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Abstract. We studied the alpha-alpha particle scattering (αα) with halo Effective
Field Theory (hEFT) as well as halolike systems. In this paper, we considered α − α
elastic scattering in s-wave state at the very low energy. Because of the unnaturally
large scattering length of aαα, it is considered as a halo system. We defined the la-
grangian of this system and then calculated the T-matrix for the scattering amplitude
at leading order by using of the Feynman diagrams. For the α − α elastic scattering
at energy about 0.29 MeV, the total cross section that with this approach has been
calculated will be σt ' 16.0226 mb.
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1 Introduction

The radiative capture at the very low-energy involves the many-body systems for the studies
of the stellar structure and the big-bang nucleosynthesis. This fact that these reactions are
too dicult to evaluate, makes them even more interesting from the standpoint of a nuclear
physics theorist. The accurate cross-section predictions are the important input for the
nucleosynthesis forming and in the solar-fusion procedures these reactions occur at the low
energies. Consequently, the studies for determination of accurate cross sections for the
radiative capture reactions have a mutual partnership between the nuclear experiment and
nuclear theory. In this regard, experimental nuclear physics can only measure some hundred
keV, while the theoretical nuclear physics can provide good models for the extrapolation
of the data. When the captured nucleus is an Alpha, the cross section is exponentially
repressed at the very low energies due to the propulsive coulomb barrier. For this reason,
low-energy experimental investigations of these types of reactions are extremely difficult and
it is required to be developed by numerical codes. Unfortunately, it has not been investigated
enough in literature.

Reactions such as the scattering of alpha particles (4He), the triple-alpha reaction, and
alpha capture pretend a significant role in stellar nucleosynthesis. Especially, alpha capture
on carbon affects the ratio of carbon to oxygen throughout helium burning, and influences
succedent carbon, neon, oxygen, and silicon burning phases. It also considerably influences
models of thermonuclear kind Ia supernovae, owing to carbon ignition in accreting carbon-
oxygen white-dwarf stars.

In these processes, the accurate calculation of the elastic scattering of alpha particles
and alpha-like nuclei-nuclei with equal numbers of protons and neutrons is important for
comprehending background and resonant scattering contributions. Nucleons have character-
istic momentums that are not large contrasted to the typical QCD scale of 1 GeV. At these

105



106 H. Khalili et al.

low momentums, QCD can easily be depicted by a hadronic theory including all possible
interactions steadfast with the QCD symmetries.

Effective field theory produces a controlled frame work for promoting the separation of
scales in the nucleuses. Effective field theory is established to give a perfect description
for interacting particles in terms of the quantum fields which can be stimulated below a
characteristic energy scale Λ [23]. One more important idea of effective field theory is to
identify the observables that are independent from any short-distance regulators. Such
regulators have to be introduced to distribute with the singularities that a low-momentum
expansion characteristically introduces.

One well-known example is that, the three-boson system (where unsuspecting dimen-
sional analysis implies the threebody interaction) should enter at N2LO. Another problem
that can occur in few-body systems is the semblance of artificial bound states in the two-
body subsystem at cutoffs larger than the breakdown scale.

For example, this occurs in the deuteron system when a chiral potential with a large
momentum-space cutoff is occupied. The systems that interact resonantly in a relative
P-wave are measured in halo effective field theory

The low-lying P-wave two-body resonance can fix the P-wave scattering length and ef-
fective range such that the two-body propagator reproduces this resonance. In any event,
the denominator of such a propagator is then an order-three polynomial, which implys that
additional two-body poles are present in the theory.

The halo effective field theory analysis of the Helium-6 system is one example for artificial
bound states that become an instantaneous problem.

The neutron-α interaction is resonant in the P-wave and the resulting two-body T-matrix
has three poles in the complex plane with one of them being unphysical. Halo nuclei have
become another field for the implementation of effective field theories. These are systems
of firmly bound cores with faintly bound valence nucleons that can be found close to the
neutron and proton driplines.

The halo effective field theory uses the ratio of the valence-nucleon separation energy
and the binding of the core as the expansion parameter for the low-energy effective field
theory expansion. The core and valence nucleons are the effective degrees of freedom used
within this approximation and the intricacy of the problem is meaningfully reduced.

An advantage of this approximation is that the uncertainties of the model can be me-
thodically reduced by including more terms in the low-energy expansion.

Degrees of freedom of higher energies are described by an expansion of the Lagrangian
in terms of local operators of growing dimensions. For the nucleon system at energies
under the pion mass mπ the effective theory will thus include only the nucleon field and
derivatives there of [23]. It is judgmental to formulate a power counting that justifies a
orderly truncation of the Lagrangian leading to observables with the requested severity.

Effective field theory is one of the most important tools for understanding of the light
nuclei formation in Big-Bang Nucleosynthesis (BBN). At very low energies ( QΛπ ), where pions
can be removed, nuclei structure can be described by pionless effective field theory, which
nucleons are degrees of freedom and be inserted as well as external current [2].

Nucleuses present a non-trivial challenge because one wants such a perturbative expan-
sion in addition to the non-perturbative treatment of particular leading operators, which
is needed by the existence of shallow bound states. By now, principally few-body systems
have been investigated within effective field theory. The effective field theories are estab-
lished to provide a perfect picture of interaction between particles in designates of only the
quantum fields theory which can be aroused under a distinctive energy scale Λ [23]. Degrees
of freedom of higher energies are depicted by an expansion of the Lagrangian in designates
of local operators of growing dimensions [23].
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Figure 1: One loop correction to the scattering amplitude of the nuclear interaction. The
solid black lines depict the alpha particles and the dark circles depict the nuclear interactions
regardless of the Coulomb interaction in the center of mass frame.

Here, we evaluate the observables for a system of nucleons at energies under the first
excitation energy of α particle, −7.1294 MeV [3, 4, 5, 6].

In an attempt regarding understanding alpha procedures from first principles, we describe
the first order computation of Coulomb effects of alpha-alpha scattering.

The paper is organized as follows: In the section 2, we describe briefly the formalism of
halo effective field theory, interactions two bodies system, T- matrix for the coulomb and the
coulomb-short interactions. We have calculated the total cross section of the α − α elastic
scattering in section 3. Summary and conclusions follow in section 4.

2 Formalism

In the latest years, there has been much promote in nuclear scattering and reactions in-
cluding light nucleuses. However, the calculative scaling for most numerical methods raises
significantly when the projectile nucleus has more than a few nucleons.

Hence, it abides a challenge to address important alpha procedures relevant for stellar
astrophysics such as 4He+4 He scattering and 12C +4 He scattering and radiative capture,
as well as carbon and oxygen burning in enormous star evolution and in thermonuclear
supernovae. The relative coordinates for a two body system can wrote using bare Green
function that is as below

Ĝ
(+)
0 (E) =

1

E − Ĥ0 + iε
. (1)

where M/2 is the reduced mass of the system and M is the mass of α particle also Ĥ0 =
p̂2/M and E = p2/M is the kinetic energy of system in the CM frame [11, 12, 13]. This
bare Green function is expressed in the momentum space using completeness relation as

Ĝ
(+)
0 (E) = M

∫
d3q

(2π)3

| q〉〈q |
p2 − q2 + iε

. (2)

The propagator of one separation distance, r to the other separation distance, r′ is

〈r′ | Ĝ0 | r〉 = G0(E; r′, r). (3)

Corresponding to the FIG. 1 both r and r′ are equal to zero for a loop diagram and we
can write

Ĝ0(E; 0, 0) =

∫
d3q

(2π)3

1

E − q2/M + iε
. (4)
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Figure 2: The integral equation of the Feynman diagrams of this interaction that demon-
strate Coulomb propagator as an infinite sum. The solid black lines depict the alpha particles
and the dashed lines demonstrate the photon exchange between the two alpha particles and
the shaded bubble demonstrate the Coulomb interaction between the two alpha particles.

But, the coulomb repulsive force in this problem as VC = z1z2e
2/4πr ;therefore, we define

the full Green function for the Coulomb interaction as

Ĝ
(±)
C (E) =

1

E − Ĥ0 − V̂C ± iε
. (5)

corresponding to the FIG. 2, the integral equation of photons exchange using Feynman
diagrams is as

Ĝ
(±)
C = Ĝ

(±)
0 + Ĝ

(±)
0 V̂CĜ

(±)
C . (6)

Now, the Schrodinger equation is (Ĥ − E) | ψ〉 = 0 where Ĥ = Ĥ0 + V̂C is the full

Hamiltonian and | ψ(−)
p 〉 and | ψ(+)

p 〉 are the incoming and outgoing relative wave functions
of system, respectively. These are functions using the eigenstates of the free Hamiltonian
are defined as

| ψ(±)
p 〉 = [1 + Ĝ

(±)
C V̂C ] | p〉 (7)

The normalization relation in the momentum space is

〈ψ(±)
p | ψ(±)

p′ 〉 = (2π)3δ(p− p′) (8)

After solving the Schrodinger equation, we have these relations for incoming and outgoing
wave functions respectively as below

ψ
(−)
p (r) = e−πη/2Γ(1− iη)M(iη, 1;−ipr − ip.r)eip.r (9)

ψ
(+)
p (r) = e−πη/2Γ(1 + iη)M(−iη, 1; ipr − ip.r)eip.r (10)

where η = αM/2p is the Sommerfield parameter and M(a, b; z) is the Kummer function.
Using Sommerfeld parameter only as a consequence of this relation, we can calculate the
probability of being in the zero separation distance, r = 0 or Sommerfield factor, as

C2
η =| ψ(±)

p (0) |2= e−πηΓ(1 + iη)Γ(1− iη) =
2πη

e2πη − 1
(11)
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Now we go back to the Coulomb Green function and the relation 〈r′ | Ĝ(+)
C | r〉 redefine

as below

〈r′ | Ĝ(+)
C | r〉 = M

∫
d3q

(2π)3

ψ
(+)
q (r′)ψ

(+)∗
q (r)

p2 − q2 + iε
(12)

the strong force insert in the problem; thus, we have a new hamiltonian as

Ĥ = Ĥ0 + V̂C + V̂S (13)

where V̂S is the short range potential (Strong interaction); thus, we have a new Green
function (the Coulomb-Strong Green function) as

Ĝ
(±)
SC =

1

E − Ĥ ± iε
(14)

Also, the new incoming and outgoing wave functions are [14, 15, 16, 17]

| Ψ(±)
p 〉 = [1 + Ĝ

(±)
SC (V̂S + V̂C)] | p〉 (15)

Using the mathematical union as A−1 −B−1 = B−1(B −A)A−1 we have

Ĝ
(±)
SC − Ĝ

(±)
C = Ĝ

(±)
C V̂SĜ

(±)
SC (16)

and eventually,

| Ψ(±)
p 〉 = [1 +

∞∑
n=1

(Ĝ
(±)
C V̂S)n] | ψ(±)

p 〉 (17)

here, we only consider the n = 1 case. But, in the two body system for the relative incoming
and outgoing momenta, the S-matrix elements are as

S(p′,p) = 〈Ψ(−)
p′ | Ψ(+)

p 〉 = (2π)3δ(p′ − p)− 2πiδ(E′ − E)T (p′,p) (18)

the T-matrix itself is as T (p′,p) = TC(p′,p) + TSC(p′,p) where

TC(p′,p) = 〈p′ | V̂C | ψ(+)
p 〉 (19)

is the Coulomb T matrix and

TSC(p′,p) = 〈ψ(−)
p′ | V̂S | Ψ(+)

p 〉 (20)

is the Coulomb-Strong T matrix. Eventually, the full coulomb part of T-matrix is

TC(p′,p) = −4π

M

∞∑
`=0

(2`+ 1)[
e2iσ` − 1

2ip
]P`(cos θ) (21)

where P` is the Legendre function of order `. The Coulomb-Strong part of T matrix is as
[18, 19, 20, 21]

TSC(p′,p) = −4π

M

∞∑
`=0

(2`+ 1)e2iσ` [
e2iδ` − 1

2ip
]P`(cos θ) (22)

where θ is the scattering angle in the center of mass frame and the coulomb phaseshift σ` is
equal to
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Figure 3: s-wave phase shifts at NLO and NNLO and comparison with experimental data
[28, 29, 30, 31].

σ` = argΓ(1 + `+ iη) =
1

2i
ln[

Γ(`+ 1 + iη)

Γ(`+ 1− iη)
] (23)

It should be stressed that the phaseshift δ` is not the same as one would have in the
failure to appear of the Coulomb interaction. But, it can be immediately measured from
the experimental differential cross sections (FIG. 3) [28, 29, 30, 31].

In our situation, the strong interaction potential VS = C0δ(r) and will solely affect s-wave
amplitude which we symbolize by TSC(p) here C0 is the first order nuclear coupling constant.
The approximation is straightforward and can also be implemented in other non-relativistic
field theories [23].

The phenomenological consequential quantities in these systems are the scattering lengths
and effective ranges. This approximation should be put on a firmer basis or replaced by a
more direct method, possibly in coordinate space [23].

3 Results

We have demonstrated that Coulomb effects in α − α scattering and other hadronic
systems at not high energies can be calculated methodically in a non-perturbative method
based immediately on the full Coulomb propagator within the effective field theory of Ka-
plan, Savage and Wise for nucleons. We used the mathematical code and numerical values of
physical parameters and below the relations are done numerical solutions of the T-matrix for
coulomb and strong interaction and the cross section of alpha-alpha elastic scattering. These
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Figure 4: The demonstration of σC for this reaction with respect to the energy in the center
of mass frame(` = 0).

T-matrixes are calculated by considering the halo Effective Field Theory for this scattering
at low energy. The relation for the differential cross section is [23]

dσ

dΩ
=| f(θ) |2 (24)

where f(θ) is the scattering amplitude that here is equal to s-wave T-matrix. The momentum
of the center of mass of α− α system is [22, 23, 24].

p =
√
ME. (25)

Using below relation [25, 26, 27]

σtot =

∫
dσ

dΩ
dΩ. (26)

and calculation of this integral using previous relation, we can calculate the total cross
section of the low energy α− α s-wave elastic scattering. In the s-wave state, T- matrix is

T `=0
C = −4π

M
[
e2iσ0 − 1

2ip
]. (27)

T `=0
SC = −4π

M
e2iσ0 [

e2iδ0 − 1

2ip
]. (28)
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Figure 5: The demonstration of σSC for this reaction with respect to the energy in the center
of mass frame(` = 0).

We demonstrate σC in the FIG. 4 for this reaction with respect to the energy in the
center of mass frame. In this figure, it has been shown that cross section is decreasing with
increase energy. Also, we demonstrate σSC in the FIG. 5 for this reaction with respect to
the energy in the center of mass frame.

In this figure, has been shown T-matrix and cross section of strong interaction are max-
imum at 0.29 MeV and then is decreasing. Eventually, in the FIG. 6 we demonstrated σt
using T `=0 = T `=0

C +T `=0
SC relation for this reaction and because strong interaction is bigger

than coulomb interaction then total cross section is similar to strong cross section. As seen
in FIG. 6 we obtain using the strong and the Coulomb forces that leading to a narrow res-
onance at an energy of about 0.29 MeV that in this energy the total cross section is equal
to (see TABLE. 1)

σt ' 16.0226 mb. (29)

This approach plainly implements also to the other processes like π+p or π+π+ elastic
scattering at not high energies where repulsive Coulomb interactions are prominent. The
only adaptation needed is to replace the mass M/2 with twice the reduced mass m =
m1m2/(m1 +m2) where the scattered particles have not the same masses. Correspondingly
, for elastic scattering in channels like π−p or π−π+ where the Coulomb force is attractive,
it also takes the same type [23].
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Figure 6: The demonstration of σt for this reaction with respect to the energy in the center
of mass frame(` = 0).

4 Discussion

Procedures including alpha particles and alpha-like nucleuses comprise a major part of stellar
nucleosynthesis and hypothesized mechanisms for thermonuclear supernovae. We investigate
(αα), the two-alpha-particle system, in halo effective field theory for halolike systems. The
approximation is uncomplicated and can also be implemented in other non-relativistic field
theories. When the captured nucleus is a Alpha, the cross section is exponentially repressed
at the very low energies due to the propulsive coulomb barrier. For this reason, low-energy
exprimental investigations of these types of reactions are extremely difficult.

The phenomenological important quantities in these systems are the scattering lengths
and effective ranges. This approximation should be put on a firmer basis or replaced by a
more direct method, possibly in coordinate space [23]. In this work, we consider the low
energy α− α elastic scattering in s-wave state. Because of the unnaturally large scattering
length, aαα, for a such system, it is considered as a halo system. We do it using halo Effective
Field theory. First, we define the lagrangian of this system and then using Feynman rules
and diagrams calculate the T-matrix; finally, calculate the cross section for elastic scattering
in a such system.

As seen in FIG. 5, we obtain using the strong and the coulomb forces that arrives to a
narrow resonance at an energy of about 0.29 MeV that in this energy the total cross section
is equal to 16.0226 mb. This problem deserves further investigation.
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Table 1: Comparison between results by considering the coulomb and short range interaction
and the total cross section.

Ecm(MeV) σc(mb) σsc(mb) σt(mb)
0.20 1.5349 19.3394 13.1819
0.29 0.8122 17.7986 16.0226 (Max)
0.40 0.4563 11,8955 12.9337
0.60 0.2152 2.6688 4.001
0.80 0.1248 0.05321 0.3370
1.00 0.0813 0.2625 0.0530
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