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Abstract. Propagation of dust ion acoustic waves in plasmas composed of non-

thermal distributed electrons and stationary dust particles is investigated. Nonlinear

Schrdinger equation is derived to describe small amplitude waves, using the reduction

perturbation technique. Modulation instability of dust ion acoustic waves is analysed

for this system. Parametric investigation indicates that growth rate of the modulational

instability is sensitive to the value of non-thermal parameter and relative density of

plasma constituents.
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1 Introduction

Small amplitude localized perturbations associated with the dust ion acoustic waves (DIAW)
[1, 2, 3], particularly the dust ion-acoustic envelope solitary waves [4, 5] have received great
attention in plasma physics because of their importance in astrophysical environments as well
as in laboratory experiments[6-11]. Comets are surrounded by multi-ion plasmas composed
of electrons and protons (which come from solar wind), positively charged hydrogen H+

and oxygen ions (originated from water molecules) and a sort of photo-electrons [12]. Other
important species of hot ions like H+

2 , He+, He2+, CO+ ,etc have been reported in the tail
of comet Halley [13, 14]. Multiply ionized heavy particles also have been observed in comet
McNaught-Hartley [15, 16]. Some measurements also indicated the presence of negative ions
in some regions of earth’s ionosphere and also in the Titans atmosphere [17, 18, 19]. Effects
of such grains on the behaviour of astrophysical plasmas have been investigated extensively.
Shukla and Silin [12] have theoretically shown that a dusty plasma (with negatively charged
static dust) supports low-frequency dust ion-acoustic (DIA) waves (DIAWs) with phase
velocity much smaller (larger) than the electron (ion) thermal speed, due to the conser-
vation of equilibrium charge density. The DIAWs have also been observed in laboratory
experiments [21, 22]. Mamun and Shukla [23, 24] have investigated DIASWs in unmagne-
tized dusty plasmas consisting of cold ion fluid, isothermal electrons, and negatively charged
static dust particles. Mamun [25] discussed the propagation of nonlinear one-dimensional
DIASWs in unmagnetized dusty plasmas containing adiabatic ions, electrons and negatively
charged static dust grains. The standard multiple scale technique [26, 27] employed in the
study of this mechanism, leads to a nonlinear Schroedinger-type equation (NLSE), describ-
ing the evolution of wave envelopes. Under certain conditions, the wave may undergo a
BenjaminFeir-type (modulational) Instability (MI), i.e., its envelope may collapse under the
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influence of external perturbations. The NLSE is used in a variety of physical contexts to
describe some behavioural aspects of systems [28, 29, 30]. This equation reveals the possibil-
ity of the existence of localized excitations like envelope solitary waves. The NLSE is able to
successfully explain the characteristics depend on criteria, similar to the ones necessary for
the MI in plasmas. These structures, sustained by the mutual compensation of dispersion
and nonlinearity, may be the result of energy localization in the evolution stage following the
wave amplitude collapse and propagate in the nonlinear medium for long times, surviving
interactions with each other. The dynamics of modulated dust-acoustic wave packets in
dusty plasmas with Boltzmann distributed electrons have been have been investigated in
previous studies [31, 32, 33].

Numerous observations clearly indicate the presence of energetic electrons as ubiquitous
in a variety of astrophysical plasma environments and measurements of their distribution
functions revealed them to be highly non-thermal. non-thermal distributions are turning out
to be a very common and characteristic feature of space plasmas where coherent nonlinear
waves and structures are expected to play an important role. Such non-thermal populations
may be distributed isotropically in velocities. They may possess a net streaming motion
with respect to the background plasma. Their presence has been confirmed by many obser-
vations in space plasmas [26-29]. Observations made by the Viking spacecraft [38] and Freja
satellite [39] have found electrostatic solitary structures in the magnetosphere with density
depressions. Motivated by these events, Cairns et al. [40] showed that the presence of
non-thermal distribution of electrons may change the nature of ion sound solitary structures
and allow the existence of rarefactive ion-acoustic solitary structures like those observed
by Freja and Viking. Some recent theoretical works focused on the effects of particle non-
thermality on different types of linear and nonlinear collective processes [33-44]. From the
best of our knowledge, the dynamics of modulated dust-acoustic wave in dusty plasmas with
non-thermal electrons have never been addressed in the plasma literature. The aim of this
paper is to study the MI of DIAWs in dusty plasmas consisting of negative dust particles
as well as non-thermal electrons. The layout of this article goes as follows: In Section 2,
we present the basic equations. Also we obtain a nonlinear Schrdinger equation, governing
the slowly varying modulation, using the reductive perturbation technique. In section 3,
we discuss the numerical results of MI analysis and present the influence of non-thermal
parameters and dust (or electron/ion) concentration on the growth rate of the modulational
instability. Section 4 is kept for discussion and conclusions.

2 Basic equations and derivation of NLSE

We consider an unmagnetized dusty plasma whose constituents are cold inertial ions, non-
thermal distributed electrons, negatively charged immobile dust particles. The inertia of
the system is provided by the ion mass, and the restoring force comes from the pressure of
inertialess electrons, and the equilibrium charge neutrality condition is maintained by the
stationary dust particles. In equilibrium, the charge neutrality condition is ni0 = Zdnd0+ne0

where ni0, nd0 and ne0 are unperturbed number densities of the ion, dust and electron,
respectively. Hence, the usual ion fluid equations, which include the continuity equation,
momentum balance equation, and Poisson’s equation, governing the DIAW are as follows:

∂n

∂t
+

∂nu

∂x
= 0 (1)

∂u

∂t
+ u

∂u

∂x
= −

∂φ

∂x
(2)
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∂2φ

∂x2
= µne − n+ 1− µ (3)

where n is the ion number density normalized by its equilibrium value (ni0). u is the ion fluid
speed, normalized by ci =

√

Te/mi and φ is the electrostatic wave potential normalized by
(Te/e), where Te is the electron temperature. The time t and the distance x are normalized

by the ion plasma frequency ω−1
pi =

√

mi

4πni0e2
and the Debye radius λDi =

√

Te

4πni0e2
,

respectively. We have denoted µ = ne0

ni0

. The non-thermal electron number density is given
by [53]:

ne = (1− βφ + βφ2)eφ (4)

where β = 4α
1+3α and α is a parameter that determines the fraction of energetic non-thermal

electrons and characterizes the degree of electron non-thermality. Now using ne in the
Poissons equation we get

∂2φ

∂x2
= 1+ c1φ+ c2φ

2 + c3φ
3 − n (5)

where

c1 = µ(1− β) (6)

c2 =
µ

2

c3 =
µ

2
(
1

3
+ β)

We employ the standard reductive perturbation technique [54] to investigate the amplitude
modulation of DAWs in dusty plasmas with non-thermal electrons and ions. The indepen-
dent variables are stretched as ξ = ǫ(x − V0t) and τ = ǫ2t, where ǫ is a small constant and
V0 is a free parameter to be determined later as the group velocity of moving waves by the
compatibility condition. The dependent variables are expanded as follows:

n = 1 +
∞
∑

r=1

ǫr
+∞
∑

l=−∞

nr
l (ξ, τ)e

il(kx−ωt) (7)

u =

∞
∑

r=1

ǫr
+∞
∑

l=−∞

ur
l (ξ, τ)e

il(kx−ωt)

φ =

∞
∑

r=1

ǫr
+∞
∑

l=−∞

φr
l (ξ, τ)e

il(kx−ωt)

where nr
l , ur

l and φr
l are real functions in a way that, for example, nr

l = nr
l
∗ and the

asterisk denotes complex conjugation. Substituting these expressions along with stretching
coordinates into equations (1)-(6) and collecting the terms in the different powers of ǫ, we can
find all orders of reduced equations. We obtain the first-order (r = 1) equation quantities
with l = 1 as follows:

−iωn1
1 + iku1

1 = 0 (8)

−iωu1
1 − ikφ1

1 = 0

n1
1 + (k2 + c1)φ

1
1 = 0
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The solution for the first harmonics is:

n1
1 = −(k2 + c1)φ

1
1 (9)

u1
1 = −

ω

k
(k2 + c1)φ

1
1

that give rise to the following dispersion relation for the DIAWs:

ω2

k2
=

1

k2 + c1
(10)

At second order in ǫ and using the zeroth and second harmonics, we expect to extract
expressions for the group velocity V0. For r = 2 and l = 1, we need to impose a compatibility
condition in the following form:

∂φ1
1

∂t
+ V0

∂φ1
1

∂x
= 0 (11)

where we have defined the group velocity V0(k) =
∂ω
∂k

given by:

V0 =
ω

k

(

1− ω2
)

= c1
ω3

k3
(12)

The expressions for the amplitudes corresponding to the first harmonics in order ǫ2 are given
by:

−iωn2
1 + iku2

1 = V0
∂n1

1

∂ξ
−

∂u1
1

∂ξ
(13)

−iωu2
1 + ikφ2

1 = V0
∂n1

1

∂ξ
+

∂φ1
1

∂ξ

−n2
1 − (k2 + c1)φ

2
1 = 2ik

∂φ1
1

∂ξ

The second-harmonic modes r = 2, l = 2 arising from the nonlinear self-interaction of the
carrier waves are obtained in terms of (φ1

1)
2 as

n2
2 = An(φ

1
1)

2 (14)

u2
2 = Au(φ

1
1)

2

φ2
2 = Aφ(φ

1
1)

2

where

An = −c2 −

(

k2 + 3k2ω2

ω2

)

Aφ (15)

Au =
ω

k

(

An −
k4

ω4

)

Aφ = −
c2
3k2

−
k2

2ω4

The zeroth-harmonic mode (in terms of |φ1
1|

2 = (φ1
1)

∗(φ1
1)) also appears due to the self

interaction of the modulated carrier wave. Its expression cannot be determined completely
within the second order and we will have to consider the third-order equations. Thus, the
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l = 0 components of the third-order part of the reduced equations determine the following
second-order quantities in the zeroth-harmonic:

n2
0 = Bn|φ

1
1|

2 (16)

u2
0 = Bu|φ

1
1|

2

φ2
0 = Bφ|φ

1
1|

2

where

Bn = −c1Bφ − 2c2 (17)

Bu = −
2k3

ω3
+ V0Bn

Bφ = −
2c2V

2
0 + 3c1 + k2

1− c1V 2
0

Finally, substituting all the previous derived expressions into the relations for n = 3, l = 1
lead to the following NLS equation:

i
∂Φ

∂τ
+ P

∂2Φ

∂ξ2
+Q|Φ|2Φ = 0 (18)

For the slowly varying first-order amplitude of the plasma perturbation potential, Φ = φ1
1 .

In the above equation, the coefficients P and Q are given as:

P = −
3

2
c1

ω5

k4
(19)

Q =
ω2

2k2

[

3c3 + 2c2 (Aφ +Bφ)− 2
k

ω

(

k2 + c1
)

(Au +Bu)−
(

k2 + c1
)

(An +Bn)

]

3 Modulation instability (MI)

We have studied the MI of DAWs through considering a small perturbation δφ from the
potential Φ. Therefore, we set Φ = (Φ0 + δφ)ei∆τ , where Φ0 is the amplitude of the pump
carrier which is much larger than the perturbation, i.e. Φ0 ≫ |δφ| where Φ = φ1

1; also here,
∆ is a nonlinear frequency shift produced by the nonlinear interaction. After substituting
Φ = (Φ0 + δφ)ei∆τ into equation 18 and collecting terms of the same order, we obtain [55]

∆ = −Q|Φ0|
2 (20)

and

i
∂δφ

∂τ
+ P

∂2δφ

∂ξ2
+Q|Φ0|

2(δφ+ δφ∗) = 0 (21)

where δφ∗ is the conjugate of δφ. Upon assuming the amplitude perturbation varying as
ei(kξ−Ωτ), we obtain the following nonlinear dispersion relation

Ω2 = −P 2k2(k2 − 2Q|Φ0|
2/P ) (22)

Clearly, if PQ < 0, for all values of k, the DAW is stable at the presence of small perturba-
tions, since Ω is always a real number. On the other hand, when PQ > 0, the modulation
instability (MI) would arise as Ω becomes imaginary. This happens when the modulation
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Figure 1: Variation of the NLSE coefficients ratioP/Q with respect to the carrier wave
number k for different values of β with µ = 0.2.

wave number k of external perturbation is less than the critical value kcr =
√

2Q|Φ0|2/P .
In the region PQ > 0 and k < kcr, the MI growth rate is

Γ = Im(Ω) =
√

P 2k2(k2cr − k2) (23)

Obviously, the growth rate reaches its maximum value, Γmax = Q|Φ0|
2, for k = |kcr|

2 .
Our primary aim is to demonstrate the effects of the non-thermal electrons and ions on
the instability of DAWs. As mentioned before, we expect MI arise for PQ > 0. Our
analysis shows that the coefficient P is always negative, but Q can be negative or positive.
Apparently, the coefficients of dispersion term P and nonlinear term Q are related to β and
µ. Therefore, we expect that these parameters affect the instability characteristics which
may develop in our plasma system. To investigate these effects with more details, we plot the
ratio of P/Q versus the carrier wave number k for different parameters. In all cases which
we have presented here, Q = 0 corresponds to zero dispersion point leading to P/Q → ±∞.
The corresponding value of k (= kc ) is called critical or threshold wave number for the
onset of MI.

Figure 1 presents P/Q ratio as functions of k for different values of non-thermal parameter
β. This figure shows that threshold wave number kc shifts toward larger values as non-
thermal parameter β increases. This means that fast particles prevent the MI.

Figure 2 demonstrates P/Q ratio respect to wave number k for different values of µ = ne0

ni0

.
As figure 2 presents, the threshold wave number goes toward lower values as µ increases.
Thus, onset of MI shifts toward greater wave number in plasmas with higher population of
ion particles. This means that existence of ion particles helps the stability of plasmas.

4 Conclusion and Remarks

Modulational instability in unmagnetized dusty plasma containing cold inertial ions, non-
thermal distributed electrons and negatively charged immobile dust particles has been in-
vestigated. We have shown that small perturbations in the potential evolves according to
the nonlinear Schrdinger equation. Growth rate of such perturbations is very sensitive to
the excess fast electrons and population of ions. Onset of modulational instability shifts
toward larger wave number in plasmas with more numbers of excess fast electrons. On the
other hand, increase in the population of ions improves the system stability. Any way for
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Figure 2: Variation of the NLSE coefficients ratioP/Q respect to the carrier wave number
k for different values of µ with β = 0.3.

some values of population ratio of plasma constituents, perturbations grow in a way that
the plasma becomes unstable.

It is interesting to investigate other multi components plasmas containing non-thermal
electrons. Comparing the results gives more clear view from the role of fast electrons in
plasmas. Also, other distribution functions for plasma species should be studied and the
results would be compared to find better perspective about the nature of plasma systems.
Such investigations can be done in further works.
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