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Abstract. In this paper, we investigate the influence of the magnetic field and the
temperature gradients on the stability of a spherical cloud. Observational data confirm
a power-law relation between the magnetic field and the gas density. Here, we study
the stability of a magnetized cloud with a toroidal magnetic field and the polytropic
equation of state. We find that density and mass profiles of the modified clouds are
departed from the non-magnetized isothermal case. As the result, the critical mass,
radius and density contrast at the onset of the gravitational instability differ from the
critical Bonnor-Ebert mass and its critical radius and density contrast. Thus, both the
magnetic field and the temperature gradients play important roles in the structure of
the cloud. Furthermore, the cloud critical mass is increased for the higher values of
the polytropic exponent, irrespective of the values of the magnetic to thermal pressure
ratios or the field gradients. Different values of the magnetic field gradient and strength
change the values of the critical density contrast and radius of the cloud; however, both
of them fade their importance in the values of the critical mass.
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1 Introduction

Stars are born in dense regions of molecular clouds when the pulling force of gravity overtakes
the opposing forces. These dense regions mostly give birth to low-mass stars which compose
a significant amount of the total visible mass in galaxies. The low-mass star-forming dense
regions with temperatures of 7− 20K, comprise the mass of a few times the solar mass on
scales of a few tenths of a parsec, have been extensively studied through theoretical modeling
methods (e.g.,[1, 2, 3, 4]) and observational techniques (e.g.,[5, 6]), but much about these
mysterious entities is still unknown.

Half of the observed dense cores have already contained embedded stars (e.g.,[7]), while
the other ones are still starless (e.g.,[8]). It is now obvious that only a small fraction of the
interstellar medium gas turns into stars [9]. This situation is absolutely inherited from an
earlier stage, at the beginning of collapse process. Ebert (1955) [10] and Bonnor (1956) [11]
investigated the stability of an isothermal spherical cloud in a hydrostatic equilibrium, called
the Bonnor-Ebert sphere. A number of authors probed the stability of the modified Bonnor-
Ebert sphere, from seeking the effect of chemistry [12], or the non-isothermal effects [13, 14],
to finding the role of the ambient medium [15] on the core stability. Applying perturbation
to the stable clouds is also used to prob the hydrodynamic evolution of a starless cloud for
both the isothermal and non-isothermal clouds (e.g., [16, 17]), which showed that the cloud
would finally start a slow, quasi-static, contraction, in consistent with observational studies
[18]. In all the above-mentioned studies, the magnetic field effects were entirely ignored.
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Magnetic fields have been revealed in the interstellar medium through a variety of obser-
vational techniques, e.g., Zeeman effects, polarized dust emission, or maser lines measure-
ments, [19, 20, 21, 22]. Magnetic field plays an important role in the formation, stability
and evolution of molecular clouds (e.g.,[24]). A number of authors use a power-law relation
between the field strength and density (e.g.,[24]) which is parameterized as B ∝ ρn, where
n is a constant and the values of n . 0.5 are for the strong magnetic field [25], and n ≈ 2

3
is for the weak magnetic fields [26, 24].

Nejad-Asghar (2016) [27] investigated the effect of ambipolar diffusion heating, which
is important in bringing the cloud to the point of gravitational instability, on the non-
isothermal modified Bonnor-Ebert spheres and showed that the radius and mass of spheres
are affected by the temperature gradients. Gholipour (2017) [28] studied the effect of mag-
netic field on the stability of a spherical isothermal cloud, and concluded that the magnetic
field plays an important role in the structure of the cloud. He further extended this research
and studied the stability of isothermal spherical and cylindrical clouds in the presence of
the turbulent medium [29], and concluded that the shape of the clouds is important in the
cloud structure.

Molecular clouds are subjected to the heating and cooling processes [30, 31] and the
magnetic field of the interstellar medium [32]. Thus, to improve the understanding of the
cloud stability, the magnetic field and the non-isothermal effects should be included. In the
present paper, we study the effects of both the magnetic field and the temperature gradients
on the cloud stability. For this purpose, we probe the temperature gradients, for simplicity,
by a polytropic equation of state and use a power-law relation between the magnetic field
and the gas density to investigate the initial cloud stability. Here, for simplicity, the cloud
model is considered to be spherical; however, the real dense cores are most likely to have
prolate shapes [33], and the rotational effects are ignored.

For the model of this paper, the gas magnetostatic equations and their nondimension-
alization are introduced in section 2. Sections 3 gives numerical results. Finally, section 4
compares these results with other studies and gives conclusions.

2 Basic Equations

In this section, we consider a spherical cloud that maintains a magnetostatic equilibrium
through the forces of Lorentz, self-gravity and thermal pressure. Thus, the force balance
equation reads

−∇φ =
1

ρ
∇P +

1

4πρ
(∇×B)×B, (1)

where B is the magnetic field, φ is the gravitational potential, ρ is the density and P is the
gas pressure. The Poisson’s equation relates the gravitational potential and the gas density
as follows

∇2φ = 4πGρ, (2)

where G is the gravitational constant. The following integration over spherical shells of
radius r gives the cloud mass, M , as follows

M = 4π

∫ r0

0

ρr2dr, (3)

where r0 is the cloud outer radius. In the spherical symmetry, the magnetic field can be
described by poloidal, Bθ, and toroidal, Bφ, components. If the toroidal component is
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dominant (i.e., Bθ � Bφ)(e.g.,[34]), then the magnetostatic equilibrium equation (eq. 1)
becomes

dφ

dr
= −1

ρ

dP

dr
− 1

4πρ

Bφ
r

d

dr
(rBφ) . (4)

In spherical symmetry, the Poisson’s equation becomes

1

r2
d

dr

(
r2
dφ

dr

)
= 4πGρ. (5)

In this paper, the temperature gradient is regarded by a polytropic equation of state that
relates the pressure and density as follows

P = K ρ1+
1
n′ = K ργ , (6)

where K is a constant and n′ is the polytopic index. For simplicity, we set γ = 1 + 1
n′ ,

where γ is the polytropic exponent. We use a power-law relation between the magnetic field
strength and the gas density as follows

B = αρn, (7)

where n, the power-law exponent which indicates the field gradient, and α, the field strength,
are constants. We substitute the relations (6) and (7) into the equation (4), and find the
following relation

dφ

dr
= −

[
Kγργ−2

dρ

dr
+
α2ρ2n−1

4πr

(
1 +

nr

ρ

dρ

dr

)]
. (8)

We notice that the gravitational force per unit mass, dφ/dr, is −GM(r)/r2, where M(r),
the mass within any radius approaches 4πρcr

3/3 in spherical coordinates in that ρc is the
central density. Then, dφ/dr disappears as r goes to zero. From the equation (8), we find
that

lim
r→0

dρ

dr
=
−α2ρ2n−γ+1

4πKr

(
γ +

nα2ρ2n−γ

4πK

)−1
, (9)

which shows that although dρ
dr (r = 0) is zero for the non-magnetic cases, it is no longer

zero with the inclusion of the magnetic field effects. We substitute the equation (8) into the
Poisson’s equation (5), which reads

d

dr

[
r2Kγργ−2

dρ

dr
+
rα2ρ2n−1

4π

(
1 +

nr

ρ

dρ

dr

)]
= −4πGρr2. (10)

The density is given by
ρ = ρc%, (11)

where ρc is the central density and % is the non-dimensional density. We substitute the
relation (11) into the equation (10), which reads

d

dr

(
r2γKργc %

(γ−2) d%

dr
+
rα2ρ2nc

4π
%(2n−1) +

nr2α2ρ2nc
4π

%(2n−2)
d%

dr

)
= −4πGρ2cr

2%. (12)

By defining Pc = Kργc and B2
c = α2ρ2nc , where Pc is the central pressure and Bc is the

central magnetic field, the equation (12) develops into

d

dr

(
r2γ%(γ−2)

d%

dr
+

rB2
c

4πPc
%(2n−1) +

nr2B2
c

4πPc
%(2n−2)

d%

dr

)
= −4πGρ2cr

2

Pc
%. (13)
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Here, we introduce the dimensionless length ξ as

ξ = (
4πGρ2c
Pc

)
1
2 r, (14)

to recast equation (13) into non-dimensional form as follows

d
dξ

(
γ ξ2 %(γ−2) d%dξ + 2λ ξ %(2n−1) + 2nλ ξ2 %(2n−2) d%dξ

)
= −ξ2 %, (15)

where the parameter

λ =
B2
c

8πPc
, (16)

is the ratio of magnetic to thermal pressure in the center of cloud. From the equation (15),
we have (

γ%(γ−3) + 2λn%(2n−3)
)
d2%
dξ2 (17)

+
(
2γ%(γ−3) + 2λ(4n− 1)%(2n−3)

)
1
ξ (d%dξ )

+
(
γ(γ − 2)%(γ−4) + 4λn(n− 1)%(2n−4)

) (
d%
dξ

)2
+ 2λ
ξ2 %

(2n−2) + 1 = 0,

The inner boundary condition are %(ξ = 0) = 1 and d%
dξ (ξ = 0) is given from (9) as follows

lim
ξ→0

d%

dξ
= −2λ

ξ
%(2n−γ+1)

(
γ + 2λn%(2n−γ)

)−1
, (18)

from which d%
dξ (ξ = 0) = 0 is derived for the non-magnetic cases, i.e, λ = 0. The solutions

of the equation (17) with the mentioned inner boundary conditions give the density at any
radius. Now, if the cloud is surrounded by an isothermal medium with the dimensional
pressure, sound speed and density denoted by P0, aT and ρ0, and the dimensional cloud
outer radius is denoted by r0, the dimensional mass is calculated as

m = 4π

∫ r0

0

r2ρ(r)dr =
4πρc(

4πGρ2c
Pc

) 3
2

∫ ξ0

0

ξ2%dξ. (19)

From the equations (15) and (19), we have

m =
P

3
2
c

(4π)
1
2 G

3
2 ρ2c

(
γ ξ2 %(γ−2)

d%

dξ
+ 2λ ξ %(2n−1) + 2nλ ξ2 %(2n−2)

d%

dξ

)
ξ0

. (20)

Now, we define the non-dimensional mass, M , as follows

M ≡ (4πp0)
1
2G

3
2m

a4T
(21)

=

(
ρc
ρ0

) 3
2γ−2(

γξ2 %(γ−2)
d%

dξ
+ 2λξ2%(2n−1)

(
n

%

d%

dξ
+

1

ξ

))
ξ0

.

We solve the equations (17) and (21) numerically with the mentioned inner boundary con-
ditions to obtain the non-dimensional density and mass in next section.
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3 Results

In this section, we use the Runge-Kutta-Fehlberg method and the bifurcation technique
[35] to solve the differential equations (17) and (21) with the mentioned inner boundary
conditions, %(0) = 1 and (18). Fig.1, left panel, displays the nondimensional density, % =
ρ/ρc, as a function of the cloud nondimensional radius, ξ, for different values of the magnetic
to thermal pressure ratios, λ, and a same value of the field power-law exponent of n = 2

3 .
The density profiles of γ = 0.8, γ = 1.0 and γ = 1.2, for different values of λ = 0, 1

16 ,
1
8 ,

1
4

and 1, are shown in Fig.1(a), Fig.1(c) and Fig.1(e), respectively. The figures show that the
densities, and hence both the thermal and magnetic pressures, fall away gradually from the
center of the cloud for all the three selected values of γ, as a result of the magnetostatic
configurations. The gradual drop, for the value of each γ becomes steeper for the higher
values of λ, which shows that the magnetic field strength plays an important role in the
configuration. Besides, as the profiles show, the drop, for the each value of λ, is stronger
for the higher values of γ, as a result of the higher gas thermal pressures which support the
cloud against gravity. For small radii, log(ξ) < 0, the slope of the density profiles for each γ
is approximately zero for λ = 0 and increases with higher values of λ, that can be inferred
from the equation (18) of the present paper and is consistent with the work of Gholipour
(2017) [28].

Since the density is ρc at the center of the cloud and ρ0 at the edge of the cloud, ρ/ρc
is 1.0 at the beginning of all plots and drops to a minimum value at its edge. Thus, a
certain density contrast, ρc/ρ0, implies a certain nondimensional radius which can be found
from the Fig.1 for each case. The case with λ = 0 and γ = 1 is the characterization of an
isothermal gas in a hydrostatic equilibrium. As it is obvious from Fig.1, the consideration
of different values of λ and γ departs the profiles from the isothermal case, which is itself in
the hydrostatic equilibrium.

Fig.1, right panel, displays the nondimensional mass, M , of a pressure-bounded cloud
as a function of the logarithm of density contrast from the center to the edge, log(ρc/ρ0),
for different values of λ, and a same value of n = 2

3 . The mass profiles of γ = 0.8, γ = 1.0
and γ = 1.2, for different values of λ = 0, 1

16 ,
1
8 ,

1
4 and 1, are shown in Fig.1(b), Fig.1(d)

and Fig.1(f), respectively. ξ = 0 implies M = 0 at the beginning of all plots. In all plots,
M first rise to a maximum critical value, Mcr, where we can find the corresponding critical
density contrast, ( ρcρ0 )cr. Then, the mass turns over for the greater density contrasts. The

turnover marks the onset of gravitational instability, i.e., those clouds with ( ρcρ0 ) > ( ρcρ0 )cr are

gravitationally unstable. The lower density contrasts, i.e., those clouds with ( ρcρ0 ) < ( ρcρ0 )cr,
are confined by the external pressure and are gravitationally stable. To see why any increase
of P0 at fixed aT and the cloud dimensional mass, m, causes the cloud nondimensional mass,
M , to rise from the equation (21), and hence ( ρcρ0 ) to rise for clouds of low density contrast
from Fig.1, which creates a rise in the internal pressures. As the result, the cloud remains
stable. The critical mass for λ = 0 and γ = 1 is the well-known Bonnor-Ebert mass.

For any critical density contrast, the corresponding critical radius, ξcr, can be found from
the corresponding density profiles in Fig.1. The critical values of radius, density contrast
and mass of n = 2

3 , for different values of λ and γ, are presented in Table.1. This table
shows that the cloud with the higher values of γ has more critical mass for the value of each
λ, since higher thermal pressures can help stave off collapse. Thus, the cloud with γ = 1.2
shows the higher ( ρcρ0 )cr and Mcr than γ = 1.0 and 0.8 for any values of λ.

While the critical density contrast and radius, for each γ, increase for the higher values of
λ, there are some slight changes in the critical mass of the corresponding cases. The critical
mass of n = 2

3 as a function of λ, for γ = 0.8, γ = 1.0 and γ = 1.2, is plotted in Fig.3(a).



56 Seyed Bagher Ebrahimian Jelodar et al.

-4 -3 -2 -1 0 1 2
Nondimensional Radius    log( ξ)

-4

-3

-2

-1

0

N
o
n
d

im
e

n
s
io

n
a
l 
D

e
n
s
it
y
  
  
  

lo
g

(ρ
/ρ

c
)

λ=0
λ=1/16
λ=1/8
λ=1/4
λ=1

γ=0.8, n=2/3  

(a)

0 1 2 3 4
Density Contrast      log(ρc/ρ0)

0.0

0.5

1.0

1.5

2.0

2.5

N
o

n
d
im

e
n

s
io

n
a

l 
C

lo
u
d

 M
a
s
s
  

  
  

M

λ=0
λ=1/16
λ=1/8
λ=1/4
λ=1

γ=0.8, n=2/3  

(b)

-4 -3 -2 -1 0 1 2
Nondimensional Radius    log( ξ)

-4

-3

-2

-1

0

N
o

n
d

im
e

n
s
io

n
a
l 
D

e
n
s
it
y
  

  
  

lo
g
(ρ

/ρ
c
)

λ=0
λ=1/16
λ=1/8
λ=1/4
λ=1

γ=1.0, n=2/3  

(c)

0 1 2 3 4 5
Density Contrast      log(ρc/ρ0)

0

1

2

3

4

N
o

n
d

im
e

n
s
io

n
a

l 
C

lo
u

d
 M

a
s
s
  

  
  

M

λ=0
λ=1/16
λ=1/8
λ=1/4
λ=1

γ=1, n=2/3  

(d)

-4 -3 -2 -1 0 1 2
Nondimensional Radius    log( ξ)

-4

-3

-2

-1

0

N
o

n
d

im
e

n
s
io

n
a
l 
D

e
n
s
it
y
  

  
  

lo
g

(ρ
/ρ

c
)

λ=0
λ=1/16
λ=1/8
λ=1/4
λ=1

γ=1.2, n=2/3  

(e)

0 1 2 3 4 5 6
Density Contrast      log(ρc/ρ0)

0

2

4

6

8

N
o

n
d

im
e

n
s
io

n
a

l 
C

lo
u

d
 M

a
s
s
  

  
  

M

λ=0
λ=1/16
λ=1/8
λ=1/4
λ=1

γ=1.2, n=2/3  

(f)

Figure 1: Left panel: Nondimensional density profiles, ρ/ρc, of n = 2/3 and different
magnetic to thermal pressure ratios, λ, as a function of the cloud nondimensional radius, ξ,
for γ = 0.8, γ = 1.0 and γ = 1.2. Right panel: Nondimensional mass profiles, M , of n = 2/3
and different magnetic to thermal pressure ratios, λ, as a function of density contrast, ρc/ρ0,
for γ = 0.8, γ = 1.0 and γ = 1.2.
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Table 1: Results of the calculations for n = 2
3 . From left to right, the columns are: states for

the three different values of the polytropic exponents with different values of the magnetic
to thermal pressure ratios; critical value of radius; critical value of density contrast; critical
value of mass.

n = 2
3
, γ = 0.8 ξcr ( ρc

ρ0
)cr Mcr

λ = 0 5.8 9.7 2.3
λ = 1

16
11.9 32.0 2.2

λ = 1
8

17.9 63.3 2.2
λ = 1

4
30.4 152.8 2.2

λ = 1 116.4 1.43× 103 2.2

n = 2
3
, γ = 1.0 ξcr ( ρc

ρ0
)cr Mcr

λ = 0 6.5 14.1 4.2
λ = 1

16
10.9 40.2 4.2

λ = 1
8

15.9 85.6 4.2
λ = 1

4
27.9 266.0 4.2

λ = 1 126.4 5.5× 103 4.2

n = 2
3
, γ = 1.2 ξcr ( ρc

ρ0
)cr Mcr

λ = 0 7.4 32.1 8.3
λ = 1

16
10.9 84.5 8.4

λ = 1
8

15.4 201.3 8.5
λ = 1

4
27.4 859.0 8.6

λ = 1 181.4 9.44× 104 9.0

This Figure shows that Mcr is slightly affected by the field strength for the selected values
of λ.

Fig.2, left panel, displays the nondimensional density, ρ/ρc, as a function of the cloud
nondimensional radius, ξ, for a same value of the magnetic to thermal pressure ratio of
λ = 1

10 , and different values of the polytropic exponents. The density profiles of the field
power-law exponent of n = 2

3 , n = 5
9 and n = 4

9 , for different values of γ = 0.8, 0.9, 1.0, 1.1
and 1.2, are shown in Fig.2(a), Fig.2(c) and Fig.2(e), respectively. The figures show that the
densities, for all values of γ, fall away from the center of the cloud for all the three selected
values of n, as a result of the magnetostatic configuration. The gradual drop, for each γ,
becomes steeper for the lower values of n, which shows that the magnetic field gradient plays
an important role in the configuration. Besides, as the profiles show, the drop, for each n,
is stronger for the higher values of γ, in large radii of the cloud.

Fig.2, right panel, displays the nondimensional mass, M , of a pressure-bounded cloud as
a function of the logarithm of density contrast from the center to the edge, log(ρc/ρ0), for
different values of γ, and a same value of λ = 1

10 . The mass profiles of n = 2
3 , n = 5

9 and
n = 4

9 , for different values of γ = 0.8, 0.9, 1.0, 1.1 and 1.2, are shown in Fig.2(b), Fig.2(d)
and Fig.2(f), respectively. In all plots, M first rises to a maximum critical value, Mcr, then
it turns over for the greater density contrasts. For the lower values of n, i.e., n . 0.5 which
characterize the strong magnetic field, the turnovers occur at higher density contrasts, and
hence higher critical radii, for each value of γ. The critical values of radius, density contrast
and mass of λ = 1

10 , for different values of n and γ, are presented in Table.2.
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Figure 2: Left panel: Nondimensional density profiles, ρ/ρc, of λ = 1/10 and different
polytropic exponents, γ, as a function of the cloud nondimensional radius, ξ, for n = 4/9,
n = 5/9 and n = 2/3. Right panel: Nondimensional mass profiles, M , of λ = 1/10 and
different polytropic exponents, λ, as a function of density contrast, ρc/ρ0, for n = 4/9,
n = 5/9 and n = 2/3.
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Table 2: Results of the calculations for λ = 1
10 . From left to right, the columns are: states

for the three different values of the magnetic field power-law exponents for different values of
the polytropic exponents; critical value of radius; critical value of density contrast; critical
value of mass.

n = 2
3
, λ = 1

10
ξcr ( ρc

ρ0
)cr Mcr

γ = 0.8 14.3 43.6 2.2
γ = 0.9 13.7 49.2 3.0
γ = 1.0 13.2 59.0 4.2
γ = 1.1 12.9 79.0 5.8
γ = 1.2 12.9 131.2 8.4

n = 5
9
, λ = 1

10
ξcr ( ρc

ρ0
)cr Mcr

γ = 0.8 17.2 59.7 2.2
γ = 0.9 16.2 67.9 3.0
γ = 1.0 15.4 82.5 4.1
γ = 1.1 15.0 112.8 5.8
γ = 1.2 15.2 200.0 8.4

n = 4
9
, λ = 1

10
ξcr ( ρc

ρ0
)cr Mcr

γ = 0.8 22.9 99.7 2.1
γ = 0.9 21.2 114.8 2.8
γ = 1.0 20.0 145.1 3.9
γ = 1.1 19.6 216.0 5.5
γ = 1.2 21.0 488.3 8.2

While the values of the critical density contrast and radius, for each γ, change for the
different values of n, there are some slight changes in the corresponding critical mass. The
values of the critical mass of λ = 1

10 as a function of n, for γ = 0.8, γ = 1.0 and γ = 1.2,
are plotted in Fig.3(b). This figure shows that Mcr is slightly affected by the field gradient
for the selected values of n.

4 Discussion

In this paper, we have studied the effects of temperature gradients on the stability of a
magnetized cloud with a toroidal magnetic field configuration. The cloud model in the
magnetostatic configuration has been considered to have a spherical shape. The temperature
gradients has been included in the model by a polytropic equation of state, and the magnetic
field has been expressed by a power-law relation with the gas density, irrespective to the
origin of the magnetic field.

We probed how the inclusion of both the temperature gradients and the magnetic field
effects depart the stability criteria of a spherical cloud, i.e., the critical density contrast, the
critical radius and the mass, from the isothermal one in the hydrostatic equilibrium.

The results of the present paper showed that the density and mass profiles of the modified
cloud, with the inclusion of the temperature gradients and the magnetic field effects, are
departed from the non-magnetized isothermal case, is consistent with the previous studies
[27, 28]. Furthermore, only a limited subset of the model is shown to be gravitationally
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Figure 3: Left panel: Profile of critical mass as a function of λ, for n = 2
3 . Right panel:

Profile of critical mass as a function of n, for λ = 1
10 . The lines represent γ = 0.8, γ = 1.0

and γ = 1.2

stable. The critical mass, radius and density contrast of the the gravitationally stable
clouds, i.e., the maximum mass allowed by the polytropic sphere to hold the magnetostatic
configuration and its corresponding critical density contrast and radius, are departed from
the Bonnor-Ebert mass for different values of the polytropic exponents, the magnetic field
gradients and strengths. The results showed that the critical mass is increased for the higher
values of the polytropic exponents, irrespective of the magnetic to thermal pressure ratios
or the field gradients.

The results of the present paper showed that the magnetic field plays an important
role in the structure of the cloud. However, different values of the magnetic field gradient
and strength change the critical density and radius of the model, both of them fade their
importance in the values of the critical mass for each polytropic exponent.

However, magnetic field is likely responsible for reducing the star formation rate in dense
cores [36], it may not play any role in the total mass of the cloud [37]. Besides, dense core
may have transient, out-of-equilibrium structures [38], instead of having quasi-magnetostatic
configurations. For a better understanding of the stability criteria, an account for the heating
and cooling processes and the rotational effects should be included.
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