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Abstract. Improvement of precision in gravimetry is an important problem in de-
tecting the gravitational waves. In The first demonstration of using quantum, op-
tomechanical cavity in gravimetry has recently been reported. This experiment has
been done by employing a cooled levitated nanosphere as a mechanical oscillator in
its ground state coupled to a cavity electrodynamics. Following this experiment, in a
recent proposal, a quantum optomechanical system has been used for measuring gravi-
tational acceleration. A generic setup for gravimetry purposes, containing two couples
optomechanical cavities, where mirrors play the role of oscillating parts. We study such
quantum mechanical system, by investigation the dynamics of entanglement between
different parts of two coupled cavity optomechanical cells. For such setup, optimal con-
ditions for predesignated entanglement behavior, based on some important parameters
of the system, like photon-photon and photon-phonon couplings, electromagnetic field
strength and mechanical mode of moving mirrors are analyzed numerically. We show
that there exist two different behaviors for entanglement according to selected values
for the system parameters.
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1 Introduction

Using spatial superpositions of quantum levitated nanoparticles coupled to optical cavities
is a new method in acceleration sensing. It is expected that using cavity optomechanical
systems improve sensitivity of gravimetry at least 5-orders of magnitude over existing cold-
atom sensors [1]. Therefore, such systems will help scientists to develop gravitational wave
measurements.

This great development has been made possible by quantum entanglement. Entangle-
ment is one of the most fascinating features of quantum phenomena. Entangled states are
important, because of their unique role in quantum information [2]. It is worthy to inves-
tigate under which conditions and/or in which systems, entanglement between macroscopic
objects is more applicable in technology and applied science [3]. Recent studies clearly show
that this goal is achievable in optomechanical systems. Optomechanics is a rapidly devel-
oping field of research that explores efficient interactions between photons and mechanical
phonons, generally in a quantum electrodynamics (QED) cavity coupled to micro- or nano-
scale mechanical objects [4]. Indeed, nano- and micro-mechanical systems are indispensable
technologies in modern information age, which enable motional sensing, navigation, timing,
and wireless communication [5].
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The radiation pressure force is created in the optomechanical cavity due to the momen-
tum carried by light [6, 7]. For the first time, in [8], the authors have shown that the
radiation pressure can be used to entangle movable mirrors. In coupled optomechanical cav-
ities, entanglement may be created between different mechanical modes as well as between
a cavity mode and a vibration mode.

An important problem (both in theoretical and experimental points of view) is finding the
best values for system parameters in order to design the most effective practical setup in the
laboratory. What is the behaviour of the system when we choose some values for the system
parameters? Coupling the electromagnetic field to the atom, coupling electromagnetic field-
mechanical object, strength of electromagnetic field, parameters of mechanical parts, the
quality factor of cavity and many more other parameters should be adjusted to find the
best desired bevariour in the system. It is not correct that, the maximum values for system
parameters are the best values, even for the quality factors. Indeed, system parameters must
be adjusted concurrently to achieve desired behaviour. Motivated by this problem, we try to
investigate the optimum values of an optomechanical cavity array for the best entanglement
transfer between two coupled optomechanical cavities as a gravimeter.

Thus, in the section 2, the theoretical model is introduced by presenting details of the sys-
tem Hamiltonian. Optomechanical entanglement and its optimal conditions are investigated
in the section 3. Conclusions and remarks are presented in the section 4.

2 Coupled optomechanical cavities

A cavity optomechanical system is one of the basic elements in acceleration detectors, which
can be coupled to each other as shown in figure 1, for using in gravimetry devices [1, 9]. The

Figure 1: Schematic layout of coupled optomechanical cavities in a quantum network.

standard optomechanical system consists of an optical cavity and a movable mirror. As we
study the entanglement transfer between different parts of the system, we have taken two
coupled optomechanical cavities, as a typical part of the acceleration detector.

The gravitational interaction between two mirrors is Newtonian picture of quantum
mechanics is:

ĤAB = −GmAmB

|q̂A − q̂B |
(1)

where A and B refers to the movable mechanical mirrors, while q̂A and q̂B denote quantum
operators of their location [9]. Cavity optomechanical Hamiltonian for a movable mirror is:
Ĥ = ~ΩX̂Q̂, where X̂ is the amplitude quadrature of the cavity mode, and Q̂ denotes for
the mirror position q̂ normalized with respect to its zero-point motion. The parameter Ω
describes the optomechanical coupling strength and the gravitational effect is encoded into
this parameter [10].

It is shown that the amount of detectable squeezing is related to the limitations on the
quantum radiation pressure in the optomechanical cavities. Such squeezing approximately
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is:

S = 2dB
( π

Ω

)4
(

Qm

3× 106

)2(
ρ

20g/cm3

)2

(2)

where ρ is the material density and Qm is the cavity quality factor. As the system is in a
steady state, the signal-to-noise ratio increases as the measurement time increases. Thus,
we can increase the measurement time τ up to a value in which the precission becomes
acceptable. Needed measuring time has been calculated as:

τ = 1year

(
Ω

π

)3(
3× 106

Qm

)(
20g/cm3

ρ

)2

(3)

According to the technology in hand, both s and τ scales are accessible.
We have two coupled cavity optomechanical cells (1 and 2) in gravimetry devices. Thus,

the Hamiltonian can be written as [11, 12]:

HS = ω(a†a+ b†b) + Ω/2(c†1c1 + c†2c2) + λ(a†b+ b†a) (4)

−G
(
a†a(c1 + c†1) + b†b(c2 + c†2)

)
+HAB

where (a, b) and (c1, c2) are the annihilation operators of the cavity fields and the mechanical
resonators respectively. The coupling strength between two cavities is λ, while G stands for
the coupling strength between photon and phonon fields in the cavity. The parameters ω
and Ω/2 are the resonance frequencies related to the electromagnetic energy (photons) and
quantized mechanical vibration energy (phonons) of the system. The parameter Ω which
describes the optomechanical coupling strength is obtained as:

Ω =

√
2Pcavω

mcLωm
(5)

in which Pcav is the intra-cavity optical power, ω is the laser frequency, m is the mirror
mass, and L stands for the cavity length and ωm is the zero point frequency. HAB is the
nontrivial interaction part of the mirror position at the second-order which is:

HAB = ~
ω2
g

ωm
Q̂AQ̂B (6)

Where m = mA = mB is the mirror masses, ωg =
√
Gm/d3 and d is the mean separation

of mirrors.
In order to study the dynamics of the system, we have to find time evolution of the system

wave function through the Schrodinger equation, or solving the evolution of density matrix
using the Heisenberg (or the Lindblad) equation. If we want to study the dissipation and
fluctuation terms, we have to arrive at the Heisenberg or Lindblad equations. Here we try to
find different behaviours of the system and optimum values for the system parameters, which
can be investigated by the wave function. Therefore, we numerically solve the Schrodinger
equation for the system. The wave function of the system can be introduced as:

|Ψ(t)〉 =
∑

a,b,nc1,nc2

Ca,b,nc1,nc2
|na(t)nc1(t)nb(t)nc2(t)〉 =

∑
a,b,n1,n2

Ca,b,n1,n2
|nan1nbn2〉 (7)

where the number of photons in cavities are |na(t)〉 and |nb(t)〉, while |n1(t)〉 and |n2(t)〉
stand for number of phonons in cavities. Time evolution of the system wave function is
obtained from:

i∂Ψ(t)
∂t = HS |Ψ(t)〉. (8)
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Initial state of the system wave function can be considered as:

|Ψ(0)〉 = |na(0)n1(0)nb(0)n2(0)〉 (9)

where |na(0)〉, |nb(0)〉, |n1(0)〉 and |n2(0)〉 are initial number of photons and phonons in
cavities. According to the Hamiltonian (4) and considering initial state (9), we can write:

|Ψ(t)〉 =

12∑
i=0

Ci|Ψi〉 (10)

with:

|Ψ0 〉 = |na, n1, nb, n2 〉
|Ψ1 〉 = |(na + 1), (n1 − 1), nb, n2〉
|Ψ2 〉 = |(na + 1), n1, (nb − 1), n2〉
|Ψ3 〉 = |(na + 1), n1, nb, (n2 − 1)〉
|Ψ4 〉 = |(na − 1), (n1 + 1), nb, n2〉
|Ψ5 〉 = |(na − 1), n1, (nb + 1), n2〉
|Ψ6 〉 = |(na − 1), n1, nb, (n2 − 1)〉 (11)

|Ψ7 〉 = |na, (n1 + 1), (nb − 1), n2〉
|Ψ8 〉 = |na, (n1 + 1), nb, (n2 − 1)〉
|Ψ9 〉 = |na, (n1 − 1), (nb + 1), n2〉
|Ψ10〉 = |na, (n1 − 1), nb, (n2 + 1)〉
|Ψ11〉 = |na, n1, (nb + 1), (n2 − 1)〉
|Ψ12〉 = |na, n1, (nb − 1), (n2 + 1)〉〉

Time evolution of the expansion coefficients are obtained by solving the following coupled
differential equations:

iĊ0 = [ω(na + nb) + Ω/2(n1 + n2)]C0 −GC1

√
na + 1

√
n1 + λC2

√
(na + 1)nb

−GC4

√
na(n1 + 1) + λC5

√
na(nb + 1)−GC11

√
(nb + 1)n2 −GC12

√
nb(n2 + 1)

iĊ1 = −GC0

√
n1(na + 1) + [ω(na + nb + 1) + Ω/2(n1 + n2 − 1)]C1 + λC9

√
(na + 1)(nb + 1)

iĊ2 = λC0

√
(na + 1)nb + [ω(na + nb) + Ω/2(n1 + n2)]C2 −GC3

√
nbn2

iĊ3 = −GC2
√
nbn2 + [ω(na + nb + 1) + Ω/2(n1 + n2 − 1)]C3 −GC8

√
(na + 1)(n1 + 1)

+λC11

√
(na + 1)(nb + 1)

iĊ4 = −GC0

√
na(n1 + 1) + [ω(na + nb − 1) + Ω/2(n1 + n2 + 1)]C4 + λC7

√
nbna

iĊ5 = λC0

√
(nb + 1)na + [ω(na + nb) + Ω/2(n1 + n2)]C5 −GC6

√
(nb + 1)(n2 + 1)−GC9

√
nan1

iĊ6 = −GC5

√
(nb + 1)(n2 + 1) + [ω(na + nb − 1) + Ω/2(n1 + n2 + 1)]C6

−GC10
√
nan1 + λC12

√
nanb (12)

iĊ7 = −GC2

√
(n1 + 1)(na + 1) + λC4

√
nanb + [ω(na + nb − 1) + Ω/2(n1 + n2 + 1)]C7

−GC8
√
n2nb

iĊ8 = −GC3

√
(na + 1)(nb + 1)−GC7

√
n2nb + [ω(na + nb) + Ω/2(n1 + n2)]C8

iĊ9 = λC1

√
(na + 1)(nb + 1)−GC5

√
nan1 + [ω(na + nb + 1) + Ω/2(n1 + n2 − 1)]C9
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−GC10

√
(nb + 1)(n2 + 1)

i ˙C10 = −GC6
√
nan1 −GC9

√
(nb + 1)(n2 + 1) + [ω(na + nb) + Ω/2(n1 + n2)]C10

i ˙C11 = −GC0

√
(nb + 1)n2 + λC3

√
(na + 1)nb + [ω(na + nb + 1) + Ω/2(n1 + n2 − 1)]C11

i ˙C12 = −GC0

√
(n2 + 1)nb + λC6

√
nanb + [ω(na + nb − 1) + Ω/2(n1 + n2 + 1)]C12.

Above coupled equations clearly show a full quantum connection between all components
of the system, through photon-photon and photon-phonon interactions. In order to find a
quantitative description, we have to solve the above equations numerically.

To find a better knowledge about the dynamics of the entanglement, we have to study the
evolution of probability transfer between different parts of the system, using an entanglement
measure, as the linear entropy for a part of the entangled system. In the first step, we need
to calculate the density matrix of the system:

ρtotal = |Ψ〉〈Ψ| = (

12∑
i=0

Ci|Ψi〉)(
12∑
j=0

C†j 〈Ψj |) =

12∑
i=0

12∑
j=0

CiC
†
j |Ψi〉〈Ψj |. (13)

To reduce needed calculations, we may take partial trace over some parts of the system.
As measuring photons in experiments is more easier than the mechanical modes, we trace
out mirror vibrations (phonons) in both subsystems to find the reduced density matrix as
follows:

ρp = (|C0|2 + |C8|2 + |C10|2)|nanb〉〈nanb|+ |C2|2|(na + 1)(nb − 1)〉〈(na + 1)(nb − 1)|
+|C5|2|(na − 1)(nb + 1)〉〈(na − 1)(nb + 1)|+ (|C1|2 + |C3|2)|(na + 1)nb〉〈(na + 1)nb|
+(|C9|2 + |C11|2)|na(nb + 1)〉〈na(nb + 1)|+ (|C4|2 + |C6|2)|(na − 1)nb〉〈(na − 1)nb|
+(|C7|2 + |C12|2)|na(nb − 1)〉〈na(nb − 1)|+ (C∗2C5)|(na − 1)(nb + 1)〉〈(na + 1)(nb − 1)|
+(C∗5C2)|(na + 1)(nb − 1)〉〈(na − 1)(nb + 1)|+ (C∗1C9 + C∗3C11)|(nb + 1)na〉〈(na + 1)nb|
+(C∗9C1 + C∗11C3)|(na + 1)nb〉〈(nb + 1)na|+ (C∗4C7 + C∗6C12)|na(nb − 1)〉〈nb(na − 1)|.
+(C∗7C4 + C∗12C6)|(na − 1)nb〉〈(nb − 1)na| (14)

Now, we need an entanglement measure to study the dynamics of entanglement. The
Linear entropy is a suitable criterion which gives the amount of entanglement for the system.
In particular, we want to calculate the dynamics of entanglement between the mechanical
parts. The higher (lower) entropy, implies the greater (smaller) degree of entanglement.
Thus, we are reasonably interested in the calculation of the time evolution of linear entropy
of the system. This quantity for moving mirrors reads as Sp(t) = 1− Trρ2

p(t) which is:

Sp(t) = 1− (|C0|2 + |C8|2 + |C10|2)2 − (|C1|2 + |C3|2)2 − (|C9|2 + |C11|2)2

−(|C4|2 + |C6|2)2 − (|C7|2 + |C12|2)2 − 2|C∗4C7 + C∗6C12|2 (15)

−2|C∗1C9 + C∗3C11|2 − |C5|4 − 2|C2|2|C5|2 − |C2|4

If Sp = 0, subsystem states are totally separable, while there exist some degrees of entan-
glement between parts of subsystems in the case Sm > 0.

Another important characteristic for the photon (phonon) statistics of the quantized
oscillation is the Mandel’s Q parameter which is defined as follows [13]:

Qi =
〈n2

i 〉 − 〈ni〉2

〈ni〉
− 1 (16)
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in which i stands for the mechanical modes c1 and c2 or for photon nubmers a and b.
The quantum statistics of subsystem i is sub-Poissonian if Q < 0 which is a non-classical
state. For values Q = 0 and Q > 0 subsystem is Poissonian and super-Poissonian statistics,
respectively. The Q-value can be calculated easily through the density matrix (14).

Now, we have two different robust measuring tools for evaluating the dynamics of en-
tanglement. We can pay attention to the problem of optimization of the system parameters
for the best performance of an intended feature in the system which can be occurred by the
entanglement dynamics.

3 The entanglement dynamics

There are several environmental parameters in our system. The most important parameters
are photon-photon fields coupling λ and photon-phonon coupling G. Figure 2 demonstrates
time evolution of linear entropy (S) and the Mandel’s parameter (Q) for different values
of coupling parameters. This figure clearly shows that two distinct behaviours may occur
according to selected values for system parameters, especially couplings G and λ. The peri-
odic transition of energy between electromagnetic fields of cavities and mechanical vibration
of moving mirrors can be established with balanced values of coupling parameters. Peri-
odic evolution of linear entropy (as well as the Mandel parameter Q) occurs when G > λ.
This means that, if photon-phonon coupling (G) becomes larger than the electromagnetic
coupling between subsystems (λ), we expect to find a bidirectional information transfer be-
tween subsystems. It may be noted that, for larger values of G, amplitude of oscillations
decreases. Figure 2 shows that amplitude of oscillations for λ = 0.7 and G = 0.72 is greater
than that for G = 1.0 with the same value for the λ. Our numerical calculations show that
for G < 0.67, S and Q monotonically go toward a fixed value which depends on the other
system parameters. It may be noted that the Q value are always negative, which demon-
strates the quantum nature of the system statistics. According to figure 2 one can find that
the linear entropy S is more sensitive measure than the Q value. Please see the amplitude
of oscillations S and Q as the parameter G is changed. The amplitude of Oscillation in the
linear entropy is greater than that for the Mandel’s parameter Q.

Figure 3 shows the same plots as figure 2 but with λ = 0.5. Comparing figures 2
and 3 indicates that, entanglement transfer between the system parts is strongly damped
with smaller values of coupling coefficient for electromagnetic part (low quality cavities
and/or weak cavity coupling). So, according to the required application, we can design the
system in oscillating or damping situations. For larger (smaller) entanglement, we can design
the system in larger (smaller) photon-phonon and photon-photon couplings, by considering
this issue that larger coupling leads the system toward the oscillating regime. We have
numerically found the maximum linear entropy S for different values of system parameters
which results have appeared in figure 4. In each plot for a specified value of λ, the linear
entropy is constant (respect to time) for values of G within the increasing part of the curve,
while it is oscillating for decreasing part of the plot. As an example, for the λ = 0.70, the
maximum value of the S occurs with G = 0.70. The profile of linear entropy for G = 0.72
is oscillatory while we have a monotonic curve with G = 0.67. It should be indicated that,
there is not a sharp separation point for these two behaviours and it is better to speak about
two overlapping regions.

The entanglement is transferred between different parts of the system by photons. Figure
5 demonstrates the effects of electromagnetic field strength (indeed number of photons)
on the time evolution of the entanglement. It is clear that, in the absence of photons,
entanglement transfer by the vacuum energy is very small. On the other hand, strong
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Figure 2: Time evolution of linear entropy S and Mandel’s parameter Q for different values of G with
na = nb = n1 = n2 = 1 and λ = 0.7.

Figure 3: Time evolution of linear entropy S and Mandel’s parameter Q for different values of G with
na = nb = n1 = n2 = 1 and λ = 0.5.
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electromagnetic field (i.e. large number of photons) critically change quantum effects in the
system, as we can find from figure 5. Comparing the behaviour of linear entropy (and the
Mandel’s parameter) for na = 1 and na = 2 (for example) shows that creating a requested
behaviour in the system is possible through fine tuning of couplings λ and G together
with the suitable strength of electromagnetic fields in both cavities. Indeed, our numerical
calculations show that, the same behaviour is observed for the number of photons in the
other cavity (nb).

Figure 4: Maximum linear entropy S for different values of photon-photon and photon-
phonon couplings with n1 = n2 = na = nb = 1.

As the final comment, it is interesting to look at the variation of maximum linear entropy
as functions of coupling λ. Figure 6 presents the maximum entropy respect to coupling λ
with n1 = n2 = na = nb = 1 and different values of coupling G. This figure indicates
that, the maximum entropy in all cases can be obtained with maximum accessible value of
coupling G, but not necessarily with maximum value of λ. Indeed, coupling λ should be
taken by considering the strength of electromagnetic fields and also mechanical vibration
modes in the system.

4 Conclusion and Remarks

Dynamical evolution and entanglement exchange in optomechanical parts of a quantum
gravimetry setup have been studied. The effects of system parameters: photon-photon
coupling, photon-phonon coupling, electromagnetic field strength, and mechanical vibration
modes, on the behaviour of entanglement in the system have been investigated, using lin-
ear entropy and Mandel’s parameter. We have found that two different trajectories can be
appeared in the time evolution of entanglement, respect to have taken the values of system
parameters. Entanglement may oscillate between electromagnetic and mechanical modes of
the system, or it is possible that entanglement monotonically transfers into the mechanical
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Figure 5: Time evolution of linear entropy S and Mandel’s parameter Q for different values
of electromagnetic field in cavity 1 (na) with nb = n1 = n2 = 1, λ = 0.7 and G = 0.72.

Figure 6: Linear antropy S as functions of λ with different values of G. Initial values for
photons and phonons are n1 = n2 = na = nb = 1.
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modes and the system goes to a stationary state. Both situations can be used in a quan-
tum system, according to the considered role for the optomechanical part in the network.
For a typical initial condition, we numerically calculated the maximum linear entropy (and
Mandel’s parameter) for different values of system parameters. We found that, for the max-
imum attainable value of photon-photon coupling (cavity quality) and field strength, there
exists an optimal value for photon-phonon coupling, which is not necessarily its maximum.
We have studied the effects of electromagnetic field strength and also mechanical modes
on the quality of information swapping, its maximum value and the dynamical evolution of
quantum entanglement. It is shown that quantum properties of the system disappears if
the electromagnetic field (number of photons) is too large. However, in the absence of the
electromagnetic field in the cavity, quantum properties are also weak.

There are several complementary investigations that should be done. We have not consid-
ered dissipative effects in our system. Due to technical limitations, disorders and disruptive
in the system play crucial role and therefore, we have to consider such issues to find the
actual behaviour of the system. We have not considered feedback effects which may happen
in quantum networks. We have not included the non-Markovian process and related dynam-
ics of the equation of motion, which can be considered to find more accurate entanglement
measures. These problems can be investigated in further works.
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