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Abstract. Given the sensitivity of current ground-based Gravitational Wave (GW)
detectors, any continuous-wave signal we can realistically expect will be at a level or
below the background noise. Hence, any data analysis of detector data will need to
rely on statistical techniques to separate the signal from the noise. While with the
current sensitivity of our detectors we do not expect to detect any true GW signals in
our data, we can still set upper limits (UL) on their amplitude. These upper limits, in
fact, tell us how weak a signal strength we would detect. In setting upper limit using
two popular method, Bayesian and Frequentist, there is always the question of realistic
results. In this paper, we try to give an estimate of how realistically we can set the
upper limit using the above mentioned methods. And if any, which one is preferred for
our future data analysis work.
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1 Introduction

Gravitational Waves (GWs), ripples in space-time which travel at the speed of light, are
a fundamental consequence of Einstein’s General Theory of Relativity. Due to the great
distance to any likely detectable sources of GWs, the signal amplitude reaching us will be
very small. Because of limitations in technology, there have been no direct detections of
GWs so far [1]. However, with the future generation of detectors, like Advanced LIGO, we
should be able to detect a variety of sources [1, 2, 3].

Because of their nature, continuous GWs (emitting from axisymetric rotating neutron
stars) reaching Earth are expected to be extremely weak. Therefore even with the quite
significant sensitivity of our current detectors, it will be difficult to detect them. One possible
way to increase the overall signal compared to the background noise (signal-to-noise ratio
(SNR)) is to coherently integrate the data for several days up to few years.

The basic problem in GW detection is to identify a gravitational waveform in a noisy
background. Because all data streams contain random noises, the data are just a series
of random values and therefore the detection of a signal is always a decision based on
probabilities. The aim of detection theory is therefore to assess this probability.

The basic idea behind the current methods of signal detection is that the presence of a
signal will change the statistical characterization of the data x(t), in particular its probability
distribution function (pdf) P (x). Recall that the pdf is defined so that the probability of a
random variable xi lies in an interval between x(t) and x(t) + dx is P (x)dx. Let us denote
by P (x|0) the probability of a random process x(t) (representing our data) in the absence
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of any signal, and by P (x|h) the probability of that same process when a signal h(t) is
present. Given a particular measurement x(t) obtained with our detector, is its probability
distribution given by P (x|0) or P (x|h)? In order to make that decision, we need to make a
rule called a statistical test.

There are several approaches to find an appropriate test, notably the Bayesian, Minimax
and Neyman-Pearson approach (for an overview, we refer the reader to Jaranowski and
Królak, [4] and the references listed therein). In the end, however, these three approaches
lead to the same test, namely the likelihood ratio test [4, 5].

Among the three main approaches, the Neyman-Pearson approach is often used in the
detection of gravitational waves [6]. This approach is based on maximizing the detection
probability (equivalently minimizing the false dismissal rate) for fixed false alarm rate, where
the detection probability is the probability that the random value of a process which contains
the signal will pass our test, while the false alarm probability is the probability that data
containing no signal will pass the test nonetheless. Mathematically, we can express the
Detection and False Alarm probabilities as [6]

PD(R) =

∫
R

P (x|h)dx, (1)

PF (R) =

∫
R

P (x|0)dx, (2)

respectively, where R is the detection region (to be determined).
The Likelihood ratio Λ is the ratio of the pdf when the signal is present to the pdf when

it is absent:

Λ =
P (x(t)|h(t))
P (x(t)|0)

. (3)

Taking the data to be x(t) = h(t)+n(t), with h(t) the signal and n(t) the noise and with
the assumption that the noise is a zero-mean, stationary and Gaussian random process, we
can write the likelihood ratio as

Λ =
P (x|h)
P (x|0)

=
exp(−1

2 (x− h|x− h))

exp(−1
2 (x|x))

= exp[(x|h)− 1

2
(h|h)]. (4)

This leads to the log of likelihood function as

log Λ = (x|h)− 1

2
(h|h). (5)

We can also rewrite the simple expression of Eq. (5) for the likelihood function in terms
of the new variables, Aa and ha, as

log Λ = (x|Aaha)−
1

2
(Aaha|Abhb). (6)

where the constant (in time) amplitudes Aa = Aa(h0, ψ, i,Φ0) are [7]

A1 = A+ cosΦ0 cos 2ψ −A× sinΦ0 sin 2ψ, (7)

A2 = A+ cosΦ0 sin 2ψ +A× sinΦ0 cos 2ψ, (8)

A3 = −A+ sinΦ0 cos 2ψ −A× cosΦ0 sin 2ψ, (9)

A4 = −A+ sinΦ0 sin 2ψ +A× cosΦ0 cos 2ψ. (10)
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and

h1(t) = a(t) cosϕ(t), (11)

h2(t) = b(t) cosϕ(t), (12)

h3(t) = a(t) sinϕ(t), (13)

h4(t) = b(t) sinϕ(t), (14)

where a(t) and b(t) are functions of right ascension α and declination δ; they are independent
of ψ, and ϕ is the phase of the wave signal seen at the Solar System Barycenter (SSB) [8].
Likewise

A+ =
1

2
h0(1 + cos2 ι), (15)

A× = h0 cos ι, (16)

where h0 is the wave amplitude, ι the inclination angle, ψ the polarization angle and Φ0 the
initial phase.

Since the Aas depend neither on the detector properties nor on the frequency or the
time, we can take them out of the inner product and write the log of likelihood ratio as

log Λ = Aa(x|ha)−
1

2
AaAb(ha|hb). (17)

Defining the new variables
Ha ≡ (x|ha), (18)

and
Mab ≡ (ha|hb), (19)

we have

log Λ = AaHa −
1

2
AaAbMab. (20)

The maximum detection probability follows from the maximization of the likelihood func-
tion: by maximizing the likelihood function with respect to the Aa (which, again, are inde-
pendent of the detector), we have

∂ log Λ

∂Aa
= 0. (21)

This leads us to
Ha −Ab

MLEMab = 0, (22)

and therefore
Ab

MLE = (M−1)abHa. (23)

The label MLE denotes the Maximum Likelihood Estimator ; it corresponds to the values for
the Aas we calculate from our data by maximizing the likelihood ratio (so that, in practice,
we are calculating Aa = E[Aa

MLE ]). By definition, the F-Statistic is the maximum of the
logarithm of likelihood function. Substituting Eq. (23) into Eq. (20), we have

F ≡ log Λ |MLE=
1

2
Ha (M−1)ab Hb. (24)

This is the F-Statistic which a generalized version of that for the multi-IFO (Interferometer
Observatory) can be found in [9].
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Again by writing the data as x(t) = n(t) + h(t), and using Eq. (2.5) of Cutler-Schutz
(CS) [7] indicating that ⟨(x|n)(y|n)⟩ = (x|y) with this fact that ⟨(h|n)⟩ = 0, we would have
the following

⟨2F⟩ = 4 + (h|h), (25)

which follows a χ2 distribution with 4 degrees of freedom and non-centrality parameter
ρ2 ≡ (h|h), that is the square of optimal signal to noise ratio (SNR2). The degrees of freedom
come from the 4 unknown parameters of pulsar namely the amplitude (h0), inclination
angle (ι), polarization angle (ψ) and the initial phase (Φ0). As was described in [7],
even for a multi-IFO the number of freedom will remain unchanged, since we always have
the same 4 unknown parameters in the entire search.

The F-statistic shown above, which was originally derived by Jaranowski, Królak and
Schutz (JKS)[8], is the optimal statistic for detection of nearly periodic gravitational waves
from GW pulsars. We can use this statistical tool to search for any kind of pulsars; unknown
sources or targeted search. In targeted search we know everything about the source by using
some other astronomical techniques, such as radio astronomy, gamma and X-ray astronomy
etc. The main information required for our search are; frequency and its derivatives and
position of the source. Given all these information to the software developed by the LSC
(LIGO Scientific Collaboration) [10, 11] (the implementation to our work can be found in
[9]), and using a single workstation, we will be able to search a known pulsar in a few
minutes.

The work in this paper was done using simulated data for 100 arbitrary pulsars. To set
the positions and the frequencies of these simulated pulsars, we have used the data of the
known pulsars, as given in the Australian Telescope National Facilities (ATNF) catalogue
[12]. To make the simulated data more realistic, we generated the data at the level of LIGO
detectors sensitivity. Since our detectors (initial LIGO and even Enhanced LIGO) are not
sensitive enough to detect any signal until now, we assume that the data are just simply
noises without any signal in them. Due to that, our simulated data are just pure noises and
therefore instead of looking for any detection, we set the upper limit on the strength of the
gravitational wave signal. For the historical reason we take the value of 95% for the upper
limit. All the search done in this paper are in frequency domain. As the main goal of this
paper is to compare two different approaches in setting upper limits, we use Bayesian and
Frequentist algorithm to perform it on the same data for each pulsar. These two algorithms
will be explained in more details below.

2 Frequentist Upper Limits

The frequentist probability of an event represents the expected frequency of occurrence of
that event. The result for our upper limits depends crucially on the experimental data
under examination. The confidence value associated with these upper limits indicates the
expected occurrence of detection statistics values more significant than the one that we have
measured in the presence of signals whose amplitude is equal to the upper limit value.

To set the frequentist upper limit on the amplitude of gravitational waves, we use the
F-statistic as an optimal detection statistic. To start with, we need to assign a confidence
level C – roughly speaking, our criterion will then be that, for our “repeated measurements”,
in C-percent of the time the value of 2F is above a specified threshold.

Let us explain how this works in detail for the example of setting a 95% upper limit on
h0. For this, we need to find at which h0 it is true that 95% of the values of the F-statistic
are above the initial value of 2F derived from the data. To do so, we proceed step by step
as follows:
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1. Compute the F-statistic of a perfectly matched signal using the exact values for the
signal parameters (such as frequency, longitude, latitude and frequency derivatives).
Let us call the resulting value of the F-statistic F∗.

2. Estimate the signal amplitude, h0, using our parameter estimation routine.

3. Take this h0 as the initial value of the search.

4. Since we assume that there is no signal in the data – that it is a pure noise –, we can
randomly assign arbitrary values to the other signal parameters (such as ϕ0, ψ and
cos ι).

5. To determine the probability distribution of F-statistic, we take a random frequency
value with a band of 0.1Hz around the actual pulsar frequency (as was proposed in
the LIGO S1 paper [13]) and inject the artificial signal. With this choice, we are sure
to be on the safe side; we use a large amount of data (in order of several months up
to a year), so that the 0.1Hz band will not lead to any spurious correlations between
the search parameters.

6. After injection, compute the F-statistic once again. Let us designate the resulting value
of 2F as F ′; store this value for later use.

7. Repeat the injections, computing of F-statistic for 150 times. Save all resulting values
of F ′. (The number of iterations used here is a heuristic value.)

8. As we are looking for a 95% upper limit, proceed as follows: if the confidence level (the
percentage of instances in which F ′ is greater than F∗) was less than 90% or above
98% (say x), multiply the h0 by the ratio of 95

x and take this value as the initial h0
for the next step.

9. Repeat steps “6” and “7” until the confidence level is in one of the following ranges: a)
90%− 95%, or b) 95%− 98%.

10. For case a), multiply h0 by 1.05; for case b), multiply by 0.90. (The factors 1.05 and
0.90 are, again, heuristic.)

11. Repeat the calculations of step “7” and following, but this time with 1000 injections
in each run (instead of 150) to improve the statistics.

12. Repeat step “11” for 6 times; in each run follow the instructions in step “10”. (The
number of repetitions is heuristic; it is chosen in a way that the range of computed
confidence levels will always include values higher and lower than 95%; therefore we
can make an ”interpolation” fit instead of having to extrapolate.)

A flow chart version of this procedure can be found in Fig. 2.

3 Bayesian Upper Limit

The Bayesian probability is a measure of degree of belief in the occurrence of a statistical
process. In contrast with the Frequentist probability, in the Bayesian approach, we do not
need for an event of that particular type to have actually happened; all we need is to find a
measure for the degree to which a person believes that a given proposition is true.
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Compute the 2F value of a 
perfectly mtached signal (F*)

Estimate the value of h0 and 
take that as an initial value 
to search
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Figure 1: A Flow-Chart of how we implemented the frequentist upper limit.
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3.1 Theoretical Approaches

The key ingredient of the Bayesian approach is the Bayes’ theorem (a simple proof of that
can be found in [14])

P (A|B) =
P (B|A)P (A)

P (B)
. (26)

The term at the left hand side is called the posterior probability, while P (A) is the prior
probability which reflects our initial knowledge about the quantity A. The term P (B|A) is
called the likelihood function; the log of this is, in fact, the F-statistic to be computed from
our data.

Our goal is to set an upper limit on the strength of the gravitational wave amplitude,
h0, using a given amount of available data – which is the posterior probability of h0 that we
look for. Therefore, our data plays the role of B in Eq. (26); which we denote it by s. The
term A is the quantity about which we intend to draw conclusions using our data; in our
case, this is the upper limit h0, so we will substitute h0 for A in what follows. With these
substitutions, Eq. (26) now reads

P (h0|s) =
P (s|h0)× P (h0)

P (s)
, (27)

where P (h0|s) is the conditional probability of h0 (posterior probability) given the data
s, P (s|h0) is the likelihood function (to be defined below), and P (h0) represents our prior
knowledge about the distribution of h0.

Since the term P (s) is independent of our signal, we can consider it as the constant
normalization factor; it will cancel out automatically when we compute the confidence level.
Therefore, we can rewrite our Bayes’ theorem for the general case of all signal parameters
as

P (h0, ψ, ι,Φ0|s) ∝ P (s|h0, ψ, ι,Φ0)× P (h0, ψ, ι,Φ0), (28)

where, again, P (h0, ψ, ι,Φ0|s) is our posterior probability (to be calculated), P (s|h0, ψ, ι,Φ0)
is the likelihood function and P (h0, ψ, ι,Φ0) is the prior probability of h0, ψ, ι,Φ0.

There are two common choices for estimating prior probability, known as a flat prior
and Jeffrey’s prior. In the flat prior, the prior probability is chosen to be constant (P (h0) ≡
constant), while in Jeffrey’s prior, it is taken to vary inversely proportional to the value of
h0 (P (h0) ≡ 1/h0). For more details we refer the reader to [15] and a comparison for this
case can be found in [16].

The Jeffrey’s prior gives a higher value in upper limit than the flat prior, while a flat
prior gives a more realistic value for our case [16]. Therefore in the following we will focus
on a flat prior, as the case followed in [9].

To obtain the posterior probability, we need to calculate the likelihood function. By Eq.
(24), it can be expressed as

P (s|h0, ψ, ι,Φ0) ∝ e−
1
2Mab(A

a−Aa0 )(Ab−Ab0 ) = G, (29)

where A = (A1, A2, A3, A4)(h0, ψ, ι,Φ0) are the four amplitude parameters defined in Eqs.
(7-10) and G = G(h0, ψ, ι,Φ0). The A

0 = (A10 , A20 , A30 , A40) are also the best fit for the
Aas resulting from our calculation of the F-statistic.

For proper normalization, we first compute the integral

I ≡
∫ ∞

0

P (h0)dh0

∫ 1

−1

dµ

∫ π/4

−π/4

dψ

∫ 2π

0

dΦ0 G, (30)
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where µ ≡ cos ι, and we will set ‘P (h0) ≡ constant’. To find the upper limit we use hmax
0

as the upper bound in the integration over h0,

IUL ≡
∫ hmax

0

0

P (h0)dh0

∫ 1

−1

dµ

∫ π/4

−π/4

dψ

∫ 2π

0

dΦ0 G. (31)

We select hmax
0 in such a way that the ratio IUL/I gives us the desired confidence level. In

our case, we are looking for the 95% upper limit, therefore

IUL

I
= 0.95. (32)

3.2 Practical Implementation

To implement the above formalism, let us first construct the function G(h0, ψ, ι,Φ0). To do
so, we need to expand the matrix of Eq. (19). The elements of this matrix depend on the
three amplitude modulation coefficients (A, B and C) defined in [7]. Based on the notation
used here, these elements take the form of

Mab =


A/2 C/2 0 0
C/2 B/2 0 0
0 0 A/2 C/2
0 0 C/2 B/2

 , (33)

which a detailed procedure of their derivation can be found [9]. Then we can construct the
four elements

G1 =
A

2
(A1 −A10)2 +

C

2
(A1 −A10)(A2 −A20), (34)

G2 =
B

2
(A2 −A20)2 +

C

2
(A2 −A20)(A1 −A10), (35)

G3 =
A

2
(A3 −A30)2 +

C

2
(A3 −A30)(A4 −A40), (36)

G4 =
B

2
(A4 −A40)2 +

C

2
(A4 −A40)(A3 −A30), (37)

to make the final form of G(h0, ψ, ι,Φ0) in Eqs. (30) and (31) as

G = exp[−1

2
(G1 +G2 +G3 +G4)]. (38)

This is the core equation for our upper-limit analysis in Bayesian approach. To construct
this, we need all the above mentioned parameters to be resulted from our software. The
software we have used for this purpose was developed partly by the author of this paper and
is now part of the LAL (LIGO Algorithm Library) [10]. With this software we calculate the
four amplitudes Aa as well as the matrix elements Mab (namely the amplitude modulation
coefficients A,B and C). Once we have constructed the likelihood function G(h0, ψ, ι,Φ0),
we can calculate the UL value in Eq. (32) in two ways. One is to follow the exact procedure
spelled out above; first calculating the normalization in Eq. (30) and then trying to find
a value of hmax

0 for which the ratio of Eq. (32) will be satisfied. This can be done using
the Numerical Integration routines in mathematical software like Mathematica and Maple.
Another way would be to calculate the posterior probability of h0 by marginalizing over the
other three parameters. This can be expressed in mathematical form as

p(h0|s) ∝
∫ ∫ ∫

G(h0, ψ, ι,Φ0) dψ dµ dΦ0. (39)
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Figure 2: The upper limits value on the h0 for 100 arbitrary pulsars using simulated data.
In this plot, both Bayesian and Frequentist ULs are shown.

Once the posterior probability for h0 is known, one can then integrate it over a sufficient
range of h0 to find out the area covered; the result can be used for proper normalization
(namely unit total area). Next, we can find out at which h0 the fraction of area would satisfy
our required confidence level.

Both the above methods have given equivalent results as discussed in details in [9].
However, for the work expressed in this paper, we followed the second algorithm.

4 Results and Discussion

Once again, we have selected 100 arbitrary pulsars frequencies and positions (based on the
real pulsars information taken from ATNF [12]). We have generated the simulated data at
the level of current LIGO detectors sensitivity (using the LAL software [10, 11] developed by
LSC) and computed the UL for these pulsars. To compare with the real data, the simulated
data contains just noises where the upper limit set on them are shown in Fig. 2.

The blue rectangular in this plot represent the value of upper limits in Bayesian approach
and the red circle points to the Frequentist ones. The horizontal axis indicates the pulsars
number, therefore on each vertical line corresponds to each pulsar we should have one blue
rectangular and one red circle. However, as seen, in some cases there is just one blue
rectangular and missing red circle (Frequentist UL). These count for 16 pulsars, in which 7
of them were caused due to some unknown reason. The reason for the 9 others is that; in
these cases, due to very small amount of 2F , the Frequentist upper limit procedure could
not be converged to any particular value. It means, for some cases, by changing (increasing
or decreasing) the value of h0 for more than two order of magnitude, the upper limit value
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Figure 3: One of the bad upper limit value on the h0 in Frequentist approach. The value of
2F for this case was 0.08.

always stands above 96% or 97%.
An example of that is shown in Fig. 3, that is the case where 2F = 0.08. This figure

shows the dependency of Frequentist upper limit to h0 for an individual pulsar. It’s clear
that even by increasing the h0 for about 2.5 order of magnitude, the value of upper limit
lies mostly about 100%. While, in general the upper limit is very sensitive to small changes
in h0. This was done 76 times and in each time the value of h0 was increased according
to the procedure expressed in Sec. 2. Note that the starting and ending value of h0 are
significantly smaller than the h0 require for 95% upper limit shown in Fig. 2. Means that,
in normal condition where the required h0 to get 95% upper limit is in order of 10−26, by
setting the h0 in the range of 10−28−10−27, we should get a very small upper limit compare
to 95%. In fact, as disscused below, the low value of 2F for this pulsar is the reason of such
a behavior in the Frequentist framework.

The same behavior was shown in [9, 17] by using the real data. The reason is clear;
we have pointed out that the Frequentist approach is based on the number of occurance of
an event. For this we should set a threshold and count how many times the value of that
particular parameter is passing this threshold. Naturally there can be some False Alarms
(FA), which a noise shows itself strong enough to pass this threshold. Since the F-statistic
follows a χ2 distribution with four degrees of freedom, the FA follows as (equation 3.44 of
[9]),

α = (1 + 2F) e−2F . (40)

The values of 2F in which the Frequentist upper limit could not be converged are:
0.08, 0.34, 0.46, 0.47, 0.49, 0.51, 0.59, 0.63 and 0.84. So, by putting these numbers in the
above equation we get a very large values of FA. For example, in the case of 2F = 0.84 we
have α = 0.80, 2F = 0.46 gives α = 0.92 and for 2F = 0.08 we get α = 0.997 ∼ 100. This
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Figure 4: The ratio of Bayesian over Frequentist upper limits value on the h0 for 100
arbitrary pulsars using simulated data.

explains the whole story.

This high false alarm probability means that noise alone has a high chance of producing
an F-statistic value greater than the F∗ produced by our data set and our template. In
other words, our realization of the noise is one that; it is particularly unlikely to look like
it contains our signal, and this statistical fluctuation yields a low upper limit value or even
does not converge – due to the nature of the procedure that we use to determine the upper
limit. The Bayesian approach is less sensitive to such fluctuations. Note that the resulting
frequentist upper limit is not an artifact of our technique, but it is still a perfectly correct
and consistent upper limit in the Frequentist framework. This clearly shows the nature of
our data.

To investigate further and check the behavior of the Frequentist UL, let us compare
its value with that of Bayesian. To do so, we plot the ratio of the Bayesian UL over the
corresponding value of Frequentist for the same pulsar versus the value of 2F (Fig. 4). The
output says; as we go further to the value of 2F less than 4, the ratio increases and when
we reach to the 2F = 1, this ratio is quite significant; about a factor of 2.3. For the case
of 2F < 1, we have already seen that the upper limit for the Frequentist approach did not
converge. Therefore they are not shown in this plot. If they would converge, they should be
quite lower than that of Bayesian and therefore the ratio should go much higher. The same
behavior was shown in [9] with real data.

Fig. 4 also shows that, at roughly 2F = 4 the ratio is close to unity and roughly remains
the same when 2F > 4. This tells that the problem of low value in upper limit in Frequentist
approach appears when we have 2F < 4 while for larger value of F-statistic there is always
agreement between Frequentist and Bayesian frameworks.
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Apart from the difference in the nature of Frequentist and Bayesian frameworks, there is
another difference in performing a Frequentist and the Bayesian upper limit search. Since in
Frequentist algorithm we need to inject some artificial signals into the data and then search
the newly generated data to compute the F-statistic in each iteration, this requires a high
amount of computational resources. To increase the sensitivity we need to use more data
that requires more computational power as well. Because, the required time to search the
data to compute the F-statistic is linearly proportional to the amount of data. In order to
have a better statistic in Frequentist algorithm, we therefore need a larger iteration. This
would additionally brings another linear increment in the cost for the computation. While
in the Bayesian approach, to compute the F-statistic and the other components, we search
the data just once. Then compute the P (h0) by marginalizing the probability over the ψ, ι
and Φ0. These all will be done once and are computationally very cheap. As an estimation,
the entire process for one pulsar using Bayesian algorithm takes about half an hour up to
one hour in a single workstation. In a good approximation this is independent of the amount
of data. Because, searching in the large amount of data (say about one year) to compute the
F-statistic and other components takes just about few minutes. In contrary, the required
time for a Frequentist algorithm to search for single pulsar in an amount of data in order of
one year takes about 3 weeks on a single workstation.

As a summary; although search in the Frequentist upper limit shows the exact nature of
our data, however there are some disadvantages with the same search by using the Bayesian
algorithm. The important one is that in the case where our data shows a small value of
F-statistic in a particular frequency bin and position of the pulsar, we cannot trust the
upper limit value produced by Frequentist approach. Likewise, performing a search in the
Frequentist framework is much expensive than the same search in Bayesian approach.

5 Distribution of 95% Bayesian Upper Limits on h0 Us-
ing Simulated Data in Frequency Domain

As an application of Bayesian algorithm, we now present the distribution of ULs (95% upper
limit on h0) computed in the Frequency Domain (FD). We start with the idealized case of a
large number (5500) of simulated data set with pure noises (no signal), and compute the 95%
upper limit on h0 of each data set. The sky locations in the search are chosen randomly
such that their distribution over the solid angle is uniform; detectors position are picked
randomly from a list consisting of the locations of H1, L1, VIRGO and GEO600 detectors.
The resulting mean upper limit is

⟨h95%0 ⟩ = (10.67± 0.04)

√
Sh(f)

T
. (41)

In order to compare our result with the simulation in Time Domain (TD) done by Dupuis
and Woan [18], we repeated this experiment with only H1, L1 and GEO600 detectors, as in
their analysis. The results are in a very good agreement with a ratio in ULs

⟨h95%0 ⟩FD

⟨h95%0 ⟩TD

= 0.98. (42)

Fig. 5 shows the distribution of h95%0 for 5500 different runs in frequency domain, which
is also in a good agreement with that of presented in [18].

These results show that although we use different domain (TD or FD) to search for grav-
itational waves, if we stay in Bayesian framework, both give the same results theoretically
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(a more details can be found in [9]). However, using different frameworks (Frequentist or
Bayesian) will may lead to a different outcome.

Figure 5: Distribution of 95% Bayesian upper limit on h0 using 5500 individual simulated
data runs in frequency domain. ⟨h95%0 ⟩ = (10.59± 0.04).
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