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Abstract. The Earth’s atmosphere is an environment replete with particles of

different sizes with various refractive indices which affect the light radiation traveling

through it. The Mie scattering theory is one of the well-known light scattering

techniques applicable to modeling of electromagnetic scattering from tiny

atmospheric particles or aerosols floating in the air or within the clouds. In this

study, the scattering characteristics of atmospheric particles are investigated for a

wide range of particle types and particle sizes within the framework of Mie’s theory.

The scattering and back-scattering coefficients are calculated and it is observed that

the maximum scattering occurs for particle sizes comparable to the radiation

wavelength while the spherical particles with diameters much greater than the

wavelength scatter the least. The calculations were carried out in the MATLAB

environment and the results demonstrate that the scattering anisotropy has a direct

relation with diameter of the particles.
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1 Introduction

In the field of light scattering studies, one of the important problems that has exact solution
is the theory of absorption and scattering by small spherical particles with specific radius
and refractive index [1]. The basis computations for this kind of scattering was proposed by
Gustav Mie (1908) when he tried to understand scattering of light by small gold particles
suspended in water [2]. Concurrently, Peter Debye was working on radiation scattered by
particles in the interstellar medium [3]. But, neither Mie nor Debye were able to formulate
the exact mechanism of scattering by spheroids. Historical evidences reveal that it was
Lorenz who later found the solution; though, nowadays, the theory is commonly known as
Mie theory [4]. In Mie’s scattering theory, wavelength of the incident radiation has to be
slightly less than or equal to dimensions of the particle and the particle’s refractive index is
supposed to be greater than that of the surrounding environment.

By now, vast numbers of research papers and valuable reviews and books are published
on the subject of describing or applying Mie’s theory [5, 6, 7, 8, 9]. Nowadays, the theory
finds broad range of applications in areas such as studying scattering caused by interstellar
dust, near-field optics and pertinent engineering subjects [10]. Vast number of official and
unofficial program packages can be found which are written with the intention of simulating
the Mie scattering. Specifically, it is incorporated in state-of-the-art applied softwares such
as MATLAB and COMSOL. For further details, the readers are referred to Mätzler (2002),
Kolwas (2010), and Yushanov et al. (2013).

There are primary works which have exploited Mie’s theory to investigate the light scat-
tering and transmission by droplets. Stratton and Houghton (1931) demonstrated that the
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size of droplets is a factor that controls the transmission characteristics in the fog. They
presented that their theoretical transmission curves has correspondence with experimen-
tal results [14]. In other work, the scattering cross section of droplets were discussed by
Houghton and Chalker (1949). They defined the parameter α = 2πr

λ
, which is known as

dimensionless size parameter [7] (see Section 3), to plot the scattering area coefficient versus
this parameter [15]. In the range that they picked up for α, it was appeared some minima
and maxima indicated the behavior oscillation. The amplitude of scattering area coefficient
decreased with increasing α. In one of the recent works, Mie’s scattering theory has been
employed to calculate the maximum value of the polarized phase function for spherical par-
ticles with regard to their bimodal log-normal size distribution [16]. The maximum value
of the polarized phase function for spheroids in the atmosphere with randomly oriented was
calculated using polarized sun-photometer measurements. In comparison, both experimental
and analytical results did not show a significant difference.

For droplets floating in atmosphere, their shape naturally requires to have the minimum
amount of surface tension in specific volume. So, it tends to arrive at optimum state of the
surface area which leads to spherical shapes for drops within atmosphere. Thus, it seems
that the use of Mie’s theory for scattering made by droplets is a good approximation.

The amount of water per unit volume, which depends on various parameters, is changing
in various parts of the atmosphere throughout different layers. The first thing that is influ-
enced by density of water (humidity) is the size of droplets. Since the size of droplets affects
light scattering, we decided to compute both forward and backward scattering using analyt-
ical simulation. This can present the values of scattering efficiencies wherever throughout
the lower layers of the atmosphere depending on humidity. Moreover, this technique can be
used for planets with atmosphere including tiny particles (vapors) such as Mars and Saturn
[17, 18].

In this work, we have applied the Mie scattering techniques to scattering analysis of
an incident electromagnetic wave by particles of various sizes. The analytical solutions
are implemented in the MATLAB environment. The scattering coefficients and anisotropy
parameters are obtained via simulation and the results are verified by comparison to the
extract electromagnetic wave behavior of a target placed in different atmospheric conditions.

The paper is organized as follows: A concise description of the fundamental formula-
tions of Mie’s theory is expressed in Section 2. The investigation results are presented and
discussed in Section 3. Section 4 summarizes our achievements and proposes an outlook for
future studies.

2 Mie Theory of Light Scattering by a Sphere

We know that a time dependent electromagnetic field in a linear, homogeneous and isotropic
medium satisfies the following wave equations

∇2
E+ k2E = 0; ∇2

H+ k2H = 0, (1)

with k2 = ω2µǫ where ω is frequency of the incident wave, µ is the magnetic permeability
and ǫ is the electric permittivity. Since the charge density is zero, we would have

∇.E = 0, ∇.H = 0. (2)

Moreover, according to Maxwell’s equations, and on the basis of Faraday’s and Ampère’s
laws,

∇×E = iωµH, ∇×H = −iωµE. (3)
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Figure 1: The geometry of the scattering problem is shown in the spherical coordinates.

To solve Eq. (1), we must find a solution for wave function expressed as follows

∇2ψ + k2ψ = 0, (4)

where ψ is a scaler parameter called the Generating Function [19].
To find a convenient solution for Eq. (4), the use of spherical coordinates is needed,

because the geometry of an isolated particle illustrates the spherical symmetry (See Figure
1). In this coordinates, the differential form of the scalar wave equation can be written as

1

r2
∂

∂r
(r2

∂ψ

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂ψ

∂θ
) +

1

r2 sin θ

∂2ψ

∂2ϕ
+ k2ψ = 0. (5)

By substituting the solution ψ(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ), three separate equations will be
yielded which are linearly independent and single-valued. Thus, the complete solution of
Eq. (5) takes the following forms

ψemn(r, θ, ϕ) = cosmϕPm
n (cos θ)zn(kr), (6)

ψomn(r, θ, ϕ) = sinmϕPm
n (cos θ)zn(kr), (7)

where subscripts e and o are representatives of evenness and oddness, respectively. In this
formula, Pm

n are the associated Legendre functions where the integers n and m denote the
degree and the order number, respectively. Depending on the problem conditions, zn with
argument k can be any of the four spherical Bessel functions. The solution of Eq. (4) has
a capability of being expanded as an infinite series of the functions (6) and (7) [1, 19].

In the spherical coordinates, an incident electromagnetic plane wave which is linearly
polarized along the x axis and is propagating in the z direction (Figure 1) can be expressed
as

Ei = E0 exp(ikr cos θ)ex, (8)

where E0 and k are the amplitude of the electric field and the wavenumber, respectively.
The unit vector, ex, lies in the polarization direction and takes the following form in the
spherical coordinates

ex = sin θ cosϕer + cos θ cosϕeθ − sin θeϕ. (9)
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Considering the boundary conditions between the particle and its surroundings, we have

(Ei +Es −El)× er = (Hi +Hs −Hl)× er

= 0. (10)

The notations Es and Hs are used for scattered electric and magnetic fields, respectively.
On the other hand, the electric and magnetic fields inside the particle are indicated by El

and Hl, respectively. Using some algebraic calculations, orthogonality conditions, and with
the help of boundary conditions, the unknown coefficients of the spherical harmonics form

of Eq. (8) are computed by using the spherical Hankel functions of the first kind, H
(1)
n .

Mie coefficients for the scattered field are introduced as the coefficients an and bn. Then,
using Eq. (10), at the surface of the sphere, the analytical solution for the Mie coefficients
are extracted

an =
µm2Jn(mx)[xJn(x)]

′ − µlm
2Jn(x)[mxJn(mx)]

′

µm2Jn(mx)[xH
(1)
n (x)]′ − µlH

(1)
n (x)[mxJn(mx)]′

, (11)

bn =
µlJn(mx)[xJn(x)]

′ − µJn(x)[mxJn(mx)]
′

µlJn(mx)[xH
(1)
n (x)]′ − µH

(1)
n (x)[mxJn(mx)]′

. (12)

Parameters µ and µl are the magnetic permeabilities of the medium and the spherical par-
ticle, respectively. Parameter x, which is defined as x = kr = 2πRn

λ
, is named the size

parameter, wherein R and λ are the radius of the sphere and the incident wavelength, re-
spectively. Parameterm is the proportion of the refractive index of the particle to refractive
index of the surrounding medium, (i.e., m = nl

n
). The superscript ,, ′ ,, means derivative

with respect to the mentioned argument. The index n is ranged from 1 to ∞, but the infinite
series appeared in Mie relations can be truncated at a value nmax, which is proposed by
Bohren and Huffman (1983)

nmax = x+ 4x
1

3 + 2. (13)

There is another condition which states that the coefficients must vanish for all m 6= 1
within the particle. So, using the boundary condition expressed in Eq. (10), the coefficients
cn and dn, and hence, the internal fields can be attainable inside the sphere in the same way
as described for the external fields

cn =
µlJn(x)[xH

(1)
n (x)]′ − µlH

(1)
n (x)[xJn(x)]

′

µlJn(mx)[xH
(1)
n (x)]′ − µH

(1)
n (x)[mxJn(mx)]′

, (14)

dn =
µlmJn(x)[xH

(1)
n (x)]′ − µlmH

(1)
n (x)[xJn(x)]

′

µm2Jn(mx)[xH
(1)
n (x)]′ − µlH

(1)
n (x)[mxJn(mx)]′

. (15)

For detailed information about the algebra and related programming, the readers are referred
to Bohren and Huffman (1983), Mätzler (2002), and Garćıa-Cámara (2010). We seek both
the scattering efficiency Qscat (i.e., the scattered light power integrated over all directions)
and the extinction efficiency Qext by the Extinction Theorem [20] that leads to

Qscat =
2

x2

∞
∑

n=1

(2n+ 1)
(

|an|
2 + |bn|

2
)

, (16)

Qext =
2

x2

∞
∑

n=1

(2n+ 1)Re (an + bn) . (17)

where the index n runs up to nmax, the series truncation number, as given in Eq. (13).
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Figure 2: The scattering (dashed lines) and back-scattering (solid lines) efficiencies with
their mean and variance for particles with diameters 0.1 µm (A), 1 µm (B), and 10 µm (C).
The incident wavelengths are ranged from 0.3 to 1.4 µm represented by dimensionless size
parameter x. The parameter a is radius of the spherical particle and the wavenumber k0 is
defined as 2π

wavelength .

During the interaction between light and particle, the energy conservation dictates that
the scattering and the absorption efficiencies add up to the extinction efficiency

Qext = Qscat +Qabs. (18)

Another important parameter, which is applicable to monostatic radars, is the back-scattering
efficiency Qb [20] that has the following form

Qb =
1

x2
|

∞
∑

n=1

(2n+ 1)(−1)n (an − bn) |
2. (19)

3 Results and Discussion

Using Eqs. (11)–(19), the programs are prepared to be performed in the MATLAB en-
vironment. To do this, the refractive index of the surrounding medium and the spherical
droplet are assumed to be 1 and 4

3 , respectively. Both the surrounding medium and the
droplet are taken to be nonmagnetic and their magnetic permeabilities are set equal to 1.
First, the dimensionless size parameter is defined as x = 2πa

λ
, where the parameters a and

λ are the radius of particle and wavelength, respectively [7, 15]. Then, the scattering and
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Figure 3: The scattering coefficient for particle with three different diameters (i.e., 0.1, 1,
and 10 µ m) for long range of wavelengths ([0.3 1.4] µm) in steps of 0.001 µm is drawn (A).
As it can be seen the scattering coefficient for particles with 1 µ m (black dashed line) takes
values greater than that of other size of particles. The anisotropy of scattering for particle
with three different diameters for wavelengths ranged from 0.3 µm to 1.4 µm is extracted
(B). This parameter shows that how the scattering made by droplets in different directions
is influenced by the size of particle.

back-scattering efficiencies are computed for particles with three different diameters of 0.1,
1, and 10 µm where the incident wavelength is incremented from 0.3 to 1.4 µm (covering
the whole visible spectrum) in steps of 0.001 µm (Figure 2). As it can be seen in Figure 2A,
both the scattering and back-scattering efficiencies follow the same ascending behavior when
the particle size is smaller than the wavelength. The range of scattering and back-scattering
efficiencies is completely separated when the particle size is comparable to the wavelength
(Figure 2B). For particle size comparable with incident wavelengths, the role of spherical
harmonics (as discussed in Houghton and Chalker (1949)) is better appeared as smoothed
fluctuations in both efficiencies specially in the back-scattering efficiency. In the case of the
droplet being larger than the wavelength, the back-scattering efficiency fluctuates consider-
ably while the scattering follows an almost straight line for all wavelengths (Figure 2C). The
variance of scattering efficiency of particles having diameters more greater than the incident
wavelengths displays that it approximately follows the same trend.

For the next step, we are interested in obtaining the scattering coefficient µs defined as

µs = 10000 ρ QscatA, where ρ =
Fv

Vsphere
. (20)

Here, A is the geometrical cross section of the spherical particle with a dimension of [µm2].
The variable ρ, known as the concentration of spheres inside the given volume of the sur-
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rounding, has a dimension of [µm−3]. Parameter Vsphere is the volume of sphere, and Fv is
a volume fraction of spheres in the medium (a criterion for humidity). In our example, the
level of humidity in the medium is considered to be 0.05 kgm−3 (Fv = 0.00005). This value
roughly imitates the highest possible humidity occurring in the atmosphere.

The scattering coefficient, as defined in Eq. 20, represents a criterion for measuring the
amount of scattering per spatial unit (e.g., m, cm). In Figure 3A, it can be observed that
the scattering coefficient decreases for all particle sizes as the incident wavelength increases.
The scattering coefficient for particles with diameters comparable with incident wavelengths
(i.e., 1 µm) takes values greater than that of other particles sizes. For other size of particles,
the scattering coefficient doesn’t show considerable variations.

Another dimensionless parameter that plays an important role in the scattering process
is the asymmetry parameter (anisotropy). It is defined as the average of cosine over all the
scattering angles < cos θ > [11] which can be computed as follows

Qscat < cos θ >=
4

x2
{

∞
∑

n=1

n(n+ 2)

n+ 1
Re(ana

∗

n+1 + bnb
∗

n+1) +

∞
∑

n=1

(2n+ 1)

n(n+ 1)
Re(anb

∗

n)}, (21)

where the asterisk symbol denotes the complex conjugate of the coefficients.

The scattering anisotropy for three different particle sizes in a specific range of wave-
lengths is shown in Figure 3B. According to the variations of this parameter, we can see
how the scattering made by droplets in various angles is influenced by the particle size. It
can be seen that the asymmetry parameter increases with increasing the particle size. For
wavelengths much smaller than the particle sizes of interest, the anisotropy reveals a com-
plex behavior. For this sample, the average of the asymmetry parameter is approximately
constant in different wavelength limits, but the amount of variance is higher as compared
to the other sample sizes.

4 Conclusion

In this study, we presented a simulation of the Mie scattering in the MATLAB environment
from droplets floating throughout the atmosphere. In our simulations, the wide range of
wavelengths [0.3 1.4 µm] with linear polarization as incident waves were encountered with a
surface of different scale of particles which is representative of humidity in the atmosphere.
According to Figure 2 and the average of efficiencies, we can say that the scattering efficiency
in the Mie scattering rise to a maximum as the particle sizes approach magnitude of the
incident wavelength. On the other hand, the back-scattering efficiency in the atmosphere
attains its peak value (though with fluctuations) as the diameters of the particles get larger
than the incident wavelength. As shown in Section 3, droplet has the greater value of the
scattering coefficients for sizes comparable with the incident wavelengths. It means the
amount of scattering of these scales of particles in the atmosphere is more than the other
sizes. On the basis of our results, the anisotropy of particles that have sizes smaller than
wavelengths is much more than the other scales of spheres. Now, we are able to simulate
internal and external electromagnetic fields of any kind of spherical non-magnetic particles in
the atmosphere by using Mie theory. In the future, we are going to calculate Mie Scattering
and related physical parameters of other kind of particles with proximate spherical shapes
and different refractive indices existed within the atmosphere.
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