2

ℓ

)
, ζ∓(r)Y

j∓ 1
2

ℓ =

(
−ig(r)Yj±

1
2

ℓ

∓g(r)Yj∓
1
2

ℓ

)
, (68)

for which we can find

χ∓
1 (r)Y

j∓ 1
2

ℓ =

(
(g − f)Yj∓

1
2

ℓ

±i(f + g)Yj±
1
2

ℓ

)
, χ∓

2 (r)Y
j∓ 1

2

ℓ =

(
−(g + f)Yj∓

1
2

ℓ

±i(f − g)Yj±
1
2

ℓ

)
. (69)

The particular choice (68) causes that the static solutions of the Dirac star is satisfied because
the associated flux of particles, momentum density and density current of particles vanish
and so the stress tensor (23) is time independent (see [55]). With this setting, non-vanishing
of the Dirac field stress tensor components are

(TDirac)tt = e−V (fg′ − gf ′) +
2fg

r
+mψ(f

2 − g2) ≡ ωe−U (f2 + g2),

(TDirac)rr = e−V (fg′ − f ′g),

(TDirac)θθ = (TDirac)φφ =
fg

r
, (70)

where equivalency identity for time-time component of stress tensor is proven in the ref.
[55]. Furthermore the four current density of Dirac particles is obtained versus the particle
density as

jµ = qρpδ
0
µ, ρp = iψ̄γ0ψ = 2(f2 + g2), (71)

where the orthogonality condition on the spherical Harmonic eigenfunctions is applied. In
the next subsection we calculate non-vanishing components of the Maxwell stress tensor and
the Maxwell field equation.

4.2 Spherical Maxwell field stress tensor
We will now determine explicit form of the Maxwell field for the line element (29). It is easy
to show that for Aµ = A0(r)δ

0
µ, the Maxwell equation (26) reads

U
′′′

=
V ′

r2
− U ′

r2
+
V

′′

r
− 3U

′′

r
− 3V

′2

r
+

4U ′V ′

r
− U

′2

r
+4U

′′
V ′ + U ′V ′′

− U ′U ′′ − 3U ′V
′2 + 2V ′U

′2 + U ′3 +
E′

E

(
V ′

r
− U ′

r
− U ′′ − U

′2 − U ′V ′
)

−e
2V

4α

(
E′

E
+

2

r
− V ′ − U ′−4βqe2(U+V )

E
(f2 + g2)

)
, (72)

where with E(r) = qA′
0(r), the four current density is substituted by (71). The Maxwell

stress tensor (21) and (22) read

T tt EM = T rr EM =
e−2(U+V )E2

4
,



Dirac Stars Stability and Modified Einstein-Dirac-Maxwell Gravity 21

T θθ EM = Tφφ EM = −e
−2(U+V )E2

4
. (73)

4.3 Interaction stress tensor
By some mathematical calculation and regarding the above results for the line element (29)
we find components of the interaction stress tensor as follows.

Θtt = −E2e−2U−4V

[
U ′′ + (U ′ − V ′)(U ′ +

1

r
)

]
,

Θrr = E2e−2(U+V )

{
U ′′

2
+
V ′′

2
− E′′

E
− U ′2 − 2U ′V ′ +

3U ′E′

E
+

2U ′

r
− V ′2,

+
3V ′E′

E
+

2V ′

r
− E′2

E2
− 2E′

rE
+

1

r2

− e−2V

[
U ′′ + U ′2 +

3U ′

r
+
V ′

r
− U ′V ′

]}
,

Θθθ = Θϕϕ = −E2e−2U−4V

(
U ′ + V ′

r

)
. (74)

4.4 Einstein tensor
To solve the field equations, we need the non-vanishing Einstein tensor components for the
line element (29) which can be calculated straightforwardly as follows

Gtt =
1

r2
+ e−2V

(
2V ′

r
− 1

r2

)
,

Grr =
1

r2
− e−2V

(
2U ′

r
+

1

r2

)
,

Gθθ = Gϕϕ = e−2V

(
V ′U ′ − U ′2 − U ′′ +

V ′

r
− U ′

r

)
. (75)

Composing the results above we now investigate the analytic solution of the fields.

5 Spherical setting of the field equations
By having the previous results for stress tensors and field equations described for the spher-
ically symmetric static curved line element (29), we are ready now to solve them syn-
chronously. The Dirac field equations given by (65) and (66) reduce to the following forms
by substituting (69):

f ′

f
=
eV−U − e−U + (λ− 1)eV

r
− U ′

2
e−U − (mψ + ω + qA0(r))e

V−U ,

g′

g
=
eV−U − e−U + (λ− 1)eV

r
− U ′

2
e−U + (mψ − ω − qA0(r))e

V−U , (76)

for κ+ and

f ′

f
=
eV−U − e−U − (λ+ 1)eV

r
− U ′

2
e−U − (mψ + ω + qA0(r))e

V−U ,
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g′

g
=
eV−U − e−U − (λ+ 1)eV

r
− U ′

2
e−U + (mψ − ω − qA0(r))e

V−U , (77)

for κ− respectively. The total stress tensor components in right hand side of the Einstein
metric field equation (19) are obtained by substituting (70), (73) and (74), such that

ρE(r) = T tt EM + αΘtt + β(TDirac)tt = βωe−U (f2 + g2)

+
E2e−2(U+V )

4

{
1− 4αe−2V

[
U ′′ + (U ′ − V ′)

(
U ′ +

1

r

)]}
, (78)

is the total energy density function and

pr(r) = T rr EM + αΘrr + β(TDirac)rr = βe−V (fg′ − f ′g) +
E2e−2(U+V )

4

+ αE2e−2(U+V )

[
U ′′

2
+
V ′′

2
− E′′

E
− U ′2 − V ′2 − 2U ′V ′ +

3U ′E′

E

+
3V ′E′

E
− E′2

E2
+

2U ′

r
+

2V ′

r
− 2E′

rE
+

1

r2

]
− αE2e−(2U+4V )

[
U ′′ + U ′2 − U ′V ′ +

3U ′

r
+
V ′

r

]
, (79)

is the radial pressure function and

pt(r) = T θθ EM + αΘθθ + β(TDirac)θθ

=
βfg

r
− e−2(U+V )E2

4

[
1 + 4αe−2V

(
U ′ + V ′

r

)]
, (80)

is the transverse pressure function. To have the Einstein metric equation components given
by (19) we substitute (75), (78), (79) and (80) into it such that

U ′′ = (V ′ − U ′)

(
U ′ +

1

r

)
+
e2V

4α
+
e2(U+V )

8παE2

(
2V ′

r
− (1 + e2V )

r2

)
− βωeU+4V

8παE2
(f2 + g2),

(81)

(1− 2e2V )U ′′ + V ′′ − 2E′′

E
= − 1

2α
− 2

r2
+ 2U ′2 + 4U ′V ′ − 4U ′E′

E
− 4U ′

r

+ 2V ′2 − 6V ′E′

E
− 4V ′

r
+

2E′2

E2
+

4E′

rE

+ 2e2V
(
U ′2 − U ′V ′ +

3U ′

r
+
V ′

r

)
− e2U+4V

8παr2E2

+
e2(U+V )

8παE2

(
2U ′

r
+

1

r2

)
+
βe2U+3V

αE2
(fg′ − f ′g), (82)

and

U ′′ = U ′V ′ − U ′2 +
V ′

r
− U ′

r
+

8πβfge2V

r
− 2πE2e−2U

[
1 + 4αe−2V

(
U ′ + V ′

r

)]
. (83)

We are ready to solve the Maxwell equation (72), the Dirac equations (76), (77), and three
components of the Einstein field equations (81), (82) and (83). They are six equations
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which should give us five un-known fields U, V,E, f, g. In fact one of these equations are a
constraint condition between the solutions. This clime is because of the energy momentum
conservation ∇µT

µ
ν = 0 or equivalently the Bianchi identity ∇µG

µ
ν = 0 which relates three

components of the Einstein tensors to each other. Usually the stress energy conservation of
a stellar fluid is called as Tolman-Oppenheimer-Volkoff (TOV) which for the line element
(29) leads

p′r − U ′ρE +

(
U ′ +

2

r

)
pr −

2pt
r

= 0, (84)

in which total energy density ρE and directional pressures pr,t should be substituted by
(78) and (79) and (80). This equation can be solved if there are relations between the
energy density and the directional pressures. For all of relativistic isotropic stars in which
pr = pt = p, the equation of state is polytropic such that p(ρ) = Kργ for which the constant
K is called barotropic index and γ = CP

CV
. In this, CP and CV are heat capacity at constant

pressure and at constant volume respectively. However we do not investigate to solve the
TOV equation above as in our previous work [57], but we take advantage of the fact that
the components of the momentum energy are related to each other in a similar way to the
components of the Einstein tensor via the Bianchi identity, and hence one of the equations
of motion is a constraint, and we will leave aside one of them in the following.
It is obvious that the field equations above are nonlinear and so we have two different
methods ahead to find their solutions, i.e., (a) numerical method and (b) perturbation
method. We choose (b) method in what follows. To do this, we separate two different
classes of solutions corresponding with κ+ = λ−1 and κ− = −(λ+1), but each of the latter
cases have two different solutions of the field if the fermions and anti-fermions have spin
up or spin down. Thus at all, the physical state of such a Dirac spherically symmetric star
will determined with four different classes of solutions. In this paper, we investigate one of
these situations and other cases are dedicated for our future works. The case, which we like
to solve the field equations at below, is for fermions/antifermions stellar matter which have
spin up only. This restrict us to choose f ̸= 0 with a ansatz trivial solution g = 0 for the
Dirac equation (76).

5.1 Solutions of the fields for κ+ = λ− 1, f ̸= 0, g = 0

In this case to find U, V, f, E we need 4 differential equations which we choose (72), (76),
(81), and (82). It is useful we use other equations instead of (81), and (82) by substituting
U ′′ given by and (83). In that case, (82) reads

V ′′ − 2E′′

E
= − 1

2α
− 2

r2
+ 3U ′V ′ + 3U ′2,+2V ′2 − 5V ′

r
− 3U ′

r
+ 4e2V

(
U ′ + V ′

r

)
+ 2πE2e−2U (1− e2V )

[
1 + 4αe−2U

(
U ′ + V ′

r

)]
+
E′

E

(
4

r
+

2E′

E

− 6V ′ − 4U ′
)
+
e2(U+V )

8παE2

[
2U ′

r
+

1− e2V

r2

]
, (85)

and (81) reduces to the following constraint condition.[
8παE2e−2V +

e2U

4παE2

]
V ′

r
+ 8παE2e−2V U

′

r

+
1

4α
+ 2πE2 − e2U

8παE2

[
1 + e2V

r2
+ βωf2e2V

]
= 0. (86)
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Substituting V ′′ and U ′′ given by (85) and (83), the Maxwell equations (72) reads

U ′′′ =
V ′

r2
− U ′

r2
+ U ′3 + 2V ′U ′2 − 3U ′V ′2 − U ′2

r
+

4U ′V ′

r
− 3V ′2

r

+

(
1

r
+ U ′

){
− 1

2α
+

4U ′e−2V

r
+ 2πE2e−2U (e−2V − 1)

[
1

+ 4αe−2V (
V ′ + U ′

r
)

]
− 2(V ′ + U ′)

[
V ′ + U ′ +

E′

E

]
+
e2(U+V )

4παE2

[
1

r2
− e2V

(
2U ′

r
+

1

r2

)]}
+
E′

E

(
V ′

r
− U ′

r
− U ′2 − U ′V ′

)
+
e2V

4α

[
E′

E
+

2

r
− V ′ − U ′ +

4βqf2e2(U+V )

E2

]
. (87)

Thus we will use the equations (85), (86), (87) together with the Dirac equation (76) to
study formation of a Dirac star in what follows. To do this, we use the dynamical system
approach which is mentioned in the introduction section.
At a first step, we collect set of dimensionless first order differential equations generated
from the field equations (76),(85), (86) and (87). Hence, to have some simpler forms for
the field equations, we define a dimensionless logarithmic radial variable τ and some new
dimensionless fields as follows.

r =
√
αeτ ,

d

dτ
= ˙, f =

eδ√
32πβqα

√
α
, ω̄ =

ω

32πq
√
α
,

m̄ =
√
α(mψ + ω), Π(τ) =

√
αqA0,

√
8παE = eϵ, σ =

q√
8πα

, (88)

in that case the equation (76) reduces to the following form

δ̇ +
U̇

2
e−U = eV−U − e−U + (λ− 1)eV − (m̄+Π)eτ+V−U , (89)

with

Π̇ = σeϵ. (90)

The equation (85) reads

V̈ − 2ϵ̈ = 2ϵ̇+ 4ϵ2 − 2− e2τ

2
+ 3U̇ V̇ + 3U̇2 + 2V̇ 2 − 4V̇ − 3U̇ + 4(U̇ + V̇ )e2V

+
e2(ϵ+τ−U)

4
(1− e2V )[1 + 4e−2(U+τ)(U̇ + V̇ )]− 6ϵ̇V̇ − 4ϵ̇U̇

+ [1 + 2U̇ − e2V ]e2(U+V−ϵ). (91)

The equation (86) is

U̇ + [1 + 2e2(U+V−2ϵ)]V̇ = ω̄e2(U−2ϵ+2V+δ+τ) + e2(U−2ϵ+2V )

+ e2(U+V−2ϵ) − e2(τ+V−2ϵ)

4
− e2(τ−ϵ+V )

4
, (92)

and finally for the Maxwell equation (87) we find
...
U − 3Ü = −3U̇ + V̇ + U̇3 + 2V̇ U̇2 − 3U̇ V̇ 2 − U̇2 + 4U̇ V̇ − 3V̇ 3
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− e2τ (1 + U̇)(e−2V − 1)[1 + 4e−2(τ+V )(V̇ + U̇)]

− 2(1 + U̇)(U̇ + V̇ )[U̇ + V̇ + ϵ̇]

+ 2(1 + U̇e2(U+V−ϵ))[1− e2V (1 + 2U̇)] + ϵ̇(V̇ − U̇ − U̇2 − U̇ V̇ )

+
e2(τ+U)

4
[ϵ̇+ 2− V̇ − U̇ + e2(τ+U+V+δ−ϵ)]. (93)

Before to generate eight dimensional phase space of the system under consideration and
whose first order differential equations, we make two very important conditions to simplify
the above equations and then proceed to form eight differential equations in phase space as
follows:

• It is obvious that the above equations are non-autonomous and coefficients of some of
the equations above diverges to infinity because at τ → ∞ corresponds to r >>>

√
α.

Thus we consider solutions of the above equations just at small scales r <<
√
α for

which τ → −∞. In the latter case all coefficients of the equations above containing
the exponential factor eτ vanish and so the equations are autonomous.

• In fact, linear order of the fields equation are applicable in the Jacobian of the Eq. (1)
in the dynamical system approach and higher order perturbation terms are negligible.

Regarding the above two important rules have some useful beneficial consequences. The
length of the equations suppress without to omitted physical contents of the problem. If
we have possibly stable Dirac stars then, they have a finite size and so we must solve
the above complicated nonlinear equations in the limits τ → −∞ or equivalently at small
scales r <<

√
α. Thus we continue our investigations by regarding the above two rules by

substituting the perturbation series functions

eU ∼ 1 + U + · · · , eV ∼ 1 + V + · · · , eϵ ∼ 1 + ϵ+ · · · (94)

into the above equations. In that case, the equation (89) reduces to the following form.

δ̇ +
U̇

2
≈ λ− 1 + λV. (95)

The equation (90) reaches to the following form.

Π̇ ≈ σ + σϵ. (96)

The equation (91) is

V̈ − 2ϵ̈ ≈ −2 + 2ϵ̇+ 4ϵ2 + 3U̇ V̇ + 3U̇2 + 2V̇ 2 + 3U̇ + 4V̇ + 12U̇V

+ 8V̇ V − 6ϵ̇V̇ − 4ϵ̇U̇ − 2V + 4U̇U − 4UV − 4V 2 + 4V ϵ. (97)

The equation (92) reads

U̇ + V̇ ≈ 2 + 4U + 6V − 8ϵ, (98)

and finally the equation (93) takes the following form.
...
U − 3Ü ≈ −7U̇ − 3V̇ − U̇3 − 4U̇2V̇ − 5U̇ V̇ 2 − 6U̇2 − 5V̇ 2 − 2U̇ ϵ̇− 2V̇ ϵ̇

− 2U̇2ϵ̇− 2U̇2V̇ − 2U̇ V̇ ϵ̇− 20V U̇ − 4V U̇2 − 8V U̇ + 8ϵU̇



26 Hossein Ghaffarnejad∗

− 8UV U̇ − 8V 2U̇ + 8V ϵU̇ − 16V 2U̇2 − 16UV U̇2 + 16V ϵU̇2. (99)

By according to the dynamical system approach given by the eq. (1) we make eight dimen-
sional phase space describing the vector field

Λ⃗ = {Π, ϵ, V δ, U, V,X, Y, Z}, (100)

in which X,Y, Z are assumed to be

X = 3U̇ − 3U + V, Y = V̇ − 2ϵ̇, Ẋ = 3Z, (101)

and find first order differential equations for each of these fields via (95), (96), (97), (98),
(99) and (101). By using (95), (98), and (101) we find

ϵ̇ = −X
6

+
19V

6
+

3U

2
− Y

2
− 4ϵ+ 1,

δ̇ = λV − U

2
+
V

6
− X

6
+ λ− 1,

U̇ = U − V

3
+
X

3
,

V̇ = −X
3

+
19V

3
+ 3U − 8ϵ+ 2. (102)

First order differential equations for Y and Z are obtained via (102) and (101), such that

Ẏ = G7(ϵ, U, V,X, Y )

G7 = 4− 60ϵ2 + 4 (−2 + 10U + 11V − 2X − 6Y ) ϵ

+ U2 + (8− 4V + 6X + 11Y )U +
7V 2

9

+
(64X + 165Y + 168)V

9
+
X2

9
+

(4− Y )X

3
+ 5Y (103)

Ż = G8(ϵ, U, V,X, Y )

G8 = −30 + 216ϵ+ 2Y − 2X − 160V − 114U − 32

3
V 2ϵU +

1832

9
V Xϵ

− 16

9
UV X2 +

4

3
UXY − 32

3
U2V X − 32

9
V 2ϵX +

304

3
UXϵ

+
16

9
V ϵX2 − 772

9
XUV +

1448

3
UV ϵ+ 16V ϵU2 − 8

3
XϵY +

8

3
V ϵY

− 8UϵY + 2V XY − 64

9
U V 2X +

14

3
UV Y +

16

9
V 3ϵ+ 344U2ϵ

− 2V 2Y + 4U2Y − 128X ϵ2 + 128V ϵ2 − 384U ϵ2 +
26

9
V X2 +

20

9
U X2

− 724

9
X V 2 − 56

3
X U2 − 1264

9
U V 2 − 754

3
V U2 +

80

9
U V 3

− 16

3
U2V 2 − 16U3V − 16

9
V 2X2 +

32

9
V 3X − 40

9
X2ϵ− 1792

9
V 2ϵ+

2

3
XY

+
16

3
V Y + 6UY − 8ϵY − 18UX − 149U2 − 316

9
V X − 1

9
X2 +

112

3
Xϵ

+ 496Uϵ− 1627

9
V 2 − 384ϵ2 +

1616

3
V ϵ− 376UV
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+
32

3
V ϵUX +

698

9
V 3 − 76U3 − 16

9
V 4. (104)

We now can use the above mathematical calculations to show the vector field in phase space
(100) with the differential equation (1), such that

d

dτ



Π
ϵ
δ
U
V
X
Y
Z


=



σ + σϵ
−X

6 + 19V
6 + 3U

2 − Y
2 − 4ϵ+ 1

λV − U
2 + V

6 − X
6 + λ− 1

U − V
3 + X

3

−X
3 + 19V

3 + 3U − 8ϵ+ 2
3Z

G7(ϵ, U, V,X, Y )
G8(ϵ, U, V,X, Y )


. (105)

There are two class of critical points in phase space which are obtained by solving the
equations

Π̇ = 0 = ϵ̇ = δ̇ = U̇ = V̇ = Ẋ = Ẏ = Ż, (106)

such that

P±
c : Λic =



Πc(σ = 0) = 0

ϵc = (−λ+ 1±
√
λ2 + 2λ− 1)/2λ

δc = arbitrary

Uc = (−1± 2
√
λ2 + 2λ− 1)/2λ

Vc = −(λ− 1)/λ

Xc = −(2λ− 5± 6
√
λ2 + 2λ− 1)/2λ

Yc = 0
Zc = 0


, (107)

in which

λ = j +
1

2
= 1, 2, 3, 4 · · · . (108)

Calculating the Jacobi matrix components at the critical points above is straightforward via
Jij =

∂Λ̇i

∂Λj
such that

J±
ij =



0 0 0 0 0 0 0 0
−4 0 3

2
19
6 − 1

6 − 1
2 0 0

0 0 − 1
2 λ+ 1

6 − 1
6 0 0 0

0 0 1 − 1
3

1
3 0 0 0

−8 0 3 19
3 − 1

3 0 0 0
0 0 0 0 0 0 3 0
J71 0 J73 J74 J75 −1 0 0
24 0 J83 J84 J85 0 0 0


, (109)

in which

J±
71 =

±4
√
λ2 + 2λ− 1 + 16λ− 56

λ
,

J±
73 =

±4
√
λ2 + 2λ− 1− 14λ+ 30

λ
,
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J±
74 =

2(65− 18λ∓ 5
√
λ2 + 2λ− 1)

3λ
,

J±
75 =

±4
√
λ2 + 2λ− 1− 6λ+ 2

3λ
,

J±
83 =

±4 (2λ− 1)
√
λ2 + 2λ− 1 + 4λ2 − 20λ

λ2
,

J±
84 =

±4 (−2λ+ 1)
√
λ2 + 2λ− 1− 70λ2 + 20λ

3λ2
,

J±
85 =

±4 (−2λ+ 1)
√
λ2 + 2λ− 1− 70λ2 + 20λ

3λ2
. (110)

We now can find eigenvalues of the Jacobi matrix above by solving the secular equation
det(Jij − sδij) = 0, such that

s2
(
7

2
s3 +

5

3
s4 − 4s2 +

7

6
s5 + s6 − 4

3
λ s3 − 4λs− λ s4 − 3λ s2

)
= 0, (111)

for both of J±
ij with the following parametric solutions.

s1 s2 s3 s4 s5 s6 s7 s8
0 0 0 i

√
3 −i

√
3 A(λ) B(λ) + iC(λ) B(λ)− iC(λ)

(112)

where we defined

A =
193 + 108λ− 7g

1
3 + g

2
3

18g
1
3

,

B = −193 + 108λ+ 14g
2
3

36g
1
3

,

C = −
√
3(193 + 108λ− g

1
3 )

36g
1
3

,

g = 2754λ− 1855 + 18
√

−3888λ3 + 2565λ2 − 68784λ− 11568. (113)

Numeric values of the above parametric eigenvalues are determined by substituting the
quantized numbers λ = 1, 2, 3, 4, · · · . When the eigenvalues are absolutely real negative
(positive) numbers then the system is stable(unstable) but when they are complex numbers
with negative (positive) real part then the system will be spiral stable(unstable) nature in
phase space. Therefore appropriate to identify the stable regimes of the λ parameter by
solving the secular equation (111) versus s parameter, such that

λ =

(
6s2 + 7s− 8

)
s

6s+ 8
, (114)

which its diagram in the figure (1(a)) shows stable regimes (s < 0). For the Jacobi matrix
(110) the equation (1) reads to the following set of differential equations.

Π̇ = 0,

ϵ̇ =
3

2
δ +

19

6
U − 1

6
V − 1

2
X,

δ̇ = −δ
2
+

(
1

6
+ λ

)
U − V

6
,
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U̇ = δ − U

3
+
V

3
,

V̇ = 3δ +
19

3
U − 1

3
V,

Ẋ = 3Y,

Ẏ = J83δ + J74U + J75V −X,

Ż = J83δ + J84U + J85V, (115)

where the first equation shows that Π should be constant field which we used the critical value
Πc = 0. We show stability nature of the system with arrow diagrams of the fields equations
in phase space in 1(c) and 1(d). We know from linear algebra theory that solutions of the
equation (1) near the critical points are obtained as

Λi =

8∑
j=1

J±
ijΛ

j
ce
sjτ , (116)

in which Λjc are components of the critical point (107) and sj are eight eigenvalues are given
by (112) and the Jacobi matrix Jij should be substituted by (109). One can follow this to
find explicit form of the vector field solution (116) as follows:

Π(τ) = 0,

ϵ(τ) ≈ 3

2
δc +

(19Uc − Vc)

6
cos

√
3τ − Xce

(ReA)τ

2
cos(ImAτ),

δ = constant,

U(τ) ≈ δc +
(Vc − Uc)

3
cos

√
3τ,

V (τ) ≈ 3δc +
(19Uc − Vc)

3
cos

√
3τ,

X(τ) = 0,

Y (τ) ≈ J73δc + (J74Uc + J75Vc) cos
√
3τ −Xce

ReAτ cos(ImAτ),

Z(τ) ≈ J83δc + (J84Uc + J85Vc) cos
√
3τ, (117)

where we suppress higher order multiplications of the solutions which make second or higher
order harmonics of the cosine functions and also we drop imaginary parts of the solutions
above because their amplitude are negligible with respect to real parts. other reason which
make to drop the imaginary parts is because that all physical fields for instance energy
density and pressures should be real. In other words, the above solutions are leading order
perturbations solutions around the critical points. Also in the above solutions ReA and
ImA are real and imaginary parts of the parameter of A given by (113).
It is suitable to find explicit form of the energy density and directional pressures fluctua-
tions near the critical points solutions above. They are found by substituting the obtained
solutions (117) straightforwardly such that

δρ̄E = 8πα(ρE − ρcE) ≈
√
3

4
δ2c (2Vc − 70Uc)e

−2τ sin
√
3τ,

δp̄r = 8πα(pr − prc) ≈
(Vc − Uc)

2
e−2τ [

√
3 sin

√
3τ + cos

√
3τ ]

+
Xc

2
e(ReA−2)τ [1 + (ReA)2 + (ImA)2] cos(ImAτ)
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+
Xc(ImA)

2
e(ReA−2)τ sin(ImAτ),

δp̄t = 8πα(pt − ptc) ≈ 6
√
3Uce

−2τ sin
√
3τ, (118)

in which we defined critical energy density and directional critical pressures as follows.

8παρEc ≈
1

4
+ 8πω̄(1 + 2δc) +

λ+ 16πω̄(1∓
√
λ2 + 2λ− 1)

4λ
,

8παprc ≈
23λ∓ 5

√
λ+ 2λ− 1

4λ
,

8παptc =
2− 4λ± 3

√
λ2 + 2λ− 1

4
. (119)

We notify that for λ = 1, 2, 3, · · · the parameter A is a complex number. For instance for a
Dirac star in the ground state λ = 1 corresponding with j = 1

2 , S = 1
2 , ℓ = 0 we have

Aλ=1 = 1.3 + 8.8× 10−6i, (120)

for which the numeric values of the critical points components are

P±
c (λ = 1) : Λic(λ = 1) =



Πc = 0

ϵ±c = ±
√
2
2

δc ≡ constant

Uc =
−1±

√
2

2
Vc = 0

Xc =
3∓6

√
2

2
Yc = 0
Zc = 0


. (121)

Substituting these numeric values into the solutions above we obtain exact form of the
decreasing functions for energy density and the directional pressures, such that

δρ̄±E ≈ 70
√
3(1∓

√
2)δ2c

8
e−2τ sin

√
3τ,

δp̄±r ≈ 1∓
√
2

4
e−2τ [

√
3 sin

√
3τ + cos

√
3τ ]

+
8.1(1∓ 2

√
2)

4
e−0.7τ cos(8.8× 10−6τ),

δp̄±t ≈ 3
√
3(−1±

√
2)e−2τ sin

√
3τ, (122)

with critical values

ρ̄±Ec = 8παρ±Ec ≈
1

2
+ 4πω̄(3 + 4δc ∓

√
2),

p̄±rc = 8παp±rc ≈
23∓ 5

√
2

4
,

p̄±tc = 8παp±tc ≈
−2± 3

√
2

4
. (123)

We plot diagrams of the density and the pressures (123) in Figure 1(b) and Figures 2(a)
and 2(b) respectively. Diagrams of the pressures and density show that the Dirac star under
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consideration does not have a surface with determined single radius same as Newtonian stars
but the pressures suppress at infinity r → ∞. This motivates that we evaluate an average
radius of such a cloud matter as a compact star. This is done at below determine the scale
Dirac star.

5.2 Size of the Dirac stars
One may ask a question about the size of such a Dirac relativistic star. Usually, Newton
stars or neutron stars have sharp surface with finite radius which separates inside and outside
of the star region. It is determined by setting ρ(R) = 0 = pr(R) but for boson and
fermion stars which have not sharp radius R their density and radial pressure suppress
asymptotically to vanish at infinite distance [56] same as figures 1(b) and 2(a) and 2(b) in
this work. Such matter distributions have estimated radius which can be calculated from
the following equations

< R >= − 1

Q

∫
rdr3

√
gjt, (124)

where
Q = −

∫
dr3

√
gjt, (125)

is the Noether charge and jt is time component of conserved density current (6). In fact,
it originates from internal U(1) gauge symmetry as ψ → eiχψ with constant gauge field
χ. In other words, in the model with un-gauged U(1) symmetry, the Noether charge Q
is interpreted as the number of fermion-boson particles with mass mψ that make up the
fermion-boson star. To calculate estimated radius of the obtained relativistic Dirac star
(124), we substitute the obtained solution above into the relation (124) such that

< R >√
α

=

∫∞
−∞ dτe4τ+U+V+2δ∫∞
−∞ dτe3τ+U+V+2δ

=

∫∞
−∞ dτe4τ+8Uc cos

√
3τ∫∞

−∞ dτe3τ+8Uc cos
√
3τ

=

∫∞
0
dτ cosh(4τ)e8Uc cos

√
3τ∫∞

0
dτ cosh(3τ)e8Uc cos

√
3τ

(126)

in which U(τ), V (τ), δ(τ) are substituted by (117). The above integral equations have not
analytic solutions and we must solve numerically by considering with ultraviolet/infrared
cutoff length scales instead of the lower bound zero and upper bound infinity of the integral
equations. But we consider two approximations to evaluate the above integral equations in
what follows. I) we replace average of the function e8Uc cos

√
3τ because that remains finite

at 0 < τ <∞ such that

e8Uc cos
√
3τ =

e8Uc + e−8Uc

2
= cosh(8Uc), (127)

in which we used maximum and minimum values of the cosine function for 0 < τ < ∞. In
this limit, cosh(8Uc) drops from numerator and denominator of the fraction and so (126)
reduces to the following form

< R >√
α

≈
∫∞
0
dτ cosh(4τ)∫∞

0
dτ cosh(3τ)

. (128)
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(a) (b)

(c) (d)

Figure 2: (a) Variation of radial pressure difference vs the radial coordinate. This shows that central
pressure diverges to negative infinity but at large distances it vanishes for both of branches of the solutions
(b) Variation of transverse pressure difference vs the radial coordinate, where central value diverge to positive
infinity and suppresses to zero value at large distance. (c) Equation of state for radial pressure shows both
of branches of the solutions have both dark invisible and visible behavior for the star. (d) Equation of state
for transverse pressure behaves as barotropic behavior in both branches of the solutions.
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II) in the second step we use transformations 4τ = ζ and 3τ = ζ in the numerator and in
the denominator respectively, for which limit values of the integrals given by (128) drops
again from numerator and denominator such that, one can infer that

< R >√
α

∼ 3

4
. (129)

In the following we apply to summary of the work and description of the theoretical results.

6 Summary and outlook
We used non-minimally coupled Einstein-Dirac-Maxwell gravity model to study the forma-
tion and stability of a Dirac fermionic spherically symmetric static star. We find that the
interaction parameter between the gravity and the electromagnetic fields in presence of the
Dirac fields plays essential role in the formation and stabilization and size of a fermionic
Dirac star. In fact for imaginary frequencies (not shown) the Dirac spinor waves suppress in
time and so the fermionic matter of this kind of Dirac star decay which means that the star
is unstable. In this work, we just extract the positive real frequencies of the Dirac waves
and find some permissable eigenvalues of the total angular momentum of the Dirac spinors
where the star remain stable. Mathematical derivations show quasi-spiral stable of the ob-
tained solutions in phase space, because some of the eigenvalues of the Jacobi matrix are
zero and some of them are complex whose real parts are negative. Hence to have stability
more for such a Dirac star we must choose other kinds of the interaction terms. Recently
we investigate stability of a Boson star in presence of the Coleman-Weinberg potential which
is applicable in the cosmic inflation [57]. Further, more researchers show that boson fermion
relativistic stars (see for instance [58], [59] and references therein) may be stable more in
which bosons and fermions participate just in gravitational interactions and such a stellar
objects can be suitable candidates for dark stars instead of central black holes of the galaxies.
This encourages us to extent this work by considering a boson-fermion interacting matter
in presence of alternative potentials.
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