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Abstract. The present paper aims at investigating the manner of two dissipative
massive scalar fields. Two massive scalar fields that interact with a reservoir were con-
sidered and a reservoir was modeled by continuum Klein-Gordon fields. The Lagrangian
of the total system was canonically quantized and the dynamics of the system was de-
termined using the Euler-Lagrange equation. Then, the explicit form of the quantum
massive scalar fields in long-time limit were observed. The propagator of the system and
correlation functions were calculated at finite temperature in the thermofield dynamics
formalizem.
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1 Introduction

Dissipative scalar field theories play an important role in physics and quantum field the-
ory. For example in optomechanics, a scalar field is used to describe a movable mirror [1].
Another interesting example is Casimir effect; in Casimir physics, a scalar field is the fluctu-
ating field interacting linearly with some external matter fields defined inside or over some
specific surfaces [2]. One of the most important applications of scalar field is in astronomy
where Bosonic stars are described by scalar massive field [3] and Soliton stars can also be
investigated by scalar fields [4].
In some of the phenomena like casimir effect or investigating behavior of Bosonic stars, the
correlation between objects are important [5, 6]. Therefore, it is useful to introduce the
coupling of scalar fields in describing objects.
A very interesting approach to thermal field theories is thermofield dynamics [7, 8], which
is used in many areas of physics. Thermo field dynamic is an operator-based approach.
Present study is going to study examines the quantization of the scalar fields at finite tem-
perature in the framework of the thermofield approach. In this method, a fictitious system
without any interaction with the original system is introduced and a thermal vacuum state
is constructed in the mixed space.
In this paper, a system consisting of two dissipative 1+1 dimensional massive scalar fields is
considered. We use the fundamental approach of describing dissipative by coupling to heat
bath for the system. The scalar fields are coupled to heat bath and heat bath modeled by
real Klein-Gordon field. The mass of scalar fields may be zero during or at the end of the
calculations. The ideas of heat bath that modeled by real Klein-Gordon field is not new [9].
The paper is structured as following: In sec 2, a classical Lagrangian is proposed for the total
system and using Euler-Lagrange equations, the dynamical equations for the scalar fields
and heat bath are found. In sec 3, the system is canonically quantized and the memory
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functions and coupling function of the system are defined in terms of the heat bath Green’s
function. The explicit form of the quantum massive scalar fields are derived. In sec 4, know-
ing the explicit form of the quantum fields, correlation functions of the system are obtained
at finite temperature. in Sce 5, using thermofield approach, the system is thermalized and
Green’s functions of the system at finite temperature are derived. Finally, the results are
discussed in sec 6.

2 Lagrangian

This section examines a system consisting of two scalar massive field interacting with a field
as a reservoir which is defined by real scalar field Yω(x, t). Throughout the calculation,
we assume that the fields are in 1 + 1 dimensional and use natural units. The covariant
Lagrangian density of the system is as follows:

L =

2∑
i=1

1

2
∂µφi(x, t)∂

µφi(x, t)−
1

2
m2
iφ

2
i (x, t)

+
1

2

∫ ∞
0

dω[∂µYω(x, t)∂µYω(x, t)− ω2Y 2
ω (x, t)]

+

2∑
i=1

∫ ∞
0

dωfi(ω)φi(x, t)Yω(x, t), (1)

where fi(ω) is homogeneous coupling function of scalar fields to reservoir and φi(x, t) is
scalar massive field or main system. Using Euler-Lagrange equations, the classical equation
of motion for the fields φ(x, t) and Yω(x, t) are obtained

(∂2t + Ω2
k,i)φi(x, t) =

∞∫
0

dω fi(ω)Yω(x, t), (2)

(∂2 + ω2)Yω(x, t) = fi(ω)φi(x, t). i = 1, 2 (3)

where ∂2 = ∂2t − ∂2x and Ω2
k,i = k2 +m2

i .

3 Equation of motion

From the Lagrangian density (1), the conjugate momenta corresponding to the fields are
defined by:

Πω(x, t) =
∂L

∂Ẏω(x, t)
= Ẏω(x, t)

πi(x, t) =
∂L

∂φ̇i(x, t)
= φ̇i(x, t). (4)

The following equal-time communication relations can be required on the fields and their
conjugate momenta to quantized the theory canonically[

φ̂†i (x, t), π̂j(x
′, t)
]

= i~ δ(x− x′) δij , (5)[
Ŷ †ω (x, t), Π̂ω′(x

′, t)
]

= i~ δ(ω − ω′) δ(x− x′), (6)
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The Hamiltonian of the system is as follows:

H =

2∑
i=1

∫ ∞
−∞

dx[
1

2
(π̂i

2(x, t) + (∂xφ̂i(x, t))
2 +m2φ̂i

2
(x, t))

+
1

2

∫ ∞
0

dω(Π̂ω
ˆ ˆ2

(x, t) + (∂xYω(x, t))2 +m2Yω
2
(x, t))

−
2∑
i=1

∫ ∞
0

ˆdωfi(ω)φ̂i(x, t)Yω(x, t)] (7)

The Heisenberg equations for the coupled fields-environment dynamics is as follows:

(∂2t + Ω2
k,i)φi(x, t) =

∞∫
0

dω fi(ω)Yω(x, t), (8)

(∂2 + ω2)Yω(x, t) = fi(ω)φi(x, t). i = 1, 2 (9)

ˆ

the formal solution of above equation is

Yω(x, t) = Ŷ Nω (x, t)−
∫
dx′
∫
dt′Gω(x− x′, t− t′)(f1(ω)φ1(x′, t′) + f2(ω)φ2(x′, t′)) (10)

from Eq (2) we have

(∂2 + ω2)Gω(x− x′, t− t′) = −δ(x− x′)δ(t− t′), (11)

Where Gω(x− x′, t− t′) is the Green’s function that satisfied above equation and

Gω(x− x′, t− t′) = −1

2
Θ(t− t′ − |x− x′|)J0(ω

√
(t− t′)2 − |x− x′|2) (12)

Θ(x) is Heaviside step function and J0(x) is Bessel function of the first kind and zero order.
Y Nω (x, t) is noise field or quantum vacuum fluctuating field which can be written in terms
of annihilation and creation operators as follows

Y Nω (x, t) =

∫
dk√
4πωk

[âk(ω)ei(kx−ωkt) + â+k (ω)e−i(kx−ωkt)] (13)

where ωk =
√
k20 + ω2 and the annihilation and creation operators satisfy the usual com-

mutation relations
[âk(ω), â+k′(ω

′)] = δ(k − k′)δ(ω − ω′) (14)

From Eqs. (8,9,13), we can obtained

(∂2 +m2
1)φ1(x, t) =

∫
dωf1(ω)[Y Nω (x, t)−

∫
dx′
∫
dt′Gω(x− x′, t− t′)(f1(ω)φ1(x′, t′) + f2(ω)φ2(x′, t′))],

(∂2 +m2
2)φ2(x, t) =

∫
dωf2(ω)[Y Nω (x, t)−

∫
dx′
∫
dt′Gω(x− x′, t− t′)(f1(ω)φ1(x′, t′) + f2(ω)φ2(x′, t′))], (15)

where the memory functions γ and γ′′ or the susceptibility of the mediums are defined by

γ(x− x′, t− t′) =

∫ ∞
0

dωf21 (ω)Gω(x− x′, t− t′),

γ′′(x− x′, t− t′) =

∫ ∞
0

dωf22 (ω)Gω(x− x′, t− t′), (16)
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and γ′ is correlation of the two subsystems

γ′(x− x′, t− t′) =

∫ ∞
0

dωf1(ω)f2(ω)Gω(x− x′, t− t′), (17)

and the noise currents are

JN (x, t) =

∫ ∞
0

dωf1(ω)Y Nω (x, t)

J ′N (x, t) =

∫ ∞
0

dωf2(ω)Y Nω (x, t) (18)

by substitutiny (16) and (18) into (15), we obtaine

(∂2 +m2
1)φ1(x, t) +

∫ ∫
dx′ dt′[γ(x− x′, t− t′)φ1(x′, t′) + γ′(x− x′, t− t′)φ2(x′, t′)] = JN (x, t)

(∂2 +m2
2)φ2(x, t) +

∫ ∫
dx′ dt′[γ′′(x− x′, t− t′)φ2(x′, t′) + γ′(x− x′, t− t′)φ1(x′, t′)] = J ′N (x, t) (19)

To solve Eq.(19), taking the fourier-Laplace transform of both sides of Eq.(19), we obtained

φ1(k, s) =
(k2 + s2 +m2

1 + γ̃(k, s))J ′N (k, s)− γ̃′(k, s)JN (k, s)

(k2 + s2 +m2
2 + γ̃′′(k, s))(k2 + s2 +m2

1 + γ̃(k, s))− γ̃′2(k, s)

φ2(k, s) =
(k2 + s2 +m2

2 + γ̃′′(k, s))JN (k, s)− γ̃′(k, s)J ′N (k, s)

(k2 + s2 +m2
1 + γ̃(k, s))(k2 + s2 +m2

2 + γ̃′′(k, s))− γ̃′2(k, s)
(20)

that we are assume φi(k, 0) = φ′i(k, 0) = 0 and

γ̃(k, s) = −
∫ ∞
0

dω
f21 (ω)

s2 + ω2 + k2
,

γ̃′(k, s) = −
∫ ∞
0

dω
f1(ω)f2(ω)

s2 + ω2 + k2
,

γ̃′′(k, s) = −
∫ ∞
0

dω
f22 (ω)

s2 + ω2 + k2
(21)

and fourier-Laplace transform of the noise fields are given by

JN (k, s) =

∫ ∞
0

dωf1(ω)

√
π

ωk
[

1

s+ iωk
âk(ω) +

1

s− iωk
â+k (ω)]

J ′N (k, s) =

∫ ∞
0

dωf2(ω)

√
π

ωk
[

1

s+ iωk
âk(ω) +

1

s− iωk
â+k (ω)] (22)

The inverse laplace transform of the fields are

φ̂1(k, t) =

∫ t

0

dt′
∫ ∞
0

dω

√
π

ωk
β(k, t′, ω)(âk(ω)e−iωk(t−t

′) + â+−k(ω)eiωk(t−t
′))

φ̂2(k, t) =

∫ t

0

dt′
∫ ∞
0

dω

√
π

ωk
α(k, t′, ω)(âk(ω)e−iωk(t−t

′) + â+−k(ω)eiωk(t−t
′)) (23)

where α(k, t, ω) and β(k, t, ω) are

β(k, t′, ω) = L−1[
(s2 + k2 +m2

2 + γ̃′′(k, s))f1(ω)− γ̃′(k, s)f2(ω)

(s2 + k2 +m2
2 + γ̃′′(k, s))(s2 + k2 +m2

1 + γ̃(k, s))− γ̃′2(k, s)
]

α(k, t′, ω) = L−1[
(s2 + k2 +m2

1 + γ̃(k, s))f2(ω)− γ̃′(k, s)f1(ω)

(s2 + k2 +m2
2 + γ̃′′(k, s))(s2 + k2 +m2

1 + γ̃(k, s))− γ̃′2(k, s)
] (24)



Finite temperature correlation function of two dissipative massive scalar fields: Thermofield approach5

where L−1 is the invers laplace transform operator. The explicite form of the fields φ̂i(x, t)
at large-time limit are as follows:

φ̂1(x, t) =

∫ ∞
−∞

dk

2πωk

∫ ∞
0

dωβ̃(k, ω,−iωk)(âk(ω)ei(kx−ωkt) + â+−k(ω)ei(kx−ωkt))

φ̂2(x, t) =

∫ ∞
−∞

dk

2πωk

∫ ∞
0

dωα̃(k, ω,−iωk)(âk(ω)ei(kx−ωkt) + â+−k(ω)ei(kx−ωkt)) (25)

where ∫ t>> 1
ωk

0

α(k, t′, ω)eiωkt
′
dt′ = α̃(k, ω, s = −iωk)

=
(m2

1 − ω2 + γ̃(k,−iωk))f2(ω)− γ̃′(k,−iωk)f1(ω)

(m2
1 − ω2 + γ̃(k,−iωk))(m2

2 − ω2 + γ̃′′(k,−iωk))− γ̃′2(k,−iωk)
(26)

and ∫ t>> 1
ωk

0

β(k, t′, ω)eiωkt
′
dt′ = β̃(k, ω, s = −iωk)

=
(m2

2 − ω2 + γ̃′′(k,−iωk))f1(ω)− γ̃′(k,−iωk)f2(ω)

(m2
2 − ω2 + γ̃′′(k,−iωk))(m2

1 − ω2 + γ̃(k,−iωk))− γ̃′2(k,−iωk)
(27)

Knowing the explicit form of the quantum fields, in the next section the two point function
and correlation function will be obtained.

4 correlation function

We can calculate the two point function of each scalar fields and correlation function of the
scalar massive fields at finite temperature. A common assumption is that the environment
is in a thermal state. In the thermal equilibrium, the normal modes of the systems have the
expectation values:

< â+k (ω)âk′(ω) >= δ(k − k′)δ(ω − ω′)N(ω), N(ω) = [exp(
~ω
KBT

)− 1]−1 (28)

Using Eq.(25), the two-point function of the scalar massive fields at finite temperature is
obtained

1

2
< φ̂1(x, t)φ̂1(x′, t′) + h.c >

=

∫ ∞
−∞

dk

4π

∫ ∞
0

dω |β(k, ω,−iωk)|2 1

ωk
coth(

~ω
2KBT

) cos[k(x− x′)− ωk(t− t′)],

1

2
< φ̂2(x, t)φ̂2(x′, t′) + h.c >

=

∫ ∞
−∞

dk

4π

∫ ∞
0

dω |α(k, ω,−iωk)|2 1

ωk
coth(

~ω
2KBT

) cos[k(x− x′)− ωk(t− t′)], (29)

and correlation function of two scalar massive fields is as follows:

1

2
< φ̂1(x, t)φ̂2(x′, t′) + h.c >

=

∫ ∞
−∞

dk

4π

∫ ∞
0

dω β(k, ω,−iωk)α(k, ω,−iωk)

× 2

ωk
coth(

~ω
2KBT

) cos[k(x− x′)− ωk(t− t′)], (30)
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5 Thermofiled approach

In this section, we use thermofield formalism to thermalized the system because it provides
us with much information we need.
In this formalism, it is necessary to introduce a tilde space as well as the complete system
which is a combination of original and tilde systems. To construct the thermal propagator
of the system, the doublet can be presented as follows:

Φ1 =

(
ϕ1

ϕ̃1

)
Φ2 =

(
ϕ2

ϕ̃2

)
(31)

The propagator for each subsystem is

iG1(x− y) =< 0, 0̃ |T (Φ1(x, t)Φ1(y, t))| 0, 0̃ >
(32)

that G in the present case is 2× 2 matrix and fourier transform of the Φ1(k) is as follows

G1(k) =
|β|2
ωk

0

0 |β|2
ωk

)
(33)

The thermal propagator in the formalism of the thermofield dynamics at temperature T is
obtained

iG1,λ(x− y) = < 0, λ |T (Φ1Φ1)| 0, λ >

iG1,λ(k) =
|β|2
ωk

(2 sinh2 θk(λ) + 1) 2|β|2
ωk

sinh θk(λ) cosh θk(λ)

− 2|β|2
ωk

sinh θk(λ) cosh θk(λ) |β|2
ωk

(2 sinh2 θk(λ) + 1)

)
(34)

that coshθk(λ) = 1√
1−e−λω

and sinhθk(λ) = e−λω√
1−e−λω

and λ = 1
KBT

. The finite temperature

Green’s function can be separated into a sum of two terms, the first corresponding to zero
temperature and the second dependent on temperature. In the next step, we can write the
propagator for the total combined system at zero temperature following:

Gcomb(x− y) =< 01, 0̃1, 02, 0̃2 |T(ΦΦ)| 01, 0̃1, 02, 0̃2 > Φ =

(
Φ1

Φ2

)
(35)

That Gcomb in the present case is 4× 4 matrix as follows:

Gcomb(k) =


|β|2
ωk

0 βα
ωk

0

0 |β|2
ωk

0 βα
ωk

βα
ωk

0 |α|2
ωk

0

0 βα
ωk

0 |α|2
ωk

 (36)



Finite temperature correlation function of two dissipative massive scalar fields: Thermofield approach229

So the thermal propagator is:

Gcomb,λ(k) =


|β|2
ωk

0 αβ
ωk

0

0 |β|2
ωk

0 αβ
ωk

αβ
ωk

0 |α|2
ωk

0

0 αβ
ωk

0 |α|2
ωk

+

2


|β|2
ωk

sinh2 θ(λ) |β|2
ωk

sinh 2θ(λ) αβ
ωk

sinh2 θ(λ) αβ
ωk

sinh 2θ(λ)
|β|2
ωk

sinh 2θ(λ) |β|2
ωk

sinh2 θ(λ) αβ
ωk

sinh 2θ(λ) αβ
ωk

sinh2 θ(λ)
αβ
ωk

sinh2 θ(λ) αβ
ωk

sinh 2θ(λ) |α|2
ωk

sinh2 θ(λ) |α|2
ωk

sinh 2θ(λ)
αβ
ωk

sinh 2θ(λ) αβ
ωk

sinh2 θ(λ) |α|2
ωk

sinh 2θ(λ) |α|2
ωk

sinh2 θ(λ)


(37)

In the same way, the finite temperature Greens function of the total system can be separated
into a sum of two terms, one corresponding to zero temperature and the other dependent
on temperature. Off diagonal matrix elements show the correlation functions of two fields.
Although two fields do not have direct interaction with each other, their correlation function
is not zero. This point can be utilized in describing quantum entanglement of the two
subsystem.

6 Conclusion

The quantum theory of two massive scalar field in the framework of canonical quantization
was investigated. Two quantum dissipative equation were obtained for massive scalar fields
and the explicit form of the quantum scalar fields in long-time limit were found. Knowing the
explicit form of the quantum fields, the correlation function of the fields were calculated at
finite temperature. In the last step,using the thermofield dynamics method, the propagators
of the system were found. Despite the fact that two fields do not have direct interaction with
each other, their correlation function was not observed as zero. This point can be utilized
in describing the quantum entanglement of the two subsystem.
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