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Abstract.

We have carried out a series of small scale collisional N -body calculations of single-mass
star clusters to investigate the dependence of the lifetime of star clusters on their initial
parameters. Our models move through an external galaxy potential with a logarithmic
density profile and they are limited by a cut-off radius. In order to find scaling relations
between the lifetime of star clusters and their initial conditions including the initial
mass, size and galactocentric distance, we vary the initial conditions and measure the
final half mass radius and dissolution time of each cluster. We show that the lifetime
of star clusters scales with the initial half-mass radius, galactocentric distance, and
initial mass as Tdiss ∼ R0.15

h , Tdiss ∼ R0.94
G , and Tdiss ∝ M0.45

i , respectively. Our
results are in remarkable agreement with the previous works by Baumgardt & Makino
(2003) and Haghi et al. (2014) who have found some scaling relations for the lifetime
of multi-mass star clusters with a large number of stars including the stellar evolution.
Moreover, we find that all clusters with the same mass and different initial half-mass
radius, converge to an equilibrium value of half-mass radius, after core collapse that
scales with galactocentric distance as Rh ∼ R0.8

G . We show that the exponent in this
scaling relation is slightly larger for the massive star clusters.
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1 Introduction

A star cluster is a group of stars that shares a common origin and is gravitationally bound
for some length of time. Star clusters are particularly useful to astronomers as they pro-
vide a way to study and model star formation and stellar evolution. They also provide an
important laboratory to explore many aspects of evolution of stellar systems as driven by
the effects of two-body encounters. In this regard, with advances in software and hardware
and observational facilities during the last decade, plenty of theoretical and numerical in-
vestigations have been done by several authors to evaluate the dynamics of star clusters
[18, 5, 9, 13, 14, 6, 19, 20]. In addition, many photometric and spectroscopic measurements
of young star clusters as well as old ones have been carried out.

About 160 objects are classified as globular clusters (GCs) in the Milky Way (MW)
[8], each containing a few thousand to millions of stars within a radius of a few pc. Their
distances from the Galactic Centre range from 0.5 to 125 kpc. More than 50% are found
within 10 kpc, but their distribution extends to the very outskirts of our Galaxy.

Dynamical evolution plays a key role in shaping the current properties of star clusters
and star cluster systems. Simulations of GC systems suggest that the GC population we
observe today is only the survival of a once much richer system [16]. Whether a star cluster
survives in the tidal field of its host galaxy depends crucially on its size, mass, and their
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spatial distribution. For instance star clusters with larger radii, and lower mass orbiting in
a smaller galactocentric distance are more susceptible to tidally induced mass loss, whereas
compact and massive systems can survive even near the Galactic center.

With densities as high as 106pc−3, GCs are among the few places in the Universe where
stars interact via two-body encounters. While telescopes can provide us with a snapshot of
what these dense clusters look like at present, we must rely on detailed numerical simulations
to learn about their evolution. These simulations are quite challenging, however, since dense
star clusters are described by a complicated set of physical processes occurring on many
different length and time scales, including stellar and binary evolution, weak gravitational
scattering encounters, strong resonant binary interactions, and tidal stripping by the host
galaxy.

The long-term evolution of GCs is determined mainly by mass-loss due to stellar evolu-
tion, stellar dynamics and the effects from the tidal field. It is well known that the internal
properties of GCs can undergo significant changes at birth but also during the course of the
cluster’s dynamical evolution (e.g. Heggie & Hut 2003). It is therefore essential to specify
to what extent the present-day properties of GCs, such as their physical sizes and masses
are imprinted by early evolution and formation processes and to what extent they are the
outcome of long-term dynamical evolution.

A pioneering study of this research field was carried out by Vesperini & Heggie (1997)
who investigated the effects of dynamical evolution on the mass function of globular clusters
through direct N-body simulations. The total number of particles that Vesperini & Heggie
(1997) were able to simulate was limited to N ≃ 4000 due to restrictions imposed by the
hardware and included a basic treatment of stellar evolution. Despite the computational
limitations to which Vesperini & Heggie (1997) were subject, they found a very important
trend of increasing mass-loss with decreasing galactocentric distance. Baumgardt & Makino
(2003) studied the stellar mass function of star clusters using NBODY 4 but with more real-
istic particle numbers, going up to N = 130000. They found that owing to mass segregation
low mass stars are prone to be depleted from the star cluster. They also showed that the

crossing time (Tcr) is of importance and found for equal mass clusters that Tdis ∝ T
3/4
relaxT

1/4
cr .

They as well found that this scaling also holds for models of clusters with a mass spectrum,
stellar evolution and for different types of orbits in a logarithmic potential.

In the present paper we aim at shedding light on the effect of different initial conditions
on the dynamical evolution, focusing on the effect of initial size, mass and galactocentric
distance of star clusters on the dissolution time by means of direct N-body simulations. We
obtain several scaling relations for the dissolution time of stellar systems in terms of their
initial parameters such as initial mass and radius.

The plane of the paper is as follow: The set-up of our N -body models is described in Sec.
2. In Sec. 3, we present our results for the evolution of star clusters and scaling relations
for dissolution time. In Sec. 4, we will also derive some simple scaling relations for the final
radius of star clusters and in Sec. 5, we finally draw our conclusions.

2 N-body Models

We performed a series of N-body simulations using the high-level, up-to-date collisional N-
body code NBODY6 [2, 1]. NBODY6 follow the orbits of cluster members using a 4th-order
Hermite integration scheme and invokes regularization schemes to deal with the internal
evolution of small-N subsystems. In addition to the tidal effects of the Galaxy, NBODY6
includes the stellar and binary evolution using the dynamical integrated SSE/BSE routines
developed by Hurley et al. (2000, 2002). However, in this study we assume all clusters
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contain single-mass stars; and hence the stellar evolution is switch-off here to focus on pure
dynamical evolution. The clusters are set up as Plummer (1911) profile in virial equilibrium
defined as

ρ(r) =
3Ma2

4π
(a2 + r2)−5/2, (1)

where M is the total cluster mass, and a is a scale radius. The half-mass radius, Rh, of
this profile is related to a by Rh ≃ 1.305a. The Plummer-model is the simplest plausible
and self-consistent model for a star cluster.

The initial half-mass radii and the number of stars in all computed models are set in the
range Rh = 1 − 5 pc and N = 1000 − 6000, respectively. We evolve all models until they
dissolve (i.e., 10% of initial stars are retained). The clusters move on a circular orbit through
logarithmic potential of the Milky Way at different galactocentric radius from RG = 8.5
until 32 kpc with circular velocity VG = 220 kms−1. The galaxy model is adopted as Allen
Santillan potential model (1991).

3 Dissolution time of star clusters

Here, we investigate how the dissolution time of modeled star clusters depends on their
initial conditions. We examine how varying the initial half-mass radius, initial mass and
the galactocentric distance of a star cluster influences its dissolution time. The main aim
is to find the scaling relations between these parameters and the dissolution time and final
radius of star clusters. This will allow us to make inferences towards the sensitivity of the
results of this paper on choosing this crucial initial parameter. All will be discussed in the
following.

3.1 Impact of initial cluster mass

To determine the effect of initial cluster mass on the dissolution time, we change the to-
tal cluster mass from 1000M⊙ to 5000M⊙ evolving on a circular orbit with galactocentric
distance of 8.5 kpc. The dissolution time of clusters increases with increasing the initial
cluster mass. Fig. 1 depicts the cluster lifetime as a function of initial cluster mass for
different initial half-mass radius (i.e., Rh =1 and 5 pc). A very clear scaling law between
the dissolution time and the initial mass of star cluster is obtained by linear fitting to the
simulation results (data points in Fig.2) as follow

Rh = 1 pc ⇒ log(Tdiss) = 0.41(±0.04) log(Mi) + 2.11(±0.15), (2)

Rh = 5 pc ⇒ log(Tdiss) = 0.49(±0.03) log(Mi) + 1.96(±0.08). (3)

The obtained scaling laws can be written as Tdiss ∝ Mα
i , where α = 0.41 for cluster

with Rh = 1 pc. The cluster with larger radius (Rh = 5 pc) shows a slightly steeper scaling
law with α = 0.49. According to the uncertainties in the slope of the fitted lines, it can be
seen that both values are approximately comparable to what Baumgardt & Makino found
(2003), where the dissolution time was scaled with the two-body relaxation time (Trelax)

1

as Tdiss ∼ T x
relax, where x ≃ 0.8. This implies a scaling relation as Tdiss ∼ M0.4

i . Note that

1Two-body relaxation arises from close encounters between cluster stars and leads to a slow diffusion

of stars over the tidal boundary. It acts on a timescale (Spitzer 1987) as Trelax = 0.138
N1/2R

3/2
h

<m>1/2G1/2 ln Λ
,

where, < m > is the mean stellar mass and lnΛ is the Coulomb logarithm.
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Figure 1: Dissolution time versus the initial cluster mass for different initial cluster half-
mass radius. Points are the simulation results. Solid lines show the best linear fit to the
simulation results that show a scaling relation in the form of Tdiss ∝ Mα

init. We obtained
α ≃ 0.45 in agreement with [5] who showed α ≃ 0.4 for multi-mass star clusters with large
number of stars (i.e. N = 105).
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the results of Baumgardt & Makino (2003) were based on a multi-mass star clusters with
more that 105 stars including the stellar evolution, while here we calculate small-number,
single-mass clusters without stellar evolution.

3.2 Impact of galactocentric distance

Fig. 2 depicts the dependence of the cluster dissolution time on the galactocentric distance
for a cluster with Mi = 3000 M⊙. We let the galactocentric distance vary between 8.5 and
30 kpc. The dissolution time of star clusters increases linearly with galactocentric distance.
The dissolution time scales with galactocentric distance as

Tdiss ∼ R0.94
G (4)

This is in agreement with Haghi et al. (2014) who found the dissolution time of a
cluster with 105 stars and initial radius of 6.2 pc scales with the galactocentric distance as
Tdis ∝ Rα

G, where α = 1.12 ± 0.1. The obtained scaling relation is also very close to that
derived by [5] for large number multi-mass models. They found that the dependency of
dissolution time of star clusters on galactocentric distance as Tdiss ∼ RG which marginally
agree within the 1σ error bars with our results. It should be noted that the exponent
α, in general, depends on the degree of mass segregation. For highly segregated clusters,
the exponent is α = 1.31 ± 0.08, while unsegregated models have a weaker dependence on
RG, with a slope of α = 1.12 ± 0.13 [6]. This implies that for non-segregated models, the
dissolution time is significantly larger than for the segregated systems, that could be due to
the larger amount of binding energy which is carried away during stellar evolution from the
preferentially centrally located massive stars.

3.3 The impact of initial half-mass radius

In order to study the influence of initial half-mass radius on the lifetime of star clusters in
detail, we performed three sets of models evolving on three different circular orbits with
radius of RG =8.5, 15, and 30 kpc. For each set, all clusters have identical initial mass of
M = 3000M⊙, but the initial half-mass radius varies from 0.5 to 5 pc to extract a scaling
relation between the dissolution time and the initial half-mass radius.

Fig. 3 shows the dissolution time of each cluster versus its initial half-mass radius in
logarithmic scales. As can be seen, by increasing the initial half-mass radius, the dissolution
time slowly increases. Different lines in Fig. 3 show satisfactory fit for each set of models.
Independent of the galactocentric distance, the dissolution time of star clusters scales with
half-mass radius as follow

Tdiss ∼ R0.15
h (5)

Such a little dependency of dissolution time to the adopted initial half mass radius for a
given cluster mass is marginally in agreement with the independency of the lifetime of a star
cluster from its initial size, if the half-mass radius in a cluster assumed to be scaled with
its tidal radius (See Eq. 7 of [5]). The slight difference could be due to the fact that our
models are single-mass clusters while those models calculated by [5] are multi-mass clusters.
Comparision between single-mass star and multi-mass clusters is our upcoming work.
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Figure 2: The dissolution time versus the galactocentric distance for star clusters with
M = 3000M⊙ and five different initial half-mass radius. Clusters orbiting in the inner part
of galaxy dissolve very fast in strong tidal fields. Power-law fit of the form Tdiss ∝ Rα

G is
indicated as a line with a slope of α = 0.94.

4 The evolution of half-mass radius of star clusters

Before addressing the scaling relations for half-mass radius, we investigated the evolution of
half-mass radius for clusters with different initial half-mass radius, but identical initial mass
1000M⊙ located at RG = 8.5kpc. The star clusters with the same mass and different initial
half-mass radius, converge to an equilibrium value of half-mass radius, after core collapse
(Fig. 4).

The half-mass radius of clusters with same mass and different initial half-mass radius
settles to the same equilibrium value after core collapse for large fraction of their life time.
The virial equilibrium implies that, reducing the half-mass radius raises the mean velocity
dispersion of member stars. Therefore, a cluster with the half mass radius, which is twice the
other, exhibits a half mean velocity dispersion of that. But since the clusters have the same
tidal radius, they redistribute their masses through two-body relaxation such that after core
collapse the initially smaller or larger clusters do not differ in their properties, from clusters
with same initial mass. This holds especially for the half-mass radius. The value of final
equilibrium radius slightly depends on the clusters mass such that for a larger initial mass,
the equilibrium value is larger. In the next section, we asses the dependency of the value of
plateau on the galactocentric distance of orbiting star cluster.

4.1 Rh −RG scaling relation

In order to show how the final radius of star clusters are sensitive to the initial mass and
galactocentric distance, the evolution of half-mass radius of a set of star clusters with dif-
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Figure 3: Lifetime of clusters with different initial half-mass radius moving on different
circular orbits. All clusters have identical mass of 3000M⊙. Lines show the linear fit to the
data points.
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Figure 4: The evolution of half-mass radii of models with initial Rh of 0.5, 1, 2, 3, and 4
pc, but with the same initial mass (1000M⊙) orbiting on a circular orbit with RG = 8.5
kpc. The final size is independent of the initial half-mass radius and all models converge to
an equilibrium value of 2 pc after core collapse, when the clusters have lost about 3050 per
cent of their initial mass.
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Figure 5: The evolution of half-mass radius for clusters with initial mass 1000M⊙ and
RG =15, 20, 25, 30 kpc. For larger galactocentic distance, the equilibrium value of half-
mass radius is larger.

ferent initial masses and orbiting in different circular orbits are investigated in details in
this section. For each set, we vary the initial Rh between 0.5 and 5 pc. The evolution of
half-mass radius for clusters with initial mass of 1000M⊙ and RG = 15, 20, 25, 30Kpc is
shown in Fig. 5. Star clusters with the same mass and different initial half-mass radius,
converge to an equilibrium value of half-mass radius, after core collapse.

As can be seen, the maximum half-mass radius reaches a plateau independent of the ini-
tial half-mass radius, while the value of plateau strongly depends on galactocentric distances.
By increasing the cluster mass and Galactic distance, the asymptotic value of half-mass ra-
dius increase. This scaling form of the rh−RG relation is also plotted in Fig. 7. Moreover,
although, the radius of the cluster increases slowly with increasing galactocentric distance,
the onset of the plateau in the rh − RG relation occurs at nearly the same time ( T ≃ 1
Gyr) after the beginning of evolution. Therefore, the plateau of the rh − RG relation tells
us something about the galactocentric distance of star clusters.

To show the sensitivity of these results on the initial cluster mass, we calculate the
evolution of a set of star clusters with the initial mass of 3000M⊙ at RG = 8.5, 15 and
30 kpc. Comparing Fig. 5 and Fig. 6, one can see that the values of final radius slightly
depends on the initial mass of star clusters. For massive clusters, the equilibrium final radius
is larger.

Finally, in order to obtain a relation between the equilibrium half-mass radius (Rh) and
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Figure 6: The same as Fig. 5, but for a cluster with 3000M⊙.
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Figure 7: Galactocentric distance versus the equilibrium half-mass radius value for clusters
with initial masses of 1000M⊙, 3000M⊙.

galactocentric distance (RG) we plot the correlation between rh and RG for clusters with
two different initial mass of 1000M⊙, 3000M⊙. The best fitted line to each set of simulation
shows a clear scaling relation as follow

Rh0 ∼ R0.78
G for M = 1000M⊙ (6)

Rh0 ∼ R0.88
G for M = 3000M⊙ (7)

Such a correlation between Rh and RG could be due to the expansion of initially compact

GCs up to the respective Jacobi radius, which is roughly proportional to R
2/3
G for a given

GC mass. Our results is in remarkable agreement with this proposal.

5 Conclusions

We have performed a set of small scale N-body simulations of single-mass star clusters mov-
ing through an external galaxy with a logarithmic density profile with the collisional N-body
code NBODY6. Our simulations included two-body relaxation and a fully consistent treat-
ment of the external tidal field. We aimed at finding scaling relations between the lifetime
of star clusters and their initial conditions including the initial mass, size and galactocen-
tric distance. All simulated clusters dissolve mainly as a result of two-body relaxation and
external tidal truncation. All computed clusters show a tight relation between dissolution
time and cluster parameters. Our key results are:

1. The dissolution time scales with galactocentric distance as Tdiss ∼ R0.94
G , in agreement

with Haghi et al. (2014) who found the dissolution time of a cluster with 105 stars and initial
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radius of 6.2 pc scales with the galactocentric distance as Tdis ∝ R1.2±0.1
G . This result is also

compatible with the results of numerical computations of [5] for large number multi-mass
models, who found the dependency of dissolution time of star clusters on galactocentric
distance as Tdiss ∼ RG.

2. The lifetimes of clusters moving on the same orbit scales proportional to the initial
cluster mass as Tdiss ∝ M0.45±0.04

i . Within the uncertainties in the slope of the fitted lines,
this result is approximately comparable to what Baumgardt & Makino found (2003), where
the dissolution time was scaled with the two-body relaxation time.

3. For all galactocentric distance, the lifetime of star clusters scales with half-mass radius
as Tdiss ∼ R0.15

h , that is marginally in agreement with the independency of the dissolution
time of a star cluster from its initial size for clusters that the half-mass radius is scaled with
their tidal radius.

4. In agreement with kuepper et al 2008, all clusters with the same mass and different
initial half-mass radius, converge to an equilibrium value of half-mass radius, after core
collapse. The final equilibrium radius depends on the clusters initial mass and orbital radius.
For larger initial mass of star cluster and larger galoctocentric distance, the equilibrium value
is larger. We found that the final half-mass radius of star cluster shows a clear scaling relation
as Rh ∼ R0.78

G and Rh ∼ R0.88
G for cluster with the initial mass of M = 1000 and 3000M⊙,

respectively. That is, clusters with larger initial mass show slightly larger exponents than
less massive clusters.

It should be noted that for the single-mass star clusters, the stellar evolution is switched-
off and the pure dynamical effect plays role in the long-term evolution of star clusters. The
reason that we used the low-number single-mass cluster in this work is indeed the low-
computational costs. The run-time of each simulation in this work that is carried out
on a normal CPU is about one hour (because of the low-number of particles) , whereas
for a typical 105 solar-mass globular cluster, it takes 1-2 weeks on a desktop workstations
with Nvidia 690 Graphics Processing Units (GPU). Interestingly, we showed an acceptable
consistency between our results and the more realistic simulations.
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