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Abstract. Head on collision of localized waves in cold and dense hadronic matter

with and without shear and bulk viscosities is investigated. Non-relativistic dynamics

of propagating waves is studied using the hydrodynamics description of the system and

suitable equation of state. It will be shown that the localized waves are described by

solutions of the Burgers equation. Simulations show that the propagating waves in

viscous media travel longer distances in comparison with inviscid similar fluids. In this

way, the traveling distance of localized waves is a suitable criterion for evaluating the

viscosity of hadronic fluids.

I. Introduction

It is believed that nuclear matters are created in the core of compact stars and in heavy
ion collisions [1, 2]. There are some similarities between these two situations, like high
density and also some contrasts such as difference in the medium temperature. Since the
temperature in the core of compact stars is approximately a few mega electron volts, cold
nuclear matter exists in such these places; on the contrary high temperature (a few tens of
mega electron volts) nuclear matter can be produced after the relativistic heavy ion collisions.
Phase transition from confined hadronic matter to deconfined quark gluon plasma (QGP)
has been observed in both situations [1]. In the case of compact star, formation of the QGP
regularly is started at the center of a compact star by increasing of its density above the
critical density. Afterward the new phase will spread to the environs.
Because of inaccessibility of the interior of compact stars as a unique natural sample at very
dense ( 5 − 10 times larger than normal saturation density, ρ0 = 0.16fm−3 ) and very low
temperature in terrestrial laboratory [2, 3], analysis of dynamic behavior of hadronic matter
is investigated by heavy ion collisions [1, 4, 5]. Neutron stars and white dwarfs are two
kinds of compact stars [6].Studying the propagation and collision of localized waves in such
these media, produces valuable information about the stars formation and the dynamics of
compact objects [7]. Propagation and interaction of small amplitude localized waves in the
form of shock profilesare investigated in this paper.
A neutron star is characterized by the following conditions: the mass is nearly 1.5M⊙ (
M⊙ is the mass of sun), the radius is approximately 10Km and its initial temperature is
about 1011K [8]. At the center of the star the energy density upon c2 changes from 1014

up to 1015g.cm−3 and it reaches to zero at the surface of the star. For a typical neutron
star, five different regions can be distinguished. I) Outer crust by 104 ≤ ρ ≤ 1011g.cm−3,
where contains lattice of neutron-rich nuclei in a free gas of (relativistic) electrons. II)
The neutron drip line with the density ρ ≈ 1011g.cm−3. Because of weakly bounding in this
region, the neutrons are able to drip out of the nuclei and they become free increasingly. III)
Inner crust (free neutron phase) with 1011 ≤ ρ ≤ 1014g.cm−3, where neutron-rich nuclei are

139



140 Azam Rafiei et al.

situated in a free gas of electrons and neutrons. IV ) The outer core with ρ ≈ 5×1014g.cm−3

which contains neutrons, electrons, protons and muons in the form of a homogeneous liquid.
V ) Finally unfamiliar inner core with ρ several times 1014g.cm−3. It is expected that the
Fermi energies of the constituent particles could exceed the rest masses of heavier particles
and therefore hyperons can be produced in this region [3]. Transition to deconfined quark
matter most likely occurs in this situation [8].
Equation of state (EoS) plays an important role to investigate the behavior of matter in
different phases. The EoS in hadronic phase is obtained from the famous nonlinear Walecka
model. In the QGP phase the Bag model is utilized [9, 10, 11].
There are two different approaches to describe the hadronic matter. In the ”microscopic
approach” particle trajectories are pursued, while in the ”macroscopic view” the hydrody-
namic variables like temperature, pressure and velocity of the fluid are specified during the
evolution of the system [12]. Generally there is not any precise knowledge on the microscopic
details of reactions [13], especially where the nucleon mean free path is shorter than the di-
mension of the system [12]. In this situation the system behaves like a perfect fluid with a
low viscosity (in QGP phase) or a viscous fluid (for hadron gas) [14, 15]. Hence the rela-
tivistic hydrodynamics model is constructed based on the local equilibrium [13, 16], however
non-equilibrium degrees of freedom can be added to the problem in different ways. In this
framework the variables of the model are the energy-momentum tensor, Tµν , net particle
density, ρ, and the entropy density, Sµ. The relativistic fluid equation of state is obtained
using the local conservation of energy-momentum, the relativistic continuity equation and
considering the first law of thermodynamics [12, 15, 16, 17, 18, 19, 20] .
The investigation of localized anisotropies and perturbations help us for finding valuable in-
formation about the nature of the hydrodynamics medium, where the waves are propagated.
There exist four different sources of density fluctuations which create localized waves propa-
gating in the medium. These are: 1)initial state fluctuations, 2)hydrodynamic fluctuations,
3)fluctuations induced by hard processes and 4)freeze-out fluctuations. Quantum fluctua-
tions in the densities of two colliding nuclei supplemented with energy fluctuations are called
initial state fluctuations. Local thermal fluctuations of the energy density and flow velocity
produce hydrodynamic fluctuations. Energy loss due to propagation of energetic partons
causes hard process fluctuations. Finally there are event-by-event fluctuations during and
after the freeze-out stage which are called freeze-out fluctuations [15, 21, 22, 23]. Such these
perturbations are able to create nonlinear localized waves in the medium which can be de-
tected and also studied during the evolution of the system. Therefore, the propagation of
nonlinear waves and their collisions are very interesting subjects.
Nonlinear solitary waves utilize in various branches of physics [24, 25]. They are unique
solutions which travel a long distance in nonlinear medium while save their shapes. Behavior
of solitary waves during their collisions provides interesting information about the medium
such as phase shift and traveling distance of the waves after the collision. Indeed, after the
collision of two solitons, they emerge out with almost the same shapes and velocities that
they entered in, but with different relative phase shifts. The phase shifts are functions of
the soliton characters and also the medium properties [26, 27, 28]. Propagation of localized
waves in super dense hadronic matters has been investigated in non-relativistic and viscose
medium. But interaction of localized waves and especially head-on collision of solitary waves
have not been studied before. Motivated by these situations, propagation of localized waves
due to fluctuations and their head on collisions in hadronic gas are investigated in this paper.
In the next section the equations which govern the dynamics of hadron gas are obtained
from the Lagranginan density of the medium particles. Thermodynamic relations for these
medium will be introduced in this section too. The standard perturbation method in head-
on collision will be presented in the third section. The Burgers equations are derived for
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propagation of localized perturbations in hadron gas and the phase shifts of traveling waves,
after the collision will be obtained in this section. The effects of viscosity on the behavior
of localized waves are studied using numerical stimulations in the forth section. Finally,
conclusions and some remarks are presented in the last section.

II. Hadronic matter

Dynamics of particles in a hadronic matter can be described using the nonlinear mean field
theory (NMFL) approximation [29]. According to the chiral power counting, the famous
Walecka model characterizes the properties of cold and high density nuclear matter which
exist in the super dense nuclear matter, neutron stars and supernovas. This model is also
recognized as (σ, ω) model or quantum hydrodynamics model. Based on the principal speci-
fications of head-on collisions, interaction between two nucleons happens via the exchange of
virtual σ and ω mesons. These mesons prepare the intermediate range attraction and short
range repulsion respectively. So the Walecka model [29, 30, 31] is defined by the following
Lagrangian density (1)

L = ψ [γµ (i∂µ − gωω
µ)− (M − gσσ)]ψ +

1

2

(
∂µσ∂

µσ −m2

σσ
2
)

−
1

4
FµνF

µν +
1

2
m2

ωωµω
µ −

κ

3
σ3 −

λ

4
σ4 (1)

where nucleons (baryon fields), ψ, neutral Lorentz scalar field, σ, and neutral vector meson
field, ωµ, with their couplings and masses are the degrees of freedom for the theory. The
expression M∗ = M − gσσ is the nucleon effective mass and the weights of the nonlinear
scalar terms are shown by the couplings κ and λ while Fµν = ∂µων−∂νωµ. According to the
NMFT the equation of state are driven considering the meson fields act classically [15, 32]
as follow

ωµ →< ωµ > ≡ δµ0 ω0 , σ →< σ >≡ σ0 (2)

In which σ0 and ω0 are constant. Assuming there is spatially unlimited nuclear matter in
statistical, homogeneous and isotropic state at zero temperature where the intense baryonic
sources couple to meson fields strongly. In this case the above mentioned classical assumption
is an acceptable approach. Thus the equation of motion are driven from [15, 32]

m2

ωω0 = gωψ
†ψ (3)

m2

σσ0 = gσψψ − κσ2

0
− λσ3

0
(4)

[i γµ∂
µ
− gωγ0ω0 − (M − gσσ0)]ψ = 0 (5)

The baryon density, ρB , is introduced by ψ†ψ ≡ ρB = γ
6π2 k

3

F where kF is the Fermi mo-
mentum. Therefore, the vector Meson ω0 will be derived by using equation (3) in terms of
baryon density as ω0 = gωρB/mω. The Dirac Eq. which is performed through the equation
(5) couples the nucleons to the vector mesons. From the calculations implemented in [15] the
corresponding energy density could be derived using the average of the energy-momentum
tensor [15, 32] as follows
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where the nucleon degeneracy factor is shown by γ that equals to 4 . In the above equation,
the integral term takes into account the fermion contribution. The self-consistency relation
obtained from the minimization of ε(M∗) with respect toM∗ determines the nucleon effective
mass as follow

M∗ = M −
g2σ
m2

σ

γ

(2π)
3

∫ kF

0

d3k

√
−→
k

2

+M∗2

+
g2σ
m2

σ

[
κ

g3σ
(M −M∗)

2
+

λ

g4σ
(M −M∗)

3

]
(7)

The following numerical values for masses and couplings are used for calculation from [15, 32]
M = 939 MeV, mω = 783 MeV, mσ = 550 MeV, κ = 13.47fm−1, gω = 9.197, gσ =
8.81, andλ = 43.127 . The baryon density ρB varies in the range of ρ0 ≤ ρB ≤ 2ρ0 in which
ρ0 = 0.17fm−3 is the nuclear baryon density. If the equation (7) is numerically solved, the
nucleon effective mass in term of baryon density will be obtained. In this way, the energy
density as a function of baryon density is achieved in [15, 32]
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Infinitely high density hadronic plasmas with shear viscosity, υ, and bulk viscosity, ζ, are
characterized by the continuity and non-relativistic Navier-Stokes equations

∂ρ

∂t
+∇. (ρ−→v ) = 0 (9)

and
∂vi

∂t
+ vk

∂vi

∂xk
= −

1

ρ

∂p

∂xk
−
1

ρ
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(10)

with
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∂vk
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3
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)
−ζδki

∂vl
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where Πki is the viscous tensor ; −→v (t,−→x ) , p(t,−→x ) and ρ(t,−→x ) are the velocity, pressure and
the fluid mass density respectively. Considering i = l = k = x for one dimensional Cartesian
case, we have

∂vx
∂t

+ vx
∂vx
∂x

= −
1

ρ

∂p
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+

1

ρ

(
ζ +

4

3
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)
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(12)

∂ρB
∂t

+ vx
∂ρB
∂x

+ ρB
∂vx
∂x

= 0 (13)

The mass density and the baryon density are related to each other through ρ =MρB , where
M is the nucleon mass. The first law of thermodynamic at zero temperature results in

dε = µBdρB (14)
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So the chemical potential µB is

µB =
dε

dρB
(15)

Substitution of (14) and (15) into the Gibbs equation at zero temperature leading

dε+ dp = ρBdµB + µBdρB (16)

This yields to
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and finally we have
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Replacing Equations (18) and (19) into (12) results in
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And using (8) we have
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This is the Navier-Stokes equation for the hadron phase [15].

III. Head-on collision in hadronic gas

There are two different types of interaction between solitons in one-dimensional collisions.
In an overtaking collision, they move in the same direction with different velocities. Solitons
receive a phase shift after the interaction, however their shapes remain almost unchanged.
This type of collision can be studied using the inverse scattering method. The other one is
head-on collision. It occurs when two solitary waves propagate in the opposite directions. In
this situation, in addition to the phase shifts, trajectories of colliding solitons are changed
after the collision as well.
Phase shift and the trajectories of interacting solitary waves after collision have been studied
by many authors using several methods [24, 26, 27].
The extended version of Poincare-Lighthill-Kuo (PLK) approach based on the standard
perturbation method is a well-known and powerful technique which can be used in head
on collision interactions. This technique generally is called Reductive Perturbation Method
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(RPM) [26, 27, 33]. In this method the nonlinearities, dissipative and dispersive effects are
preserved in the wave equations. Conventionally a head on collision problem can be studied
by introducing the stretched coordinates





ξ = σ (x− c1t) + σ2P0 (η, τ) + σ3P1 (η, ξ, τ) + . . .
η = σ (x+ c2t) + σ2Q0 (ξ, τ) + σ3Q1 (η, ξ, τ) + . . .

τ = σ3t
(22)

where ξ and η denote the trajectories of two localized waves travelling to the right and left
directions respectively and σ is a small expansion parameter. The variables c1 and c2 are
unknown phase velocities which will be calculated. Initially the dimensionless variables for
the baryon density, the fluid velocity and the pressure are defined as:

ρ =
ρB
ρ0

, vx=
vx
cs

, p=
p

p0
(23)

Where ρ0, cs and p0 respectively are the background baryon density, the speed of sound
and the background pressure in the medium respectively where perturbation propagates.
Equations (13) and (21) can be rewritten using (23) as follows

∂ρ

∂t
+ csvx

∂ρ

∂x
+ csρ

∂vx
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If the dimensionless baryon density and the fluid velocity are expanded around their equi-
librium values, we have:

ρ = 1 + σ2ρ1 + σ3ρ2 + σ4ρ3 + . . . (26)

v = σ2v1 + σ3v2 + σ4v4 + . . . (27)

Substituting equations (26) and (27) into equations (24) and (25), neglecting the terms
proportional to σ≥3 for first non-zero order of equations (24) and (25) will lead to
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Dependencies of ρ1 and v1 to the ξ, η and τ can be considered as ρ1 = ρ1
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In this way the fluid velocity becomes
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and the phase velocities are obtained as
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The second order equations respect to σ in (24) and (25) lead to the same results by replacing
index ”1” by ” 2” and vice versa. Inserting equations (32) and (33) into equations (24) and
(25) and collecting third order terms with respect to σ results in:
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where ζ̃ and υ̃ are small perturbation in viscosities. Differentiating equations (34) and (35)
with respect to ξ and η and performing some calculations the following equations obtain:
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where ℜ is introduced as following expression
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Equations (36) and (37) are the Burgers equations in (ξ, τ) and (η, τ) space, P0η and Q0ξ

are the phase shifts of the localized waves after their head on collision respectively. For two
shock waves that moved toward each other in the (x, t) space we have
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3
υ

)
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+
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(1−ℜ) ρ̂2

1

[
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1
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∂ρ̂1
1

∂x
+

1

2Mρ0

(
ζ +

4

3
υ

)
∂2ρ̂1

1

∂x2

]
= 0 (41)

This is the Burgers equation for ρ̂1
1
≡ σ2ρ1

1
, which is a small localized perturbation in

the baryon density moving towards the right. The following equation describes a moving
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perturbation propagates in inviscid medium with ζ = υ = 0

∂ρ̂1
1

∂t
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1

[
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1
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1
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]
= 0 (42)

This equation is called the breaking wave equation. Similarly, the Burgers equation for
ρ̂2
1
≡ σ2ρ2

1
becomes
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which is a small perturbation in the baryon density that moves to the left. The breaking
wave equation for ρ̂2

1
moving in inviscid media can be found by inserting ζ = υ = 0 in the

equation (43) as
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1

∂x
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Now we have found the main equations which describe head-on collision of localized waves
in dense hadronic media. The above equations don’t have known analytical solutions and
therefore we have to solve them numerically.

IV. Numerical Discussion

We can rewrite the Burgers equations (41) and (43) in the general form

∂ρ̂

∂t
+ c

∂ρ̂

∂x
+ αρ̂

∂ρ̂

∂x
= µ

∂2ρ̂

∂x2
(45)

where α = ± c1
2
(3 + ℜ) and µ are the respective nonlinear and dissipative coefficients for

hadron phase. The dissipative coefficient µ is related to the viscosity. Since the Burgers
equations dont have any exact solution, we use localized solutions of the Korteweg-de Vries
(KdV) equation as an initial condition for numerical calculations. Hence, localized soliton-
like structure ρ(x, t = 0) = Asech( xL ) are proposed as initial condition, where the initial
amplitude is A and L denotes its width. Time evolution of this soliton-like solution simulates
the evolution of a localized perturbation in viscous hadronic gas. Phase velocities are im-
portant parameters in head on collision which are described by equation (33). This equation
shows that they have intricate relation with the medium parameters. Figure 1 presents the
phase velocity c1 of colliding waves as a function ρ0 . As might be expected, phase velocities
increase as the medium density increases. This figure also shows that in a small range of
background density, phase velocity is almost a linear function of ρ0 . Phase shifts are the
other important parameters in head on collision. Calculated values of these parameters in
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Figure 1: The phase velocity of propagated waves as a function of back ground density. Values of the other
parameters have been given in the text

our problem have been presented by equations (38) and (39). These equations clearly show
that they are negative because in hadron gas ℜ > 1 . Figure 2 demonstrates time evolution
of the colliding waves during their interaction in a inviscid medium. Simulations clearly show
that the phase velocities of the localized waves are almost the same. Figure 2 shows that the
localized waves are changed into shock profiles while traveling in the medium. This figure
also presents that the needed time to change a soliton into a shock profile becomes smaller
when the initial waves have larger amplitude. Effects of viscosity on the evolution of waves
during their collision have been presented in the figure 3. This figure clearly illustrates that
the viscosity is able to control the creation of shock waves in the medium. Definitely the
term with second order of derivation in the equations (41) and (43) reduces the non-linearity
effects in a way that the shock profiles are created very late. In addition, viscosity causes
a noticeable damping on the wave amplitude which is an important result. The traveling
distance of localized perturbations in a medium helps us to find valuable information about
the amount of viscosity of the medium. Comparing the traveling distance of such waves in
media with different initial conditions give us a qualitative information about the shock pro-
file. The figure 3 also shows that the amplitude and width of localized waves approximately
remain constant in the viscid media.

V. Conclusions and Remarks

Propagation of solitary waves in cold and dense hadronic matter is studied in this work. It
is expected to find such media in the core of neutron and compact stars. Hydrodynamic
description and equation of state of such viscose fluid leaded us to find a nonlinear differential
equation for propagation of localized perturbation which is called the Burgers equation.
Viscosity is able to control the nonlinear effects so that it can postpone the shock profiles.
It is shown that the amplitude and width of propagated solitary waves in viscose hadronic
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Figure 2: Wave profiles before and head on collision in non-viscous medium.
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medium remain approximately constant during and after the collision. The phase shifts of
propagating waves after the collision are always negative. These phase shifts are functions
of initial background density and characterize by the medium particles, but independent of
the viscosity. It is interesting to investigate such media with finite temperature. For this
purpose it is better to construct a more suitable EoS for this medium which can be studied
in the future works. Since the EoS of the QGP phase in finite temperature is different, the
same investigations for this medium should be considered.
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