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Abstract. We study the dynamics of two three-level atoms interacting with indepen-
dent bosonic Lorentzian reservoirs at zero temperature. Such systems can be created
in far astronomical objects. Quantum mechanical behaviour of these particles can
produce detectable effects on the spectroscopic identifications of these objects, if such
behaviour remain stable during the interaction with their media. It is shown that de-
tuning increases the robustness of negativity and geometric discord as the measures of
entanglement and quantum correlation beyond entanglement, respectively against in-
teraction with reservoirs. In separable and bound entangled regions, negativity is zero
while the geometric discord remains not zero. We also study the evolution of geometric
discord and negativity for an isotropic state.
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1 Introduction

The entangled states of two distant particles can be established through quantum mechanical
effects. In this situation, measuring the properties of one particle can instantly change some
properties of the other particle. Recent experiments have strongly verified the existence of
quantum entanglement and it is beginning to have practical applications in several branches
of science as well [1, 2].
Recently some investigations have been done for using the entanglement concepts in astro-
physical situations [1, 2, 3]. Interaction of entangled particles with black holes and studying
the thermodynamics of such situations is currently receiving great attentions. Teleportation
analogy of the black hole at its final state [4], controllability of black hole evaporation [5],
observation of thermal Hawking radiation and its entanglement in an analogue black hole
[3] are some examples of entanglement in astrophysical objects. Recently some works have
been done in order to detect entangled two-photon systems in astrophysical processes [3].
Most available naturally produced quantum entangled objects between two distant parti-
cles in astrophysical regions is two-photon spontaneous transition of the hydrogen 22S1/2

metastable level. Two-photon emission rate of two nearby planetary nebulae IC 2149 and
NGC 7293 has been calculated in [6]. It is estimated that production of entangled pairs per
second is an order of 1044 − 1048.
There are also other entangled situations which can be investigated in the optical spec-
troscopy of astronomical objects. Emerged photon due to energy transition of electron on
Calcium atoms is another interesting situation which can be modeled as a qutrit system.
Therefore we have to know the entanglement evolution of a qutrit-qutrit system, surrounding
by their environments as an open quantum system. Effects of environment on the evolution
of quantum entanglement can be considered too. Interaction with environment is responsi-
ble for decoherence and destroying fragile quantum properties [7, 8]. Discord as the measure
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of quantum correlation, negativity as the measure of entanglement and geometric quantum
discord as the measure of quantum correlation have been studied for qubit-qutrit systems
in a classical dephasing environment [9]. Recently, Liang Qiu et al. [16] have studied the
evolution of lower bound of geometric quantum discord for two-qutrit system under depo-
larization.
In this paper, we study the dynamics of quantum correlations and entanglement of qutrit-
qutrit system to understand the robustness of quantum correlations in comparison to en-
tanglement against interaction with independent reservoirs and their evolution. Stability of
such correlations is very important. Indeed we can observe effects of entanglement in distant
astronomical objects if these correlations are sufficiently strong and long lasting. The main
aim of this paper is investigating the effects of medium on the entanglement and geometric
discord between far particles. The qutrit-qutrit is strong system against the medium effects,
so we can extend our results to the other entangles systems such as photon-photon interac-
tions. We will use the geometric discord and negativity as measures of quantum correlation
and entanglement respectively.

We study the effect of a simple local unitary transformation on the evolution of geometric
discord and negativity. Peres–Horodecki have provided a separability criterion for bipartite
systems [10]. The criterion is the positive partial transpose (PPT) of a bipartite system
which can be considered as a signal for separability [10]. The PPT is sufficient and necessary
condition for separability in 2× 2 (qubit –qubit) and 2× 3 (qubit –qutrit) systems while for
bipartite systems with dimension of 3× 3 (qutrit–qutrit) this condition is necessary but not
sufficient. It means that, there are states which eigenvalues of partial transpose are positive
but they are entangled [10, 11]. Negativity is defined as:

N(ρab) =

∑
i(|ηi| − ηi)

2
(1)

Where the ηis are eigenvalues of partial transpose of ρab with respect to subsystem a ,
(ρab)Ta is partial transpose of ρab [11].
Dakic et al. [12] introduced the geometric quantum discord, as D(ρ) = minχ||ρ−χ||2 where

χ is a set of zero-discord states and ||A|| =
√
tr(A†A) is Hilbert-Schmidt norm [12]. The

Hilbert space HA ⊗HB describes a bipartite system with dim HA = m and dim HB = n.
L(HA) and L(HB) are spaces that contain all linear operators on Ha and Hb respectively.
Xi(i = 1, 2, ...,m2) and Yj(j = 1, 2, ..., n2) are set of Hermitian operators which contain
orthonormal bases for space L(HA) and L(HB) respectively. The set Xi ⊗ Yj constitutes
an orthonormal base for L(HA ⊗HB). Any bipartite state in HA ⊗HB can be written as
ρ =

∑
ij cijXi ⊗ Yj and

ρ =
1

mn
(Im ⊗ In +

∑
i

xiλi ⊗ In +
∑
j

yjIm ⊗ λj +
∑
i

tijλi ⊗ λj) (2)

Here {λi, i = 1, 2, ...,m2 − 1} and {λj , j = 1, 2, ..., n2 − 1} are defined as generators of
SU(m) and SU(n), respectively [13].

xi =
m

2
tr(ρλi ⊗ In), yj =

n

2
tr(ρIm ⊗ λj) and tij =

mn

4
tr(ρλi ⊗ λj) (3)

x⃗ = [xi], y⃗ = [yj ], T = [tij ] and C = [cij ] = [tr(ρXi ⊗ Yj)] is equivalent to:

C =

 1√
mn

√
2y⃗t

n
√
m

√
2x⃗

m
√
n

2 T
mn

 (4)
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The lower bound of geometric discord is:

D(ρ) ≥ tr(CCt)−
m∑
i=1

ϵi =
m2∑

i=m+1

ϵi (5)

The set {ϵi, i = 1, 2, ...,m2} contains eigenvalues of CCt which have been ordered de-
creasingly [13]. This paper is organized as follows. Section 2 introduces the dynamics
of non-Markovian qutrit-qutrit system in independent reservoirs. Sections 3 and 4 study the
evolution of negativity and geometric discord in different conditions respectively. Finally,
conclusion and remarks will be presented in the section 5.

2 Dynamics of qutrit-qutrit system

2.1 The ”V ” type three-level atomic system

Figure (1) presents energy levels of a three level V type atom. We have used such V type
atom as a qutrit system. Electric dipole moments are µ⃗1 and µ⃗2 and the allowed dipole
transitions in this system are: |3⟩ ↔ |1⟩, with atomic transition frequency ω1 and |3⟩ ↔ |2⟩
with atomic transition frequency ω2. The spontaneous emission is responsible for decaying
the excited states of three level atom into its ground state, and therefore there is not a direct
transition between excited states, i.e., the dipole transition |1⟩ ↔ |2⟩ is forbidden. When
the dipole moments of two transitions are parallel, an indirect transition between excited
states occurs, because of the interaction with vacuum. The couplings between levels |1⟩ and
|2⟩ and reservoirs are g

(1)
k and g

(2)
l respectively [14, 15].

Figure 1: Three-level atom in V type

Now the Hamiltonian of two three-level atoms interacting with independent bosonic
Lorentzian reservoirs at zero temperature under the RWA can be written as follows:

HIV =
∑
k

g1k (a†k|3a⟩⟨1a|)+
∑
l

g2l ( b
†
l |3a⟩⟨2a|)+

∑
m

g1m (c†m|3b⟩⟨1b|)+
∑
n

g2n( d
†
n|3b⟩⟨2b|)+h.c

(6)
first and second parts of our bipartite system are represented by a and b respectively and
a†, b†, c† and d† are creation operators . Equation (6) shows that there is not any direct
interaction between two qutrits.
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2.2 Dynamics of atoms

We first write Hamiltonian in the interaction picture and then use the time-convolutionless
(TCL) master equation to get dynamics of two three-level atoms [15]. We find:

dρS(t)

dt
= −iλ1(t)

[
|1a⟩⟨1a|, ρs(t)

]
− iλ2(t)

[
|2a⟩⟨2a|, ρs(t)

]
− iλ3(t)

[
|1b⟩⟨1b|, ρs(t)

]
(7)

−iλ4(t)

[
|2b⟩⟨2b|, ρs(t)

]
+γ1(t)(|3a⟩⟨1a|ρs(t)|1a⟩⟨3a|− 1

2

{
ρs(t), |1a⟩⟨1a|

}
)+γ2(t)(|3a⟩⟨2a|ρs(t)|2a⟩⟨3a|−

1
2

{
ρs(t), |2a⟩⟨2a|

}
)+γ3(t)(|3b⟩⟨1b|ρs(t)|1b⟩⟨3b|− 1

2

{
ρs(t), |1b⟩⟨1b|

}
)+γ4(t)(|3b⟩⟨2b|ρs(t)|2b⟩⟨3b|−

1
2

{
ρs(t), |2b⟩⟨2b|

}
).

Where λi(t) and γj(t) in equation (7) are defined as follows:

λi(t) =

∫ t

0

ds

∫ ω

0

dωJ(ω)sin(ω − ωi)s (8)

and

γi(t) =

∫ t

0

ds

∫ ω

0

dωJ(ω)cos(ω − ωi)s i = 1, 2, 3, 4

In continuous field frequency limit we change
∑

ν |gν |
2
by

∫
dωJ(ω)δ(ων − ω) where ν =

k, l,m, n. The Lorentzian spectral density is defined as [15]:

J(ω) =
1

2π

γ0λ
2

(λ2 + (ωcav − ω)2)
i = 1, 2, 3, 4 (9)

where ωcav = ∆i−ωi, λ is the spectral width, γ0 is the coupling strength and ωcav is the res-
onance frequency of the cavity in the Jaynes-Cummings model and ∆i is detuning between
the level of atom and the central cavity mode. We assume that two atoms are identical, so
λ1(t) = λ3(t), λ2(t) = λ4(t), γ1(t) = γ3(t) and γ2(t) = γ4(t).

Initial density matrix ρ(0) is taken as [16, 17] :

ρ(0) =
2

7
|ϕ⟩⟨ϕ|+ α

7
σ+ +

5− α

7
σ− (10)

with |ϕ⟩ = |11⟩+|22⟩+|33⟩√
3

, σ+ = |12⟩⟨12|+|23⟩⟨23|+|31⟩⟨31|
3 and σ− = |21⟩⟨21|+|32⟩⟨32|+|13⟩⟨13|

3 .

The density matrix equation (10) is an interesting selection for initial condition, because it
describes a separable state for 2 ≤ α ≤ 3 , bound entangled for 3 < α ≤ 4 and free entangled
state for 4 < α ≤ 5, The equation (7) could be solved analytically as:

ρ11(t) =
2

21
exp(−G1(t)−G3(t)); ρ15(t) =

2

21
exp(i(−L1(t) + L2(t)− L3(t) + L4(t))−G1(t)−G3(t)) (11)

ρ19(t) =
2

21
exp(i(−L1(t)− L3(t))−G1(t)−G3(t)); ρ22(t) =

α

21
exp(−G1(t)−G4(t));

ρ44(t) =
(5− α)

21
exp(−G2(t)−G3(t)); ρ55(t) =

2

21
exp(−G2(t)−G4(t));

ρ59(t) =
2

21
exp(−i(L2 + L4)− (G2 +G4));

Entries ρ33(t), ρ66(t), ρ77(t), ρ88(t) and ρ99(t) will be calculated numerically and the rest of

the elements are zero. where Gi(t) =
∫ t

0
γi(s)ds and Li(t) =

∫ t

0
λi(s)ds i = 1, 2, 3, 4.



Dynamics of entangled quantum optical system in independent media 131

3 Evolution of negativity

In this paper, we have calculated the evolution of negativity for the system with initial state
equation (10). Figure (2) shows negativity in α = 4.3 for different values for the ∆is. It
shows that the negativity would be preserved and is more robust against reservoir effects,
when ∆i, i = 1, 2 are increased. For simplicity, we assume that ∆i = 0, and study the effects
of initial state (α), t, γ0 and λ on the evolution of negativity. Results have been presented
in figures (3), (4.a) and (4.b). Figure (3) demonstrates the negativity as functions of α
and γ0t. Figure (4.a) shows negativity for λ = 0.01γ0 and ∆i = 0, i = 1, 2 in different γ0t
as a function of α and (4.b) shows the negativitiy in different α as a function of γ0t. We
see from figures (3), (4.a) and figure (4.b) that negativity is increasing monotonically with
increasing value of α and has a decreasing trend with increasing of time in free entangled
region. In separable and bound entangled regions, negativity is zero, as expected. Several
sections of negativity has been plotted in the figure (4.a). Specific values of γ0t can be
found phase transition like, sudden change occurs in the profile of negativity. For selected
initial value of λ and α ≃ 4.3 this sudden change happens at γ0t = 3. In support of figure
(4.a), the figure (4.b) indicates sudden change occurs for every values of initial state in free
entangled region. Figure (4.b) also shows that whatever α be greater the sudden change of
entanglement phenomenon happens in greater values of γ0t.

Figure 2: Evolution of negativity for α = 4.3, λ = 0.01 and γ0 = 1 in different ∆1 and ∆2

Figure (5.a) shows negativity as a function of α for different values of spectral width λ
at t = 3 with fixed value γ0 = 1. This figure shows that negativity is zero in the separable
and bound entangled regions for all values of λ. Negativity decreases as λ increases such
that negativity every where is almost zero for λ > γ0. On the other hand, non-zero region
of negativity becomes smaller and also shifts toward larger values of α. In the figure (5.b)
negativity has been plotted with respect to α with different values of coupling γ0 with
λ = 0.01γ0. Therefore the system is completely in non-Markovian situation. This figure
shows that negativity appears in larger values of α as γ0 increases, while decreases with
increasing values of γ0 . The greater values of coupling γ0 causes deeper interaction between
qutrit and its environment.
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Figure 3: Evolution of negativity as a functions of α and γ0t when λ = 0.01γ0 and ∆i = 0, i = 1, 2.

a. b.

Figure 4: Negativity for λ = 0.01γ0 and ∆i = 0, i = 1, 2 (a) shows the negativitiy in different γ0t as a
function of α , (b) shows the negativitiy in different α as a function of γ0t.
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a. b.

Figure 5: (a) shows the negativitiy in different λ when γ0 = 1 and ∆i = 0, i = 1, 2 as a function of α , (b)
shows the negativitiy in different γ0 when λ = 0.01γ0 and ∆i = 0, i = 1, 2 as a function of α.

4 Geometric discord

Let us study the effects of interactions on the behavior of geometric discord. The lower
bound of geometric discord has been calculated numerically using the equation (5). Figure
(6) shows geometric discord of a system with α = 4.3 and different values for detunings,
∆i. The geometric discord is more robust against reservoirs when detunings ∆i, i = 1, 2 are
increased.

Figures (7) and (8) demonstrate results of calculation which they show geometric discord
is non-zero for all values of α which proves the existence of quantum correlations even in
separable state region (2 ≤ α ≤ 3). Figure (8.a) presents geometric discord as a function
of α. This figure indicates that geometric discord has a minimum value in separable region
(2 ≤ α ≤ 3). The minimum occurs due to differences in the nature and properties of
separable and bound entangled states. It may be noted that the negativity is zero in this
region. Figure (8.b) demonstrates time evolution of geometric discord for different initial
states of the system. The time evolution of the geometric discord almost is not sensitive to α
parameter in free entangled region of initial state. Figure (8.a) explains that the geometric
discord is almost constant in free entangled region, while the negativity increases in this
situation. Figure (8.a) also indicates that a sudden change in geometric discord occurs but
with respect to α. It is in agreement with results of [19, 16]. Finally, figures (7) and (8.b)
demonstrate that geometric discord, unlike negativity, decreases monotonically in time for
all values of parameter α, while evolution of negativity has a sudden change in free entangled
region. The evolution of geometric discord in free entangled region is almost independent of
α, while for negativity the point of sudden change happens in greater γ0t as α increases. A
sudden change point also is observed in the evolution of geometric discord for qutrit-qutrit
system under multilocal or global depolarising noises, while for collective depolarizing noise,
such a sudden change has not been occurred [16]. We have not observed any kind of sudden
change in our non-Markovian qutrit-qutrit system too.

Figures (9) show discord with respect to α for different values of λ with γ0 = 1 (9.a) and
different values of γ0 with λ = 0.01γ0 (9.b), both at t = 3. Figure (9.a) shows that point
of sudden change moves toward greater values of α, while maximum value of the quantum
discord decreases. For λ > γ0 (Markovian regime) discord becomes almost zero. Figure
(9.b) indicates that same situation occurs for coupling parameter γ0. Therefore, we can
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Figure 6: Evolution of geometric discord for α = 4.3, λ = 0.01 and γ0 = 1 in different ∆1 and ∆2

Figure 7: Evolution of geometric discord for λ = 0.01γ0 and ∆i = 0, i = 1, 2 as a functions of α and γ0t
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a. b.

Figure 8: Geometric quantum discord for λ = 0.01γ0 and ∆i = 0, i = 1, 2. (a) shows the Geometric discord
in different γ0t as a function of α , (b) shows the Geometric discord in different α as a function of γ0t.

say that point of sudden change moves toward greater values of α and quantum discord is
decreasing functions of γ0 and also λ in Markovian and non-Markovain regimes.

a. b.

Figure 9: (a) shows the geometric discord in different λ when γ0 = 1 and ∆i = 0, i = 1, 2 as a function of
α , (b) shows the geometric discord in different γ0 when λ = 0.01γ0 and ∆i = 0, i = 1, 2 as a function of α.

The initial state (10) under the local unitary transformation U = I3 ⊗O with O = |0⟩⟨1|+
|1⟩⟨0|+ |2⟩⟨2| changes to:

σ(0) = Uρ(0)U† =
2

7
|ϕ′⟩⟨ϕ′|+ α

7
σ′
+ +

5− α

7
σ′
− (12)

with |ϕ′⟩ = |01⟩+|10⟩+|22⟩√
3

, σ′
+ = |00⟩⟨00|+|12⟩⟨12|+|21⟩⟨21|

3 and σ′
− = |11⟩⟨11|+|20⟩⟨20|+|02⟩⟨02|

3 .

Figure (10) shows that the geometric discord has not been changed considerably under
this local unitary transformation. Other studies indicate that this local transformation on
a qutrit-qutrit system evolved in depolarizing noise shifts the sudden change point [16].
Under local unitary transformation equation (12) negativity decreases and the point of
sudden change appears in smaller values of time γ0t.
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a. b.

Figure 10: a: Comparison negativity for initial state ρ(0) and its local unitary transformation σ(0) and
also b: geometric discord for λ = 0.01γ0 and ∆i = 0, i = 1, 2.

The isotropic states are d × d dimensional bipartite states which are convex mixtures of a
maximally entangled state with a maximally mixed state. They are invariant under unitary
transformations of the form U ⊗ U∗ [20]. Isotropic states for a qutrit-qutrit system are:

ρ = p|ϕ⟩⟨ϕ|+ (1− p)

9
I9 (13)

with 0 ≤ p ≤ 1. The isotropic state ρ is separable if and only if it is PPT i.e. p ≤ 1
4 [20].

We study the evolution of geometric discord and negativity for these states under amplitude
damping when p = 0.45. Figure (11) shows both geometric discord and negativity decay in
time. This figure also shows that a sudden change in the evolution of negativity happens as
observed in the evolution of state (10).

5 Conclusion and remarks

The dynamics of qutrit-qutrit system in independent reservoirs, as an example of entangled
particles at a distant produced in astronomical objects has been investigated. We have per-
formed numerical simulations for the system to get the evolution of geometric discord and
negativity and have examined the stability and robustness of their correlation. Our calcula-
tions show that, the geometric discord is non-zero even in separable region, because of the
existence of a sort of quantum correlation in the system while negativity in separable and
bound entangled regions is zero, as expected. The geometric discord has a minimum value
in separable and bound entangled regions, this minimum is because of different properties of
separable and bound entangled states. A sudden change in geometric discord with respect
to α occurs because of approaching this point from bound to free entangled region. For free
entangled states, geometric discord is almost constant with respect to α , while negativity
is an increasing function of α. Simulations also show that both negativity and geometric
discord decrease in time. We showed that the robustness of negativity and geometric discord
against interaction with reservoir increases as detuning increases. A sudden change happens
in the evolution of entanglement while such phenomenon does not occur in the evolution
of geometric discord in free entangled region. It may be noted that the rate of change of
negativity is greater than that for geometric discord. In conclusion, contrary to geometric
discord, the evolution of negativity has a sudden change point.
It is interesting to investigate the behavior of negativity and geometric discord for other
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Figure 11: Negativity for λ = 0.01γ0, p = 0.45 and ∆i = 0, i = 1, 2 as function of γ0t.

non-Markovian systems in astronomical objects. Also it is insightful to find entanglement
indicator which able to provide deeper distinguish ability between the systems with different
initial states.
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