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Abstract. In this work, we review the formalism which would allow us to model
magnetically deformed neutron stars. We study the effect of different magnetic field
configurations on the equation of state (EoS) and the structure of such stars. For
this aim, the EoS of magnetars is acquired by using the lowest order constraint varia-
tional (LOCV) method and employing the AV18 potential. We show how the magnetic
field varies from the surface to the center of neutron star by using various exponential
and polynomial profiles and compare their results. In addition, global properties of
neutron stars are obtained within two formalisms. The first formalism is described
by considering the pressure into two directions and the deformation of neutron stars
is governed by anisotropies in the equation of state. The second formalism for in-
vestigating macroscopic properties of magnetars is gained by treating the nonuniform
pressure as a perturbation to the total pressure and expanding metric and pressure up
to the quadrupole term in spherical harmonics. Afterwards, we include three nucleon
interactions (TNI) to the EoS and apply this model to represent our results for both
exponential and polynomial magnetic field profiles. The maximum gravitational mass
is obtained in the range of (1.71-1.80) M� and (2.13-2.19) M� for the EoS without and
with TNI contribution, respectively.
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1 Introduction

There is a growing interest in new classes of young neutron stars known as magnetars [1,
2], namely, the anomalous X-ray pulsars, the soft γ-ray repeaters and more recently, the
repeating fast radio burst [3]. Observational data indicate that the magnetic field on the
surface of magnetars can be as strong as 1014 − 1015 G, which is three orders of magnitude
larger than the one in standard neutron stars. While such observations only constrain the
surface magnetic field, there is no way to measure the internal magnetic field. Moreover,
due to the scalar Virial theorem, the magnetic field in the core of magnetars can reach
values larger than 1018 G [4]. Despite the great theoretical effort of the last forty years,
the exact mechanism to generate such high magnetic field is yet to be known but the first
hypothesis is that the fields may be inherited from the progenitor star and amplified during
the gravitational collapse due to the magnetic flux conservation [5]. Another hypothesis is
that the plasma of a protoneutron star rotates rapidly and the magnetic field amplifies. The
magnetohydrodynamic (MHD) dynamo mechanism is the most accepted theory to define
the magnetic field of the magnetars [1]. Current information of 29 magnetars is available
in magnetar catalog and it is estimated that magnetars constitute approximately 10% of
neutron star population [6, 7].
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After the discovery of magnetars, a large amount of research has been done on the
issue of how magnetic fields modify the microscopic structure (represented in the equation
of state) and the macroscopic structure (obtained from the solution of Einstein-Maxwell
equations) of neutron stars [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. In order to include
the effects of magnetic field on the EoS, a profile for the strength of the field has to be
defined. Since, there is no information directly available on the interior magnetic field of
the neutron star, different configurations have been employed to simulate the variation of
the field. Many authors [11, 14, 19, 20] employed an exponential baryon number density-
dependent parameterization which was proposed twenty years ago by Bandyopadhyay [21],
where the magnetic field profile is given by,

B = Bs +Bc

[
1− exp(−β(

ρ

ρ 0

)γ)

]
(1)

with two free parameters β and γ. In this parameterization, Bs and Bc are the magnetic
fields on the surface and the center of the neutron stars and ρ0 is the nuclear saturation
density.

Moreover, with the purpose of reducing the number of free parameters from two to one,
Lopes and Menezes [22] proposed another profile, which depends on the energy density
rather than on the baryon number density,

B = Bs +Bc(
εM
εc

)γ (2)

where εc is the central energy density of the maximum mass nonmagnetized neutron star,
εM is the energy density of the matter alone and γ is any positive number.

In addition, Dexheimer et al. introduced a variable magnetic field as a function of the
baryon chemical potential [23],

B = Bs +Bc

[
1− exp(b

(µB − 938)a

938
)

]
(3)

with a = 2.5, b = 4.08× 10−4 and µB given in MeV. This profile avoids a phase transition
induces a discontinuity in the effective magnetic field.

The primary challenge for simulating the magnetic field profiles is maintaining the
divergence-free constraint of the field. However, as already pointed out by Menezes and
Alloy [24], such ad hoc exponential formulations for magnetic field profiles do not fulfill
the ”no-monopoles” constraint. Therefore, Dexheimer et al. suggested that magnetic fields
increase slowly with increasing baryon chemical potential of magnetized matter. More pre-
cisely, they declared that the increase is polynomial instead of exponential and the shape of
the profile is well fit by a quadratic polynomial [25],

B =
(a+ bµB + cµ2

B)

(Bec )2
µ (4)

where a, b, c are coefficients determined from the numerical fit, µ is the dipole magnetic
moment and Bec = 4.414× 1013 G is the electron critical field.

Recently, Chatterjee et al. [26] proposed a ”universal” eighth-order polynomial fit for
the magnetic field profile as a function of stellar radius, obtained from a full numerical
calculation of the magnetic field distribution,

B = Bc × (1− 1.6x2 − x4 + 4.2x6 − 2.4x8) (5)
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where x = r
rmean

is the ratio between the radius r in Schwarzschild coordinates and the stars
mean radius.

In order to develop a formalism that describes magnetars in general relativity frame-
work, it is necessary to solve the coupled Einstein-Maxwell equations. The equilibrium of
spherically symmetric, nonrotating neutron stars is governed by the TOV equations, that
follow from the Einstein equations with an isotropic energy-momentum tensor of the form:
diag(ε, p, p, p). However, the energy-momentum tensor of the magnetic field is anisotropic:

diag(B
2

8π ,
B2

8π
B2

8π ,−
B2

8π ) and the TOV equations are not valid for this situation. Anisotropy
of magnetic pressure causes deformations in neutron stars; hence, the stellar macroscopic
structure needs a general two-dimensional (2D) treatment. The multipole deformation of
magnetized Newtonian stars was investigated by Chandrasekhar & Fermi [27] and Ferraro
[28]. The fully general relativistic approach was developed numerically by Bonazzola et
al. [29] and was applied by Bocquet et al. [30] and Cardall et al. [31], to investigate the
effects of magnetic field on the structure of neutron stars. They solved general relativis-
tic equations exactly for a dipolar magnetic field. This formalism was applied for either
poloidal [30, 32, 33] or toroidal [34, 35] magnetic fields and was employed to describe quark
stars [36], hybrid stars [17] and hyperon matter [18]. An analytic and semianalytic solutions
for the deformation of the magnetars were proposed by many authors [32, 37, 38, 39, 40, 41],
where the perturbation of the metric was carried out.

In this work, we employ three different magnetic field profiles and study the effects of
these various configurations on the EoS and structure of neutron stars. We find out the
EoS of magnetized neutron matter using the lowest-order constraint variational (LOCV)
method [42] without and with TNI [43] contribution. In addition, the influences of different
magnetic field configurations on the global properties of neutron stars are investigated within
two perturbed metrics.

The plan of this paper is as follows. In Sect. 2, different magnetic field profiles is per-
formed. In Sect. 3 we outline the formalism used to study the structure of deformed neutron
stars. Additionally, the impact of various magnetic field configurations with different param-
eterization is found out on the gravitational mass and deformation of magnetars. Conclusions
are summarized in Sect. 4.

2 Different magnetic field profiles

Since neither the analytical data nor the observational data contains information about
the variation of the magnetic field in neutron star interior, three different field profiles are
performed in this section and their results are compared. These profiles are proposed in the
form of exponential baryon number density-dependent magnetic field (P1), energy density-
dependent magnetic field (P2) and polynomial baryon number density-dependent magnetic
field (P3),

P1 : B(ρ) = αBec + α× 104Bec

[
1− exp(−β(

ρ

ρ 0

)γ)

]
P2 : B(ε) = αBec + α× 104Bec (

εM
εc

)γ

P3 : B(ρ) = 104Bec (1 + α

[
β(
ρ

ρ 0

)γ − 1

2
(β)2(

ρ

ρ 0

)2γ
]
) (6)

where εc = 39.579× 1014 g
cm3 and α = 5 is the field intensity. In this literature, we compare

the results of different profiles by employing several sets of β and γ as arbitrary parameters.
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In Fig. 1, we have plotted three configurations of magnetic field for different parameter-
ization of β and γ. It is evident from the figure that although both P1 and P2 prescriptions
have an exponential form, the P1 profile reaches the maximum value of the magnetic field in
lower densities. We should notice that the magnetic field increase in the polynomial profile
is significantly less than in the exponential ones. To describe this effect quantitatively, the
corresponding magnitudes of the magnetic field in the surface and center of magnetars, are
collected in Tab. 1.

The magnetic field in the radial direction can be obtained for the maximum mass con-
figuration from the TOV solution where r runs from the center to the surface of the neutron
star. The profiles are displayed as a function of the star’s radius in Fig. 2.

3 Structural properties of magnetars

In this section, we review different formalisms normally used to describe the structure of
magnetars and compare their results. For this purpose, we develop three different metrics
that aim to define how magnetic field modify global properties of neutron stars.

The first formalism (M1) is obtained by considering spherically symmetric static distri-
butions of matter which its line element is given by [44],

M1 : ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2θdφ2) (7)

where ν and λ are shown in the geometric unit (c = G = 1) by

dν

dr
= − 2

εm + pm

dp

dr
, (8)

eλ = (1− 2m(r)

r
)−1. (9)

In these equations, the contribution of the electromagnetic field (B
2

8π ) is directly summed to
the energy density and pressure of the matter as,

ε = εm +
B2

8π
, p = pm +

B2

8π
(10)

where the subscript m stands for the matter contribution of the EoS. For this solution, the
magnetic field profile is added isotropically to the EoS, but the field contribution should enter
with different signs in different directions in the energy-momentum tensor. Therefore, the
TOV solution is not correct; however, this is a frequently used assumption in the literatures
and the TOV results are mentioned only for comparison.

Moreover, it is important to notice that anisotropy in pressure, which breaks the spher-
ical symmetry of the system results in two-dimensional treatment. To clarify more, we
should define distinct pressure gradients in the polar and equatorial directions that cause
deformation in the neutron stars. We introduce the perpendicular and parallel pressures

with respect to the direction of magnetic field as p⊥ = pm + B2

8π and p‖ = pm − B2

8π . In
order to model deformation due to the a non-isotropic equation of state, one must have
hydrostatic equilibrium equations both in the radial and polar directions. For this aim, the
geometry of the system is descibed by the metric M2.

M2 : ds2 = −e2λdt2 + e−2λ[e2ν(dr2 + dz2)

+ r2dφ2] (11)
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Hence, the hydrostatic equilibrium equations modify to the four coupled sets of ordinary
differential equations for our two dimensional parameterized model.

∂p‖

∂z
= −

(ε+ p‖)(
z
2 + 4πz3p‖ − z

2 (1− 2M(r,z)
z ))

z2(1− 2M(r,z)
z )

, (12)

∂p⊥
∂r

= −
(ε+ p⊥)( r2 + 4πr3p⊥ − r

2 (1− 2M(r,z)
r ))

r2(1− 2M(r,z)
r )

, (13)

dm‖

dz
=

4

3
πr2ε, (14)

dm⊥
dr

=
8

3
πrzε. (15)

These equations are coupled together with the gravitational mass M(r, z) = m⊥ +m‖. For
more details see Ref. [41].

And finally the third formalism (M3) is obtained by formulating the general metric as
a multipole expansion around spherically symmetric space-time [38] similar to the method
developed by Hartle and Thorne [45, 46] for slowly rotating neutron stars.

M3 : ds2 = −eν(r) {1 + 2 [h0(r) + h2(r)P2(cosθ)]} dt2

+ eλ(r)
{

1 +
eλ(r)

r
[m0(r) +m2(r)P2(cosθ)]

}
dr2

+ r2 [1 + 2k2(r)P2(cosθ)] (dθ2 + sin2θdφ2), (16)

where P2(cosθ) is the Legendre polynomial of order 2 and h0, h2,m0,m2 and k2 are second
order corrections which correspond to deviation from spherical shape. The pressure p can
also be expanded in multipoles as,

p = pm + [p0 + p2P2(cosθ)] , (17)

where p0 = 1
3 (B

2

8π ) is the monopole contribution and p2 = − 4
3 (B

2

8π ) is the quadrupole con-
tribution of the magnetic pressure. From the Einstein equations, we can obtain unknown
functions h0, h2,m0,m2 and k2 [47].

The gravitational mass (M), the equatorial radius (Re) and the polar radius (Rp) of the
deformed magnetar can be determined by the following equations [45, 46],

M = M0 +m0, (18)

Re = R+ ξ0(R)− 1

2
[ξ2(R) +Rk2] , (19)

Rp = R+ ξ0(R) + [ξ2(R) +Rk2] , (20)

where M0 is the mass for matter term and m0 is an additional mass due to magnetic term;
R is the radius of the spherical star and ξ0 and ξ2 are given by [45],

ξ0(r) =
r2
[
1− 2m(r)

r

]
[4πr3pm +m(r)]

h0, (21)
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ξ2(r) =
r2
[
1− 2m(r)

r

]
[4πr3pm +m(r)]

h2. (22)

In order to solve the hydrostatic equations and find out the mass-radius relation in
neutron stars, we use the LOCV method for describing the EoS.

In the following, we briefly obtain the energy density of magnetized neutron matter
using the LOCV method with the modern AV18 two-body potential. It is important to note
that in this literature β-stable matter is approximated by the pure neutron matter. This
approximation is also used in some other studies [47, 48, 49, 51, 52, 50]. The Helmholtz free
energy, F [53] should be calculated in order to gain the magnetic properties, equilibrium
state and the pressure, pm, of the system at the external magnetic field,

F = E −BM, (23)

pm = ρ2
∂F

∂ρ
.

in this equation, M is the magnetization given by,

M =
1

N

∫
mdV, m = µnρδ, (24)

where µn = −6.0307738 × 10−18 MeV/G is the neutron magnetic moment, and E is the
total energy per particle of spin polarized neutron matter calculated by the LOCV method.
In this method, we consider a trial many-body wave function of the form ψ = Fφ, in
which φ is Slater determinant of the plane waves and F = F(1 · · ·N) is a proper N-body
correlation operator which can be replaced by a Jastrow form i.e., F = S

∏
i>j f(ij), where

S is a symmetrizing operator. In addition, we consider the cluster expansion of the energy
functional up to the two-body term [54],

E([f ]) =
1

N

〈ψ|H|ψ〉
〈ψ|ψ〉

= E1 + E2· (25)

The smallness of the three-body cluster energy has been discussed in [42, 55], where it is
shown that our cluster expansion converges reasonably and it is a good approximation to
stop after the two-body energy term.

For the neutron matter, the one-body term E1 is,

E1 =
∑
σ=↑,↓

∑
k≤kF σ

~2k2

2mn
, (26)

where kF
σ = (6π2ρσ)1/3 is the Fermi momentum of each component of the system and mn

is the neutron mass. The two-body energy E2 is,

E2 =
1

2N

∑
ij

〈ij |ν(12)| ij − ji〉, (27)

where

ν(12) = − ~2

2mn
[f(12), [∇2

12, f(12)]] + f(12)V (12)f(12). (28)

Here, f(12) and V (12) are the two-body correlation and potential. In our calculations, we
have used the AV18 two-body potential. For more details of our calculations, see Refs. [56,
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57, 58]. We have also added the contribution of TNI to AV18 two-body potential [59]
and compare the microscopic and macroscopic properties of magnetars without and with
inclusion of TNI contribution.

Fig. 3 shows the equation of state of neutron matter for different magnetic field config-
urations and different parameterization of β and γ without TNI contribution. For non-zero
magnetic field the pressure splits into the parallel and perpendicular components, which are
increasing functions of density. Moreover, for P2 and for γ > 1, we obtain a parameter free
model.

We have summerized the global properties of magnetars for different magnetic field pro-
files and different approaches in Tab. 1. In this table, the parameters such as the values
of magnetic field in the surface and center (B), the maximum gravitational mass (M), the

equatorial radius (Re) and the deformation constant (
Rp
Re

) are shown for different sets of β
and γ. It is clear that larger maximum mass is obtained by using P1 prescription for all
metrics, while for P2 and γ > 1, all macroscopic properties are approximately the same.
For P3 smaller values of deformation constant are obtained which indicates that the star
gets more oblate. The parameters listed in this table is constained by the EoS without TNI
contribution

We have displayed the mass-radius relation in Fig. 4 for three different hydrostatic equi-
librium equations obtained from M1, M2 and M3 and for the EoS without TNI contribution.
We have chosen one set of β and γ for each profile. Regarding to polynomial profile, the
parallel pressure is negative up to densities about (0.3 − 0.4)fm−3 because of strong mag-
netic field on the surface of the star. Therefore, the figure of polynomial profile for M3 is
plotted for gravitational mass greater than 0.6M�.

Finally, the gravitational mass as a function of equatorial radius for the EoS including
TNI, is plotted in Fig. 5. The EoS of neutron matter with TNI contribution is also merged
in this figure. In this figure, we have chosen one set of β and γ for the third formalism (M3)
and for the P1 and P3 profiles. We obtain maximum gravitational mass of (2.17− 2.18)M�
[(2.13 − 2.19)M�] for 2-dimensional (M3) [TOV (M1)] solutions. An analogous analysis
performs that gravitational mass is smaller for the polynomial profile P3 rather than the
exponential profile P1. Very recently, Cromartie et al. [60] found in PSR J0740+6620 a
super-massive NS with a mass about MNS = 2.14±0.10M�, which renders strong constraint
on the neutron star interior EoS. Therefore, we do require a stiff EoS which yields into greater
maximum gravitational mass. It is obvious from Fig. 5 that the EoS is stiffer with inclusion
of TNI contribution and the results of maximum gravitational mass is more in agreement
with the observational data.

4 Summary and Conclusions

In the present paper, we investigate the effects of magnetic field on neutron stars properties.
For this aim, we introduce three different magnetic field distributions and show how the
magnetic field varies from the surface to the center of neutron stars.

In addition, we review different formalisms which define the effects of magnetic field on
global properties of neutron stars. The magnetic field causes an anisotropy in pressure which
breaks the spherical symmetry of the system and results in two-dimensional treatment. A
comparison for magnetic neutron stars is carried out by solving the TOV equations (Adding
the pure magnetic field contribution isotropically to the EoS) and the two-dimensional cal-
culations (considering the magnetic pressure as perturbation). One can acquire that the
corresponding gravitational mass calculated from the TOV solution is approximately larger
than those of deformed solutions, while the equatorial radius obtained from the deformed
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solutions is usually greater than the isotropic radius of TOV result. We should explain that
if we use spherical metric to describe the structure of neutron stars, we will incorrectly gain
stable stars with larger mass. On the other hand, when we follow the perturbed metric,
only some of the field effects leads to an increase in the mass of the magnetars, while some
of the magnetic pressure components generate the stellar deformation.

At last, the EoS and the structure of neutron stars is calculated by adding the contribu-
tion of TNI to AV18 two-body potential. This stiff EoS leads to more massive star which is
in agreement with the recent observations.
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Figure 1: magnetic field profiles for different sets of β and γ.
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Figure 2: log(B) as a function of the stellar radius for different profiles. These results are
obtained for the maximum mass configuration of the TOV solution.
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Figure 3: EoS of neutron matter for different sets of β and γ. The pressure of zero magnetic
field is shown by filled line and the lines above this line are perpendicular pressure and the
lines below this line are parallel pressures.
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Figure 4: Mass-radius relations of magnetars for M1, M2 and M3 approaches and different
field profiles.
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Figure 5: Mass-radius relations of magnetars for P1 and P3 field profiles and for M3 ap-
proach. The EoS of neutron matter is obtained by including TNI contribution. Results of
EoS is merged in this panel.


