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Abstract. In this paper, a combination of the braneworld scenario and covariant de
Rham-Gabadadze-Tolley (dRGT) massive Gravity theory is proposed. In this setup,
the five-dimensional bulk graviton is considered to be massive. The five dimensional
nonlinear ghost-free massive gravity theory affects the 3-brane dynamics and the
gravitational potential on the brane. Following the solutions with spherical symmetry on
the brane, the full field equations together with the generalized Israel-Darmois junction
conditions on the brane and their weak field limits are presented in details. Generally,
the theory has four Stückelberg fields along with the components of physical metric.
Although analytical solutions of these equations are impossible in general, by considering
some simplifying assumptions, two classes of four-dimensional spherically symmetric
solutions on the brane with different background Stückelberg fields are obtained.
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1 Introduction

The accelerating expansion of the Universe has forced us to challenge with our understand-
ing of the fundamental physics [1, 2, 3]. In the last two decades, there has been considerable
interest in theories of gravitation that modify the Einstein’s gravity at very large distance
scales. These theories could explain the present day acceleration, without including a cos-
mological constant or an exotic matter content. Adding one or even many extra spatial
dimensions to the 4D Einstein’s theory of gravity may lead to the interesting phenomeno-
logical results. The Braneworld model is an extra dimensional theory, in which our universe
is a 3-brane embedded in a five-dimensional spacetime called the bulk [4, 5]. All matter
fields reside on the brane, but gravitons can travel into the extra dimension. The Dvali-
Gabadadze-Porrati (DGP) model [6] is an interesting braneworld model in which the bulk
is empty, the extra dimension is infinitely large. Also a 4D Einstein-Hilbert term in the
braneworld action exists. The model has attractive results from cosmological viewpoint
because gravity on the brane is weakened and becomes five-dimensional at large scales,
r � rc (where rc is the DGP crossover distance), while on small scales, gravity is effectively
bounded to the brane and 4D dynamics is regained. It contains a self-accelerating branch of
the solutions which can explain late time cosmic speed up [7, 8, 9]. From the 4D perspective,
gravity on the brane is mediated by an infinite number of Kaluza-Klein (KK) modes that
have not discontinuities. The 4D Einstein-Hilbert term on the brane will suppress the wave
functions of heavier KK modes, so that they do not participate in the gravitational inter-
actions on the brane at observable distances [10]. The 4D gravity on the brane is mediated
by a massless zero mode, whereas the couplings of the heavy KK modes to ordinary matter
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are suppressed.
Due to the cosmological constant problem, we should look for a technically natural way of
describing cosmic acceleration. The massive gravity theories are other kinds of modified
gravity theories, in which a small graviton mass may lead to an IR modification of gravity
with an accelerated expansion without a small cosmological constant. The recent experi-
ments GW150914 and GW151226 [11, 12] by LIGO, were able to detect the gravitational
waves and put an upper limit on the graviton mass, i.e. m < 1.2 × 10−22 eV [13]. At the
linearized level, the Fierz-Pauli (FP) graviton mass term is the only Lorentz-invariant mass
term which after quantization does not generate ghosts in flat space [14]. However, choosing
a Fierz-Pauli mass term for the graviton will lead to the well known vDVZ discontinuity
[15, 16]. The coupling of the longitudinal polarization of the massive graviton to trace of the
energy-momentum tensor in the limit of zero graviton mass is responsible for this disconti-
nuity, such that the tensor structure of the gravitational interaction deviates from that of
Einstein gravity. To restore the continuity of Fierz-Pauli massive gravity theory at graviton
mass m = 0, two different approaches have been proposed. The first one, which was first
pointed out by Vainshtein [17, 18], is to consider nonlinear effects. The other way is to con-
sider a curved maximally symmetric spacetime (dS or AdS) with m

H → 0 [19, 20]. In 1972,
Vainshtein noted that there is a radius rV , known as Vainshtein radius, around a massive
source, inside of it the linear approximation breaks down and at massless limit rV goes to
infinity [17]. Therefore, the nonlinear terms are important in the limit m → 0. However,
Boulware and Deser argued that the non-linear terms cause a scalar field with wrong sign
kinetic term, known as Boulware-Deser (BD) ghost [21]. At the classical level, this scalar
may not be a problem due to non-linear effects [17, 18], but at the quantum level the theory
becomes strongly coupled [22] at energy scale Λ5 ≡ (m4MP )1/5. By adding higher order
operators, this scale can be raised to order Λ3 ≡ (m2MP )1/3.

In 2010, de Rham and Gabadadze studied generic extensions of the Fierz-Pauli La-
grangian by higher-order interactions of the massive spin-2 fluctuation hµν [23]. Their
analysis went to quintic order in the longitudinal component of hµν and demonstrated that
its interactions could in fact be made ghost-free in a decoupling limit. The decoupling
limit analysis relies heavily on the aforementioned Goldstone boson analogously suggested
by Arkani-Hamed, Georgi and Schwartz [22]. de Rham, Gabadadze and Tolley (dRGT) [24]
completed their investigations by presenting a nonlinear theory of massive gravity whose
decoupling limit is ghost-free for all nonlinear self-interactions of the longitudinal compo-
nent [24, 25, 26, 27]. The dRGT theory is the unique ghost-free theory for massive graviton
and new kinetic interactions are not consistent [28, 29]. See [30, 31, 32] for recent reviews
on all aspects of massive gravity and bimetric theories. In the context of the dRGT non-
linear covariant massive gravity model [23, 24], some self-accelerating solutions have been
discovered [33, 34, 35, 36, 37, 38]. Dynamics of the scalar mode of a massive graviton in
four-dimensions has been studied in detail in [36], showing that a non-trivial configuration
for this field leads to self-acceleration. Scalar fluctuations around these self-accelerating
configurations are proved to be free of ghosts.

It is worthwhile to note that one way in which a massive graviton naturally arises is
higher dimensional scenarios. A theory of gravity with compactified extra dimensions can
be viewed as a four dimensional theory of multiple gravitons, i.e. KK modes. An alternative
to the KK paradigm was the ADD model [39, 40] in which one (or more) extra dimension
could emerge from a theory of a finite number of massive gauge fields or gravitons living
in four dimensions. Their idea, named “Dimensional Deconstruction”, can be viewed as
taking a five dimensional gauge or gravity theory and discretizing the extra dimension(s).
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It has been shown that Dimensional Deconstruction is equivalent to a truncation of the KK
tower at the nonlinear level [28]. It has been shown that the DGP model is closely related
to massive gravity. In this model, the 4D graviton propagator on the brane in the Gaus-
sian normal coordinates is similar to the propagator for 4D massive gravity with graviton
mass m2 = ( 1

rc
)
√
−�, where rc ≡ (M2

p/2M
3
5 ) is the DGP crossover length scale and � is

the four-dimensional d’Alembertian. In other words, the graviton acquires a soft mass, or
resonance effectively, in the DGP model. The induced gravity term in the brane action acts
as a kinetic term for a 4D graviton while the bulk Einstein-Hilbert term acts as a gauge
invariant mass term. Therefore, the vDVZ discontinuity problem is also present in the DGP
model. Here, the massless limit converts to the limit rc →∞. As argued by Vainshtein, at
distances smaller than the radius rV , the linearization breaks down and by considering non-
linear effects, we can restore the predictions of GR on the brane [17, 18, 41, 42]. However,
the DGP model has some consistency problems. The normal branch of the DGP theory
is free of ghosts and instabilities, but the self-accelerating branch is completely unstable
[43, 44, 45]. The DGP model has strong interactions at energy scale Λ ∼ (Mp/r

2
c )

1/3. From
the 4D point of view, there is an extra scalar degree of freedom π that contributes to the
extrinsic curvature of the brane as Kµν ∝ ∂µ∂νπ [43, 44]. Indeed, this scalar is a brane
bending mode that interacts strongly at momenta of order Λ. In the decoupling limit of
the DGP model, in which Λ is kept fixed, only the π sector exists and all other degrees of
freedom decouple. This limit reduces to the cubic Galileon for the helicity-0 mode π [46].

The works done by Gabadadze and de Rham before proposing the interesting dRGT the-
ory have shown that the introduction of the spurious extra dimension provides a geometrical
interpretation of massive gravity, for which non-linearities can be tracked down explicitly
[47, 48]. By studying massive gravity from extra dimensional point of view, we can better
understand certain aspects of the dRGT theory [23, 24] and its bigravity [49] and multi-
gravity [50] extensions. In 2009, Gabadadze considered an extension of GR by an auxiliary
non-dynamical extra dimension and showed that the obtained gravitational equations could
have a self-accelerated solution, which is due to a new mass parameter m. The auxiliary
dimension gives an extrinsic curvature to the 4D space-time and the extrinsic curvature is
responsible for creating the mass term. The special structure [K]2 − [K2] arose from the
Gauss equation for the bulk Ricci scalar ensures the Fierz-Pauli structure which is ghost-
free at the linearized level [47]. de Rham and Gabadadze [48, 51] verified that the theory in
the decoupling limit is free of the Boulware-Deser ghost to cubic order. In ref [28], it was
shown that the ghost-free models of massive gravity and their multi-graviton extensions can
follow from considering higher dimensional extension of GR in the Einstein-Cartan form on
a discrete extra dimension. Indeed, discretizing the extra dimension in the vielbein language
can automatically generate the square root structure characteristic of the dRGT model, i.e.
Kνµ, [28]. Indeed, the expression for the discretized extrinsic curvature coincides with Kνµ.

By considering the above arguments, now giving a mass to the graviton in Higher-
dimensional theories and exploring the overall effects of massive gravity and extra dimension
could be interesting from theoretical and phenomenological viewpoints. The final results may
have some relations with the multi-metric theories and then lead to physically interesting
predictions. In 2004, Chacko et al., considered a braneworld setup in warped anti-de Sitter
spacetime (Randall-Sundrum (RS) two-brane model [52]) with a mass term for the graviton
on the infrared brane [53]. The predictions of this theory coincide with the results of GR at
distances smaller than the infrared scale but at longer distances a theory of massive gravity
exists. However, in the low energy limit of the theory, there is a ghost, which corresponds
to the radion field. In Ref. [54], both of the bulk and the brane mass terms were introduced
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in the action of the RS two-brane model to quadratic order to modify the profile of the
graviton zero-mode in the extra dimensions. It was found that for a particular choice of
parameters, there is an IR-peaked zero-mode, i.e. the graviton can be localized on the IR
brane. In 2014, a braneworld scenario has been investigated in which the infinite-volume
bulk graviton was massive [55]. The bulk graviton can be as heavy as the bulk Planck scale
which is much larger than the inverse Hubble size. The 4D induced gravity term on the
brane shields the brane matter from both strong bulk gravity and large bulk graviton mass.
Higher-dimensional gravity at large distances are not obtained on the brane in this setup
and at distances above the bulk Planck length scale, the 4D graviton on the brane acquires
a small mass. The author of [55] considered a mass potential that arose via the gravitational
Higgs mechanism, such that a general quadratic potential in terms of perturbation tensor
hAB was introduced in the bulk action. In this extension of the DGP model, even for the
case of ghost-free Fierz-Pauli bulk mass term, the 4D tensor structure on a 3-brane could be
obtained [55]. Here, the key point is that the trace h ≡ ηABhAB is perturbatively a ghost.
However, it was shown that the non-perturbative Hamiltonian is bounded from below and
there is no ghost in full nonlinear theory [56, 57, 58].

With these detailed preliminaries which are necessary for a reader to understand forth-
coming arguments in this paper, we consider a combination of the DGP braneworld and
dRGT massive gravity models, by introducing a five dimensional nonlinear ghost-free po-
tential in the bulk action. In this setup, our universe is a 3-brane embedded in a 5D bulk
where the extra spatial dimension is large. A 5D ghost-free massive gravity theory propa-
gates nine degrees of freedom (DOF) and the extra four DOFs added to the five DOFs of
5D massless graviton, which is effectively equivalent to a 4D softly massive graviton, are
the extra polarizations of the 5D massive graviton. We considered the induced gravity term
on the brane action, because this term in the DGP setup acts as a kinetic term for the 4D
graviton. The 5D extension of dRGT theory is free of ghosts and we want to explore the
effects of this nonlinear theory on the brane dynamics and the effective 4D gravitational
interactions on the brane. For this purpose, the full 5D field equations and their weak field
limits have been studied. Our focus is on the solutions with spherical symmetry on the
brane. The full nonlinear equations of motion in the presence of the unknown stückelberg
fields are generally very complicated to solve for analytical solutions, unless we consider
some simplifying assumptions. So, to have some intuition and to be more clarified, we have
adopted step by step some reasonable and simplifying assumptions to find a class of four-
dimensional spherically symmetric solutions on the brane. We considered two simplified
linear theories in both unitary and non-unitary gauges and found in both cases a flat so-
lution on the brane with different background Stückelberg fields. In non-unitary gauge we
restricted ourself to special choices of the free parameters of the theory. We note that general
massive braneworld solutions, resulting from the full nonlinear theory, should reduce to the
massless braneworld solution in the limit of zero bulk graviton mass as has been studied
in [59]. We are attempting to follow new approaches, such as solving the nonlinear field
equations numerically or finding the effective 4D field equations on the brane [60, 61], to
examine the Vainshtein mechanism in our model.

2 Braneworld Massive Gravity

In braneworld scenarios, we assume that our (1+3)-dimensional spacetime is a domain wall
embedded in a five-dimensional spacetime called the bulk [4, 5]. All matter fields live on the
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brane but only gravitons can travel into the bulk. In the DGP braneworld model, the bulk
is empty, the extra dimension is infinitely large and a 4D Einstein-Hilbert term exists on the
brane action [6]. In our braneworld massive gravity model, we introduce a mass potential
to the bulk action, which is a 5D extension of the dRGT’s 4D nonlinear ghost-free massive
gravity theory [23, 24]. We consider a 3-brane Σ embedded in the five-dimensional massive
bulk M. The total action is

S =
M3

5

2

∫
M
d5X
√
−g
((5)

R+m2
g U(g,K)

)
+ Sbrane, (1)

where Sbrane is the 3-brane action defined as

Sbrane =
M2
p

2

∫
Σ

d4x
√
−q (4)R+

∫
Σ

d4x
√
−qLmatt4 +

∫
Σ

d4x
√
−q K

κ2
5

. (2)

gAB is the 5D bulk metric with corresponding Ricci tensor given by (5)RAB . XA, A =
0, 1, 2, 3, 5 are the coordinates in the bulk. The brane has induced metric qµν with corre-
sponding Ricci tensor (4)Rµν . Lmatt4 is the matter Lagrangian localized on the brane. We
note also that the bulk Planck mass M5 and the 4-dimensional Planck scale Mp are defined
as κ2

5 = 8πG(5) = M−3
5 and κ2

4 = 8πG(4) = M−2
p . U is a dimensionless “potential” for the

metric gAB that makes bulk graviton massive, where the dimension-full parameter mg sets
the graviton mass scale. This potential depends on three dimensionless arbitrary parameters
α3, α4 and α5 and is composed of four parts,

U(g,K) =
5∑

n=2

αnUn(K) = U2 + α3 U3 + α4 U4 + α5 U5, (3)

where α2 = 1. The tensor KBA is

KBA = δBA −
√
gBC(gCA −HCA) = δBA −

√
gBC fab∂Cφ

a∂Aφb. (4)

The potential (3) is unique and no further polynomial terms can be added to the action
without introducing the BD ghost [23, 24, 25, 26, 27]. The sum is finite and stops at n = 5,
since the total derivative combinations vanish for n > D = 5 [24, 31]. It was shown that
this is the most general potential for a ghost-free theory of massive gravity [62]. fab is the
fiducial (or reference) metric, which we assume to be the Minkowski metric, ηµν , and φa

are the Stückelberg scalar fields introduced to give a manifestly diffeomorphism invariant
description [22]. Under a diffeomorphism δXA = ξA(X), the Stückelberg fields φ0, φi

(i = 1, 2, 3, 5) transform as simple scalars. The tensor hAB represents the fluctuations of
bulk metric about Minkowski reference metric, hAB = gAB − ηAB , and HAB corresponds to
the covariantization of metric perturbations, defined as HAB = gAB − ∂Aφa∂Bφbηab. The

square root is formally understood as
√
W

A

C

√
W

C

B = WA
B . The four polynomial terms U2,

U3, U4, and U5 depend on the metric g and Stückelberg fields φa as

U2 = [K]2 − [K2], (5)

U3 =
1

3
[K]3 − [K2][K] +

2

3
[K3], (6)

U4 =
1

12
[K]4 − 1

2
[K2][K]2 +

2

3
[K3][K] +

1

4
[K2]2 − 1

2
[K4], (7)



136 Amir Asaiyan et al.

U5 =
1

60
[K]5 − 1

3
[K3][K2] +

1

3
[K3][K]2 − 1

6
[K2][K]3 − 1

2
[K][K4] +

1

4
[K][K2]2 +

2

5
[K5], (8)

where the square brackets are defined as

[K] ≡ trKBA , [K]2 ≡
(
trKBA

)2
, [K2] ≡ trKBCKCA . (9)

We chose a coordinate y for the extra dimension so that our 3-brane is localized at y = 0.
Variation of the action (1) with respect to the bulk metric leads to the modified 5D field
equations in the bulk as [56, 57, 58]

(5)GAB +m2
gXAB = κ2

5
(loc)TABδ(y), (10)

where XAB is the effective energy-momentum tensor due to the graviton mass and expressed
as

XAB = XAB + σYAB , (11)

with

XAB = −1

2
(αU2 + β U3)gAB + X̃AB , (12)

X̃AB = KAB − [K]gAB − α
{
K2
AB − [K]KAB

}
+ β

{
K3
AB − [K]K2

AB +
U2

2
KAB

}
, (13)

YAB = −U4

2
gAB + ỸAB , (14)

ỸAB =
U3

2
KAB −

U2

2
K2
AB + [K]K3

AB −K4
AB . (15)

The new parameters α, β, and σ are defined as α = 1 + α3, β = α3 + α4, σ = α4 + α5,
and the indices are raised and lowered by the “physical” metric gAB , so that KAB = gACKCB ,
K2
AB = gADKDCKCB , etc.

The effective localized energy-momentum tensor on the brane including the contribution
from the induced 4D Einstein-Hilbert term on the brane is

(loc)TAB = gµAg
ν
B(− 1

κ2
4

)

√
−q
−g

((4)

Gµν − κ2
4

(4)Tµν

)
. (16)

where (5)GAB and (4)GAB denote the Einstein tensors constructed from the bulk and the
brane metrics respectively. The tensor qAB = gAB − nAnB is the induced metric on the
brane Σ with nA the normal vector on this hypersurface. The field equations in the bulk
(y 6= 0) take the following form

(5)GAB =(5)RAB −
1

2
(5)RgAB = −m2

g X̃AB . (17)

Moreover, if the components of X̃AB be continuous across y = 0, the following modified
(due to the presence of induced gravity on the brane) Israel-Darmois junction conditions, as
a boundary condition for the field equations in the bulk, would be obtained

[Kν
µ]− δνµ[K] = −κ2

5
(loc)T νµ =

(κ2
5

κ2
4

)(4)

Gνµ − κ2
5

(4)T νµ , (18)
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where Kµν = 1
2∂y(gµν) is the extrinsic curvature of the brane and brackets denote jump

across the brane (y = 0). We assume a Z2-symmetry on reflection around the brane, thus
the Israel-Darmois junction conditions become

K
ν

µ −Kδ νµ = rc
(4)Gνµ −

κ2
5

2
(4)T νµ , (19)

where rc =
κ2
5

2κ2
4

=
M2
p

2M3
5

is the well-known DGP crossover distance, and by definition

K
ν

µ = K ν
µ (y = 0+) = −K ν

µ (y = 0−).

After presentation of general field equations in the proposed setup, now we seek for some
spherically symmetric solutions on the brane.

3 Spherically Symmetric Solutions

Here, we consider the static spherically symmetric configurations on the brane and our con-
centration is on the issue of braneworld black holes, i.e. finding the bulk and the brane metric
when a spherically symmetric energy-momentum distribution is localized on the brane. In
our previous work [59], black hole solutions in warped DGP braneworld model with a cos-
mological constant term in the bulk were obtained (see [63, 64, 65, 66] for further black
hole solutions in braneworld scenarios). We found a 5D black string solution for the bulk
metric, which reduces to 4D Schwarzschild-AdS solution on the brane. The 4D AdS cur-
vature radius is proportional to rc, therefore the Schwarzschild solution is recovered on the
brane in the limit rc → ∞ [59]. As we already noted, the DGP model is closely related to
massive gravity and the 4D graviton propagator on the brane is similar to the propagator
for 4D massive graviton. In the dRGT theory with a Minkowski reference metric, a class of
non-bidiagonal Schwarzschild-dS solutions was found in [33, 34]. In this theory, for a special
choice of free parameters of the action, the Schwarzschild-dS type of black hole solutions was
obtained in ref [67, 35], where the mass term behaves similar to the cosmological constant
term in GR. For this choice of parameters, the Bianchi identity is automatically satisfied
for a certain diagonal and time-independent metrics in spherical polar coordinates, whereas
the kinetic terms for both the vector and scalar fluctuations vanish in the decoupling limit.
Although it was shown that the linearized solutions of GR can be reproduced below the
Vainshtein radius in a certain region of parameter space, the metric here is accompanied by
nontrivial backgrounds for the Stückelberg fields. The vector and scalar modes Aµ and π
of massive gravitons are the nonunitary parts of the background Stückelberg fields [35], i.e.
xµ − φµ = (mAµ + ∂µπ)/Λ3. For reviewing the black hole solutions in massive gravity see
refs. [68, 69, 70, 71].

All of these papers have focused only on the four-dimensional dRGT theory [23, 24],
in which only the usual graviton terms, Ui (i = 2 − 4), are considered. For spherically
symmetric solutions in extra dimensional setups, some types of black hole solutions for
dRGT massive gravity with their thermodynamical properties have been investigated in
d-dimensional spacetimes (d ≥ 3) in refs. [72, 73, 74, 75, 76, 62]. The behavior of mas-
sive graviton terms for some cosmological solutions such as the FLRW, Bianchi type I, and
also Schwarzschild-Tangherlini-(A)dS metrics in a specific five-dimensional nonlinear mas-
sive gravity and bigravity models have been clarified in Refs. [62, 77]. In ref. [78], it
was argued that giving a space-dependent mass to the 5D graviton, which depends on the
extra-dimensional coordinate, can localize Einstein gravity on a 3-brane embedded in a 5D
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Minkowski space. They focused on the quadratic Fierz-Pauli Lagrangian for 5D metric per-
turbations and explored the linearized equations of motion for 4D scalar, vector and tensor
modes. They showed that there is no ghost on the brane and conserved matter on the brane
does not couple to the scalar massless mode. The nonlinear extension of the theory has not
been studied yet.

We want to find a 4D spherically symmetric solution for our nonlinear massive braneworld
setup and separately determine the effects of bulk graviton mass term and also the large extra
dimension on the gravitational interactions on the brane. We expect that the predictions of
GR and DGP model be reproduced in appropriate limits, i.e. m → 0 limit for recovering
the DGP results and rc →∞ limit in addition to the previous one for recovering GR on the
brane. The issues of the vDVZ discontinuity and the Vainshtein mechanism to resolve it
should be carefully studied. The effects of bulk nonlinear terms and the brane bending modes
play important roles in these limits. To obtain black hole solutions in a braneworld scenario,
generally there are two different approaches. In the first approach, as we explained in last
section, dynamics and geometry of the whole bulk spacetime are primarily considered; then
the dynamics on the brane is extracted by using the Israel-Darmois matching conditions.
The second approach is to obtain the effective four-dimensional field equations on the brane
firstly and then try to extend these solutions into the bulk [60, 61]. Here, we will follow
the first approach. Therefore, to choose an appropriate 5D line element which is spherically
symmetric on the brane, we review the 4D black hole solutions of the original dRGT theory.
In this case, the ansatz for the static spherically symmetric solutions is the same as in GR.
The only subtlety consists in getting the correct configuration for the four scalar fields.
Regarding the vacuum solution of the theory, (φa = xµ δaµ and gµν = ηµν), the spherically
symmetric line element and the four scalar fields for 4D massive gravity models can be
written as follows

ds2 = −α(r)dt2 + 2δ(r)dtdr + β(r)dr2 + χ(r)
(
dθ2 + sin2(θ)dϕ2

)
, (20)

φ0 = t+ h(r), φi = φ(r)
xi

r
. (21)

In the unitary gauge, the scalar fields are φa = xa = (t, r sin θ cosφ, r sin θ sinφ, r cos θ).
Therefore, in this gauge h(r) = 0 and φ(r) = r. The field configuration is invariant under
two residual coordinate transformations. The first one is an arbitrary change of the radial
coordinate r → r̃ = r̃(r), which allows to set either χ(r) = r2 or φ(r) = r. The second
one is the redefinition of the time variable t → t̃ = t + τ(r), which allows to cancel either
δ(r) or h(r). In our five dimensional braneworld theory, we can choose a coordinate system
in which the brane is located at y = 0 and the 5D metric with spherical symmetry on the
brane are as follows

ds5
2 = −eν(r,y)dt2 + eλ(r,y)dr2 + r2eµ(r,y)dΩ2 + dy2 , (22)

where the 5D Stückelberg fields are

φ0 = t, φi = φ(r)
xi

r
, φ5 = y. (23)

As compared to ordinary Braneworld theories, this configuration contains an additional
radial function φ(r), which should be determined. The matter content of the 3-brane universe
is considered to be a localized spherically symmetric untilted perfect fluid (e.g. a star) with

(4)Tµν = (ρ+ p)uµuν + pqµν , (24)
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where uµ stands for the 4-velocity of the fluid and ρ = p = 0 for r > R. Nevertheless, since
we want to obtain static black hole solutions outside the star (that is, for r > R), in these
regions the brane is empty. With the ansatz (22) and (23), the components of KBA would
take the following form

KBA = diag

(
1− (e−

ν
2 ), 1− (φ′e−

λ
2 ), 1− (

φ

r
e−

λ
2 ), 1− (

φ

r
e−

λ
2 ), 0

)
. (25)

By using these components, we can obtain the total derivative combinations U2, U3, U4 and
U5. We have found that the term U5 vanishes for this configuration. Consequently, the
components of XAB can be obtained analytically although their expressions are so lengthy.
The Einstein tensor components are nonlinear and second order in terms of ν, λ, µ and
their partial derivatives. To find some analytical solutions, firstly we consider the weak-field
regime (i.e. far enough from the source localized on the brane). In this respect, we will
find solutions in the regimes where |ν|, |λ| and |µ| are small quantities compared to unity;
that is, |ν|, |λ|, |µ| � 1. By adopting this assumption, we linearize our field equations with
respect to these functions. Now, by putting the metric (22) into the bulk field equations
(17) and keeping only the leading-order terms, we obtain the (tt), (rr), (θθ), (yy), and
(ry) components of the bulk field equations respectively as follows:

2(µ− λ) + 2r2µrr + 6rµr − 2rλr + r2(λyy + 2µyy)

+2m2
gr

2

{[
3 + 3α+ β − (1 + 2α+ β)(φ′ + 2

φ

r
) + (α+ β)(

φ2

r2
+ 2

φφ′

r
)− βφ

′φ2

r2

]
(1 + ν)

+

[
(1+2α+β)

φ′

2
−(α+β)

φφ′

r
+β

φ′φ2

2r2

]
λ+

[
(1+2α+β)

φ

r
−(α+β)(

φφ′

r
+
φ2

r2
)+β

φ′φ2

r2

]
µ

}
= 0 ,

(26)

2(λ− µ)− 2rµr − 2rνr − r2(νyy + 2µyy) + 2m2
gr

2

{[
− (α+ 2) + 2(α+ 1)

φ

r
− αφ

2

r2

]
(1 + λ)

+

[
− 1

2
(1 + 2α+ β) + (α+ β)

φ

r
− 1

2
β
φ2

r2

]
ν +

[
− (α+ 1)

φ

r
+ α

φ2

r2

]
µ

}
= 0 , (27)

−r2(νrr+µrr)−rνr−2rµr+rλr−r(νyy+λyy+µyy)+2m2
gr

2

{
−(α+2)+(α+1)(

φ

r
+φ′)−αφφ

′

r

+

[
− 1

2
(1 + 2α+ β) +

1

2
(α+ β)(

φ

r
+ φ′)− 1

2
β
φφ′

r

]
ν +

[
− 1

2
(1 + α)φ′ +

1

2
α
φφ′

r

]
λ

+

[
−2−α+3β−3σ+(1+α−5β+11σ)

φ

2r
+(1+α−β+σ)φ′+(−α+β−3σ)

φφ′

2r
−5

2
σ
φ2

r2
+

1

2
σ
φ′φ2

r2

]
µ

}
= 0 ,

(28)

2(λ−µ)−2r2µrr−r2νrr+2r(λr−3µr−νr)+2m2
gr

2

{
−(3+3α+β)+(1+2α+β)(φ′+2

φ

r
)−(α+β)(

φ2

r2
+2

φ′φ

r
)
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+β
φ′φ2

r2
+

[
− 1

2
(1+3α+3β+σ)+

1

2
(α+2β+σ)(φ′+2

φ

r
)−(σ+β)(

φφ′

r
+
φ2

2r2
)+

1

2
σ
φ′φ2

r2

]
ν

+

[
−1

2
(1+2α+β)φ′+(α+β)

φφ′

r
−1

2
β
φ′φ2

r2

]
λ+

[
−(1+2α+β)

φ

r
+(α+β)(

φ′φ

r
+
φ2

r2
)−βφ

′φ2

r2

]
µ

}
= 0 ,

(29)

(λ− µ) = rµr +
1

2
rνr + f(r) , (30)

where f(r) is an arbitrary function of r. The subscripts y and r in these relations represent
partial differentiation with respect to y and r respectively. Prime in φ′ denotes derivative
with respect to r. In addition to the generalized field equations (17), the Bianchi identities
lead to the constraint:

m2
g ∇AXAB

)
= 0 , (31)

where ∇A denotes the covariant derivative with respect to physical metric gAB . In the cases
mg 6= 0, the linearized form of these constraints for B = 1 and B = 4 are respectively as
follows

2α(
φ2

r2
−φφ

′

r
)+2(1+α)(φ′−φ

r
)+

[
−1

2
(1+2α+β)+(α+β)

φ

r
−1

2
β
φ2

r2

]
rνr+

[
−(α+1)

φ

r
+α

φ2

r2

]
rµr

+

[
(α+ β)(φ′ − φ

r
) + β(

φ2

r2
− φφ′

r
)

]
ν +

[
(α+ 1)(

φ

r
− φ′) + 2α(

φφ′

r
− φ2

r2
)

]
µ = 0 , (32)

∂

∂y
(X44) =

[
− 1

2
(1+3α+3β+σ)+

1

2
(α+2β+σ)(φ′+2

φ

r
)−(σ+β)(

φφ′

r
+
φ2

2r2
)+

1

2
σ
φ′φ2

r2

]
νy

+

[
−1

2
(1+2α+β)φ′+(α+β)

φφ′

r
−1

2
β
φ′φ2

r2

]
λy+

[
−(1+2α+β)

φ

r
+(α+β)(

φ′φ

r
+
φ2

r2
)−βφ

′φ2

r2

]
µy = 0 ,

(33)
where other components of the constraint (31) are satisfied automatically. Contrary to the
easy DGP model, which we studied in our previous paper [59], the presence of graviton mass
terms in the 5D field equations (26)-(30) makes it more difficult to find an exact solution.
The linearised form of the Israel-Darmois matching conditions (19) will lead to the following
boundary conditions (on the brane) for the filed equations in the bulk

−1

2

(
2µy + λy

)
|y=0+ = rc

[
− 1

r2

(
µ− λ+ 3rµr + r2µrr − rλr

)]
, (34)

−1

2

(
2µy + νy

)
|y=0+ = rc

[
− 1

r2

(
µ− λ+ rµr + rνr

)]
, (35)

−1

2

(
νy + λy + µy

)
|y=0+ = rc

[
− 1

2r

(
rνrr + rµrr + 2µr + νr − λr

)]
. (36)

Note that these equations are hold on the brane outside our spherical object, where ρ and
p are zero. Solving the linearized bulk field equations (26)-(30) with constraints (32) and



Spherically Symmetric Solutions in a New Braneworld Massive Gravity Theory 141

(33) (resulting from the Bianchi identities), is a very difficult task in non-unitary gauges.
Therefore, here we consider some additional simplifying assumptions for the theory. The
first assumption is that we find solutions in the unitary gauge, i.e. φ(r) = r. In this gauge,
the linearized form of all the higher order combinations, U2, U3 and U4 vanish such that

XAB = KAB − [K]gAB = diag (
1

2
λ+ µ),−(

1

2
ν + µ),−1

2
r2(ν + λ+ µ),

−1

2
r2 sin2(θ)(ν + λ+ µ),−1

2
(ν + λ+ 2µ)

)
. (37)

Therefore, in the unitary gauge, the free parameters of the theory are absent in the field
equations and effectively the Fierz-Pauli mass term is rebuilt. In this situation, the equations
that should be solved are simplified to the following system of partial differential equations

2(µ− λ) + 2r2µrr + 6rµr − 2rλr + r2(λyy + 2µyy) +m2
gr

2(λ+ 2µ)) = 0 , (38)

2(λ− µ)− 2rµr − 2rνr − r2(νyy + 2µyy)−m2
gr

2(ν + 2µ) = 0 , (39)

−r2(νrr + µrr)− rνr − 2rµr + rλr − r(νyy + λyy + µyy)−m2
gr

2(ν + λ+ µ) = 0 , (40)

2(λ− µ)− 2r2µrr − r2νrr + 2r(λr − 3µr − νr)−m2
gr

2(ν + λ+ 2µ) = 0 , (41)

(λ− µ) = rµr +
1

2
rνr + f(r) , (42)

where f(r) is an arbitrary function. The constraint equations (32) and (33) in the unitary
gauge are represented by the following equations

νr + 2µr = 0, (43)

νy + λy + 2µy = 0. (44)

The Israel-Darmois junction conditions on the brane are independent of the gauge and are
the same as before, that is, Eqs. (34)-(36). The three free parameters of the theory α, β and
σ do not exist in the unitary gauge. The general solution of the bulk field equations with
the mentioned assumptions that satisfies the constraint equations are obtained as follows

λ = µ = a cos(mgy) + b sin(mgy), (45)

ν = −3µ = −3

(
a cos(mgy) + b sin(mgy)

)
, (46)

where a and b are integration constants. By putting these solutions into the Israel-Darmois
junction conditions, we see that b should be zero. Therefore, the linearized theory in the
unitary gauge leads to the following line element on the brane

ds4
2 = −(1− 3a)dt2 + (1 + a)dr2 + r2(1 + a)dΩ2 . (47)

Actually, this solution after the coordinates redefinition (t, r)→ (t′, r′), where t′ = (
√

1− 3a) t
and r′ = (

√
1 + a) r, reduces to the 4D flat Minkowski metric. But, this coordinates trans-

formation leads to the appearance of the temporal component of the Stückelberg fields as

φ0 = (1− η)t′, η = 1− 1√
1− 3a

, (48)
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and the scalar mode of massive graviton resulting from this Stückelberg field is π = 1
2ηΛ3t′2.

The final result is a flat 3-brane solution which is accompanied by the obtained scalar mode.

For the second simplifying assumption, we decided to work in non-unitary gauges. In
this case, the free parameters of the theory (α, β, σ) play important roles in characterizing
the properties of the solution, such as the (A)dS curvature scale. Moreover, the unknown
scalar field φ(r) is coupled nonlinearly with other unknown metric components which can
make the field equations more difficult to solve. We should determine a consistent scalar field
φ(r) together with other unknown functions from field equations. Here, we consider three
additional simplifying assumptions. The first one is to assume that the functional µ(r, y) be
just a function of the extra dimension y, which in the non-unitary gauge (φ(r) 6= r) it could
be a reasonable assumption. In this situation, solving the field equations could be slightly
more easier. Moreover, we can restrict ourself to specific choices of the free parameters. The
second assumption is to consider the case α = β = σ = 0, which is equivalent to the choices
α3 = −α4 = α5 = −1. By this assumption, the effective energy-momentum tensor XAB

takes the Fierz-Pauli structure, i.e. XAB = KAB − [K]gAB . However, the expression of it’s
components are not the same as eq. (37), which resulted in the unitary gauge. For this
special choices of the free parameters, the components of XAB takes the following form

X00 = 3− φ′ − 2
φ

r
+ (3− φ′ − 2

φ

r
)ν +

1

2
φ′λ+

φ

r
µ , (49)

X11 = −2 + 2
φ

r
− 1

2
ν − φ

r
µ+ (−2 + 2

φ

r
)λ , (50)

X22 = r2
(
− 2 +

φ

r
+ φ′ − 1

2
ν − 1

2
φ′λ+ (−2 +

φ

2r
+ φ′)µ

)
, (51)

X33 = sin2(θ)X22 , (52)

X55 = −3 + 2
φ

r
+ φ′ − 1

2
ν − 1

2
φ′λ− φ

r
µ , (53)

where reduce to (37) for φ(r) = r. The constraint equations (32) and (33) for these special
choices of the parameters are

2(φ′ − φ

r
)− 1

2
rνr − φµr + (

φ

r
− φ′)µ = 0 , (54)

νy + φ′λy + 2
φ

r
µy = 0. (55)

The scalar field φ(r) is yet stayed coupled with other fields which this makes finding the
solutions of the field equations difficult. The third assumption we do is to linearize the field
equations with respect to the scalar field by considering φ(r)� 1 and ignoring the nonlinear
terms in the above equations. Therefore, by imposing these three assumptions we reach to
the following field equations that should be solved analytically

2(µ− λ)− 2rλr + r2(λyy + 2µyy) + 2m2
gr

2(3− φ′ − 2
φ

r
+ 3ν) = 0 , (56)

2(λ− µ)− 2rνr − r2(νyy + 2µyy) + 2m2
gr

2(−2 + 2
φ

r
− 1

2
ν − 2λ) = 0 , (57)

−r2νrr + r(λr − νr)− r2(νyy + λyy + µyy) + 2m2
gr

2(−2 +
φ

r
+ φ′ − 1

2
ν − 2µ) = 0 , (58)
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2(λ− µ)− r2νrr + 2r(λr − νr) + 2m2
gr

2(−3 + φ′ + 2
φ

r
− 1

2
ν) = 0 , (59)

(λ− µ) =
1

2
rνr + f(r) , (60)

2(φ′ − φ

r
)− 1

2
rνr = 0 , (61)

νy = 0. (62)

These equations are valid in the regions where ν, µ, λ and φ are very small. We obtained
the following solutions for these linearized field equations

ν(r, y) = a,

λ(r, y) = µ(r, y) =
3

4
a,

φ(r) = (1 + a)r, (63)

where a is an integration constant. Note that these solutions are valid in the regions where

the obtained φ(r) is very small, i.e r �
(

1
1+a

)
. However, the metric here is accompanied by

a nontrivial spatial backgrounds for the Stückelberg fields, πi = xi−φi = −axi, (i = 1, 2, 3),
where xi = (r sin θ cosφ, r sin θ sinφ, r cos θ). The corresponding 4D line element on the
3-brane is given by

ds4
2 = −(1 + a)dt2 + (1 +

3

4
a)dr2 + r2(1 +

3

4
a)dΩ2 . (64)

However, in this case the solution on the brane transforms also to the 4D flat Minkowski
metric, after the coordinates redefinition (t, r) → (t′, r′) with t′ =

√
1 + a t and r′ =√

1 + 3
4a r. Due to this coordinates transformation, the temporal and spatial components

of the Stückelberg fields will take the following forms

φ′0 =
1√

1 + a
t′, (65)

φ′i =
1 + a√
1 + 3

4a
x′i. (66)

Finaly, the scalar mode of massive graviton resulting from these Stückelberg fields is

π =
Λ3

2
(δ t′2 + γ x′2), (67)

where the constants δ and γ are related to a via δ = 1− 1√
1+a

and γ = 1− 1+a√
1+ 3

4a
.

In this paper, we considered two simplified linear theories in both unitary and non-unitary
gauges and found in both cases a flat solution on the brane with different background
Stückelberg fields (after a coordinates redefinition). In non-unitary gauge, we restricted
ourself to special choices of the free parameters of the theory. Finding a general analytical
solution for the linear theory with arbitrary α, β and σ together with the unknown scalar
field φ(r) and then screening the solution on the brane to be consistent with junction condi-
tions is a very difficult and complicated procedure. However, in the regions where we should
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keep nonlinear terms in the field equations, solving them will be more intricate. In this sit-
uation, we can pursue alternative approaches, such as solving the equations numerically or
finding the effective 4D field equations on the brane for the new braneworld massive gravity
theory and then solving them analytically [60, 61]. We are working on these subjects and
the outcomes after completion will be presented in another paper.

4 Summary

We know that a way in which a massive graviton can naturally arise is from higher di-
mensional scenarios, such as KK, ADD and DGP theories. It has been shown that there
is a deep connection between the DGP braneworld gravity and massive gravity theories.
The graviton in the DGP setup acquires effectively a soft mass and the induced gravity
term in the brane action acts as a kinetic term for a 4D graviton, while the bulk Einstein-
Hilbert term acts as a gauge invariant mass term. Studying massive gravity from extra
dimensional point of view can be useful for better understanding of certain aspects of the
dRGT massive gravity theory and its bigravity and multi-gravity extensions. This fact was
the original motivation of this paper to construct an extension of massive gravity in the
spirit of braneworld scenarios. We have constructed a combination of the braneworld sce-
nario and covariant de Rham-Gabadadze-Tolley (dRGT) massive Gravity, where we suppose
that the five-dimensional bulk graviton is massive. We considered a static 5D configuration
with spherical symmetry on the brane, aimed at separately determining the effects of bulk
graviton mass term and also the large extra dimension on the gravitational interactions on
the brane. Then, by a detailed analytical treatment, the effects of the nonlinear ghost-free
massive gravity on brane dynamics and effective gravitational potential on the brane are
examined. In this manner, the full field equations and their weak field limits together with
the generalized Israel-Darmois junction conditions on the brane are presented. This set of
equations are so complicated to be solved analytically without some simplifying assumptions.
For this reason, by adopting some simplifying assumptions, we were able to find two classes
of four-dimensional spherically symmetric solutions on the brane in unitary and non-uniary
gauges. Both of them were flat solutions on the brane with different background Stckelberg
fields (after a coordinates redefinition). We note that general massive braneworld solutions
should reduce to the massless braneworld solution in the limit of zero bulk graviton mass
as has been studied in [59]. To restore the GR or the original DGP model on the brane,
we should consider certain nonlinear terms in the bulk field equations and the brane junc-
tion conditions, which make the solving procedure more difficult (because of the bulk mass
terms). We are attempting to follow alternative approaches, such as solving the field equa-
tions numerically or finding the effective 4D field equations on the brane for the new massive
braneworld theory [60, 61], to examine the Vainshtein mechanism in our model. This issue
in the absence of the Boulware-Deser ghost and also the instability issue are subject of our
forthcoming work.
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