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Abstract. Damping of slow magnetohydrodynamic(MHD) waves and oscillations are
believed to contribute to the heating of the solar corona. Since the launch of solar space
telescopes, many observational evidences for the occurrence of slow MHD waves have
been detected in various structures of the solar corona. In this paper, we studied the ef-
fect of steady flow of coronal plasma on the damping time and other physical quantities
of slow magneto-acoustic waves in the presence of thermal conduction and compressive
viscosity. The perturbed and linearized MHD Equations of a flowing coronal plasma are
solved both analytically and numerically by Mac Cormack method to investigate the
effect of steady flows on physical quantities of slow magneto-acoustic waves. The results
of this study show that with increasing magnitude values of the Mach number from 0
to 0.6 and increasing the compressive viscosity and thermal conduction coefficient with
increasing the temperature from 2 to 6 MK, the oscillation periods, the damping times
and the damping qualities change significantly. Also, the results of this study show that
the values and limits of the physical quantities calculated for magneto-acoustic waves
in a flowing viscous plasma in the presence of thermal conduction at high temperatures
(more than 4 MK) correspond to observational values. Moreover, the results indicate
that background velocity of the coronal plasma is an effective factor in the damping
of slow magneto-acoustic waves. Damping of slow magneto-acoustic waves in a flowing
solar coronal plasma is stronger than the damping of slow magneto-acoustic waves in a
stationary coronal plasma. So, steady flow along with the other damping mechanisms
of slow magneto-acoustic waves must be considered in theoretical models.
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1 Introduction

MHD waves (or oscillations) in coronal structures are a popular tool for probing the struc-
tures and physical parameters of the solar coronal plasma. Magnetized coronal plasma
structures can support three types of MHD waves, Alfvén, slow and fast magneto-acoustic
waves. In recent years, slow magneto-acoustic waves have been observed frequently in var-
ious structures of the solar corona with solar space telescopes. Analysis of imaging data
from solar space telescopes shows that slow magneto-acoustic waves are usually produced
and propagated in areas such as the polar plume, inter plume regions and the fan loop
structures of active regions of the solar corona (see,e.g.,[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]). For
example, propagating slow magneto-acoustic waves were firstly detected in polar plumes with
Extreme-Ultraviolet Imaging Telescope (EIT) on board the Solar and Heliospheric Observa-
tory (SOHO) and Ultraviolet Coronagraph Spectrometer (UVCS) [2, 12]. Also, propagating
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slow waves were detected in coronal loops with SOHO/EIT [13]. Slow-mode loop oscillations
were detected in the polar plume structures using Solar Ultraviolet Measurements of Emitted
Radiation (SUMER) instrument on board the SOHO [4, 5] The slow modes were initially
observed in hot EUV coronal loop with EUV Imaging Spectrometer (EIS) on board Hin-
ode spacecraft [14]. First, direct observations of slow magneto-acoustic waves in microwave
emission were reported by Kim et al. (2012)[6]. Flare-induced fast magneto-acoustic waves
along funnel-like structures were discovered using Atmospheric Imaging Assembly (AIA)
on board the Solar Dynamics Observatory (SDO) space telescope [15, 16]. The observed
phase speed of slow waves fluctuates from a few kilometers per second to several hundred
kilometers per second, and their damping lengths are about a few mega meters to several
ten mega meters(see, e.g., [17, 18, 19]. The oscillation periods and damping times of the
magnetic-acoustic waves are observed in the range of a few minutes to a few hours (see,
e.g., [11, 12, 17, 18, 20, 21, 22, 23]). The damping mechanisms of magneto-acoustic waves
in the sun’s atmosphere have been theoretically studied by several researchers. They found
that factors such as thermal conductivity, compressive viscosity, radiation, gravitational
stratification, convergence and divergence of magnetic field lines may be responsible for the
damping of slow waves (see, e.g., [24, 25, 26]). For example, Ofman and Wang (2002)[27]
numerically solved the linearized magneto-hydro-dynamic equations. They found that ther-
mal conduction was the most important damping mechanism for standing slow waves in the
isothermal coronal loops. De Moortel et al. (2002) [28] studied the effects of both thermal
conductivity and compressive viscosity on the propagating and standing magneto-acoustic
waves in the corona loops. They indicated that thermal conduction alone could not jus-
tify the strong damping of slow waves and the compressive viscosity factor must also be
added to the theoretical model. Carbonell et al. (2004) [29] investigated the effect of ra-
diation on damping time and the oscillation period of slow magneto-acoustic waves. They
showed that radiation partially reduced the damping time of the oscillations. And it does
not significantly change the period of oscillations. Roberts (2006)[30] theoretically investi-
gated the effect of gravitational stratification on slow magneto-acoustic waves. He concluded
that the effect of gravitational stratification on periodicity and damping time of slow waves
was negligible. Abedini et al. (2012) [22] studied the oscillations of hot corona loops with
gravitational stratifications in the presence of heat conduction, compressive viscosity, and
radiation. They verified that optically thin radiation is not a main cooling mechanism in
hot coronal loops. Also, thermal conduction and compressive viscosity are main energy dis-
sipation mechanisms in the damping of slow magneto-acoustic waves of the hot long coronal
loops. In short coronal loops, the viscosity at high temperatures alone can justify the strong
damping fluctuations of the corona loops. In most of the proposed theoretical models, it is
assumed that the solar corona plasma that emits magneto hydro dynamic waves is without
background velocity. However, observations show that the coronal plasma has a background
velocity [31, 32]. In recent years, limited work has been done on the effect of plasma back-
ground velocity on the physical quantities of slow magneto-acoustic waves [33, 34, 35]. In
this paper, the effect of plasma background velocity of coronal plasma in the presence of
compressive viscosity and thermal conductivity on the physical quantities of propagating
and standing slow magneto-acoustic waves is carefully studied. For this purpose, linearized
MHD equations are solved analytically and numerically by MacCormack numerical solution
method. For different values of Mach number, the effect of steady current on the physical
quantities of slow magneto-acoustic waves in the presence of viscosity and thermal conduc-
tivity is investigated. The results show that the steady follow has no effect on the damping
time of forward and backward propagation slow waves. The background velocity of coronal
plasma in the direction of the propagation waves(with positive Mach numbers)reduces the
period of oscillations. The background velocity of coronal plasma in the opposite direction
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of the propagation waves(with negative Mach numbers)increases the period of oscillations.
So the damping quality(damping time per period)of propagating slow waves increases and
decreases with increasing the magnitude values of positive and negative Mach numbers,
respectively. In other words, increasing the amount of plasma background velocity in the
opposite direction of wave propagation makes the oscillation damping stronger. For standing
waves (fundamental modes), by increasing the amount of positive Mach numbers (flow along
to the direction of magnetic field) and negative Mach numbers (flow opposite to the direc-
tion of magnetic field) from 0 to 0.6 and changing the viscosity and thermal conductivity
coefficients by increasing the temperature from 2 to 6 Mega Kelvin, the period of oscillation
increases from 55% to 71% , damping time and damping quality decrease from 31% to 50%
and 18.5% to 30%, respectively. The values and ranges of the physical quantities calcu-
lated for standing slow magneto-acoustic waves in the current plasma with high the Mach
numbers and temperatures (greater than 4 mega kelvin) in the presence of viscosity and
thermal conductivity correspond to the observed values. In addition, the results show that
plasma background velocity is an effective factor in damping magneto-acoustic waves and
should be considered along with other damping mechanisms such as compressive viscosity,
thermal conductivity, gravitational stratification and radiation. This article is organized as
follows. Section 2 describes a description of the model and equations. Section 3 presents the
results of the numerical solution of slow MHD equations. Section 4 presents the summary
and conclusion.

2 Description of the Model and Equations

Coronal loops are modeled as a straight magnetic flux tube of length L along the z axis
with a uniform magnetic field and a steady flow of plasma along the coronal loop axis. The
equilibrium values of temperature, density and pressure of the coronal loop structures are
assumed to be constant. In the one-dimensional MHD equations, the effects of thermal
conductivity and compressive viscosity are considered as follows:

Ec =
∂

∂z
(κ||

∂T0
∂z

), Eη =
4

3
η0(

∂v

∂z
)2, (1)

Here, Ec and Eη, are the heating or cooling rate of thermal conduction and compres-

sive viscosity per unit volume, respectively. Also, κ|| = 10−11T0
5
2Wm−1K−1 and η0 =

10−17T0
5
2 kgm−1s−1 represent the coefficient of the thermal conduction and compressive

viscosity [36, 37]. The dimensionless MHD equations after perturbation and linearization in
the presence of steady flow along the coronal loop reduces to 1D form as
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p̄1 = ρ̄1 + T̄1, (5)

In the equations 2 - 5, the dimensionless parameters M = v0
cs

, ε = η0
ρ0Lcs

and d =
(γ−1)κ||T0

p0τc2s
are the Mach number, the dimensionless coefficient of compressive viscosity and thermal
conductivity, respectively. And the quantities p0, ρ0, τ, v0, L and cs are the equilibrium
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Figure 1: The dimensionless period of oscillationsP/τ and the damping qualityτd/P of the
propagating waves in the presence of compressive viscosity (left panels), thermal conductivity
(middle panels) and both compressive viscosity and thermal conductivity (right panels) are
plotted as function of kL for different Mach numbers (black lines (M = 0), green lines
(M = ±0.2), red lines (M = ±0.4), blue lines (M = ±0.6) and brown lines (M = ±0.8).
Solid lines correspond to positive Mach numbers and dashed lines correspond to negative
Mach numbers.

pressure, the equilibrium plasma density, the specific time (τ = L
cs

), the background velocity
of plasma, the loop length and sound speed in the plasma, respectively. Also, the other
dimensionless variables are defined as

t̄ =
t

τ
, z̄ =

z

L
, v̄1 =

v1
cs
, ρ̄1 =

ρ1
ρ0
, p̄1 =

p1
p0
. (6)

In order to investigate the effect of steady flow of plasma on the behavior of slow waves,
all disruption terms are assumed to be exp(k̄z̄− ω̄t̄). With a few algebraic calculations, the
dispersion relationship in the presence of compressive viscosity and thermal conductivity is
obtained as follows

(ω̄ −Mk̄)3 + i(
4

3
εk̄2 + dk̄2)(ω̄ −Mk̄)2 − (

4

3
εdk̄4 + k̄2)(ω̄ −Mk̄)− i 1

γ
dk̄4 = 0, (7)

Here, k̄ = kL and ω̄ = ωτ are dimensionless wave number and angular frequency, respec-
tively. In the following, for simplicity, the bar marks have been omitted from the dimension-
less quantities. The dispersion relation 7 shows that the background velocity changes only
the real part of frequency of the propagating waves, but it does not change the imaginary
part of the frequency. Due to the dependence of the real part of frequency on the Mach
number, then the damping quality and the phase speed of the propagating waves will depend
on the background velocity of plasma. In Figure 1, the dimensionless period of oscillations
(P/τ) and the damping quality (Dp = τd/P ) of the propagating waves in the presence of
compressive viscosity (left panels), thermal conductivity (middle panels) and combined ef-
fects of compressive viscosity and thermal conductivity (right panels) are plotted as function
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Figure 2: The dimensionless period of oscillations P/τ and the damping quality τd/P of the
propagating waves in the presence of compressive viscosity (left panels), thermal conductivity
(right panels) are plotted as function of εkL and dckL for different Mach numbers (black
lines (M = 0), green lines (M = ±0.2), red lines (M = ±0.4), blue lines (M = ±0.6) and
brown lines (M = ±0.8). Solid lines correspond to positive Mach numbers and dashed lines
correspond to negative Mach numbers.

of kL for different Mach numbers (black lines (M = 0), green lines (M = ±0.2), red lines
(M = ±0.4), blue lines (M = ±0.6) and brown lines (M = ±0.8). Solid lines correspond
to positive Mach numbers and dashed lines correspond to negative Mach numbers. Solid
lines are for positive Mach numbers and dashed lines are for negative Mach numbers. So, in
Figure 2 the dimensionless period of oscillations and the damping quality of the propagat-
ing waves in the presence of compressive viscosity (left panels), thermal conductivity (right
panels) are displayed as function of εkL and dckL for different Mach numbers, respectively.
It can be seen that for positive Mach numbers, by increasing the value of Mach numbers the
period of the oscillations of propagating waves decrease, but the damping qualities of the
waves increases. Also, for negative Mach numbers, as the values of Mach numbers increase,
the period of the oscillations increases and the damping qualities decrease. The damping
quality of the propagating waves in the opposite direction to the background velocity is
stronger than the damping quality of the waves in the direction of the background velocity.
In addition, the effect of thermal conductivity on damping quality is higher than compres-
sive viscosity. In the next section, the effect of a steady flow on the physical quantities
of standing waves within a solar corona loop in the presence of compressive viscosity and
thermal conductivity is studied by the MacCormack numerical solution method.

3 Numerical solution of slow MHD equations

In the previous section, the effect of plasma background velocity in the presence of compres-
sive viscosity and thermal conductivity on the physical quantities of propagating magneto-
acoustic waves was investigated. In this section, the effect of plasma background velocity in
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the presence of viscosity and thermal conductivity mechanism on the physical quantities of
standing magneto-acoustic waves is studied. For this purpose, MHD equations are solved
numerically by the MacCormack method. And the physical quantities such as damping
time, damping quality and period of oscillations are estimated.

3.1 MacCormack’s method

The MacCormack method is a variation of the two-step Lax-Wendroff method. This method
is widely used in discretization for numerical solution of hyperbolic partial differential equa-
tions. To better understand, consider the following first order hyperbolic equation

∂f

∂t
+ c

∂f

∂z
= 0 (8)

The application of MacCormack scheme to the above equation combines in two steps; a
predictor step which is followed by a corrector step. predictor step: forward differencing

f∗i = fni −
c∆t

∆z
(fni+1 − fni ). (9)

Here, n and i are the time and space step numbers, respectively. corrector step: backward
differencing

f∗∗i = fni −
c∆t

∆z
(f∗i − f∗i−1). (10)

final step: combine the two forward and backward differencing

fn+1
i =

1

2
(f∗i + f∗∗i ). (11)

The MacCormack method is second-order accurate in both time and space. For the numer-
ical solution of the perturbed and linearized equations 2-5 using the MacCormack method,
the initial and boundary conditions of perturbed quantities in the corona loops are consid-
ered as follows:

v1(z, 0) = Avsin(πz),

ρ1(z, 0) = 0, p1(z, 0) = 0, T1(z, 0) = 0,

v1(0, t) = 0, v1(zmax, t) = 0,

∂

∂z
p1(0, t) = 0,

∂

∂z
p1(zmax, t) = 0,

∂

∂z
T1(0, t) = 0,

∂

∂z
T1(zmax, t) = 0. (12)

Here, Av is the dimensionless amplitude of the initial velocity profile and zmax is maximum
numerical value of z. To run the simulation for calculating physical quantities of slow
magneto-acoustic waves, µ = 0.6 (mean molecular weight), L = 0.751R� ' 400Mm and
n0 = 5 × 108cm−3 were selected for the length and equilibrium density of a coronal loop,
which were motivated with the SUMER and Yohkoh/SXT space telescopes observations
[27, 26]. To run the simulation, the dimensionless loop length was divided into 4001 grid
points. Temporal evolution of perturbed velocity of each points at temperatures 2, 4 and
6 MK for different Mach numbers was extracted and plotted as function of time over a
period of 300 minutes with time intervals of 0.001 minutes (for fundamental mode). For
example, in the Figure 3 the temporal evolution of the perturbed velocity in the presence
of viscosity for a piece of loop located at z = 0.4 as function of dimensionless time for 2MK
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(first row panels), 4MK (second row panels) and 6MK (third row panels). The black, green,
red, and blue lines indicate the values of Mach number 0, 0.2, 0.4, and 0.6, respectively.
Solid lines correspond to positive Mach numbers (flow along to the direction of magnetic
field) and dashed lines correspond to negative Mach numbers (flow opposite to the direction
of magnetic field). Figure 3 shows that at a constant Mach number, by increasing the
temperature, in other words by increasing the viscosity and thermal conductivity coefficient,
the damping is stronger. Also, at a constant temperature with increasing the magnitude
value of the Mach number, damping become stronger. To obtain damping time, damping
quality and period of oscillations in the presence of viscosity and thermal conductivity, a
cosine damping function is fitted to the numerical data as follows

f(t) = Adexp(−γdt)cos(ωt+ φ)), (13)

Here, Ad is the amplitude of the oscillations, φ is the initial phase and γd = 1/τd is the inverse
of the damping time of the oscillations. For example, in the Figure 4, the data of temporal
evolution of the perturbed velocity in the presence of both compressive viscosity and thermal
conductivity are fitted by a damping cosine functions at temperatures of 6 MK for different
values of the Mach numbers 0, -0.2, -0.4, and -0.6, and fit parameters are written in the
panels. The physical quantities of a coronal loop in the presence of viscosity and thermal
conductivity, are extracted for the different Mach numbers and temperatures are listed in
Tables 1 and 2, respectively. In tables 3 and 4, the magnitude values and range of the physical
quantities such as damping times, damping qualities are written for the first harmonic
oscillation mode for different positive and negative Mach numbers (M=0,±0.2,±0.4,±0.6)
and temperatures(T0 = 2,4 and 6 MK) in the presence of viscosity and thermal conductivity,
respectively. Furthermore, in table 5, the magnitude values and range of these quantise for
different positive and negative Mach numbers (M=0,±0.2,±0.4,±0.6) and temperatures(T0
= 2,4 and 6 MK) in the presence of both viscosity and thermal conductivity. It can be seen
that physical quantities change significantly with Mach numbers. At temperatures above 4
megawatts Kelvin and Mach numbers more than 2 results match the observational results
of space telescopes.

4 Summary and conclusion

In this paper, the effect of background velocity on the physical quantities of propagating and
standing slow waves has been carefully studied. To study the effect of background velocity
on the slow waves in the corona loops, ccoronal loops are modeled as a straight magnetic
flux tube of length L along the z axis with a constant cross section, temperature, constant
magnetic field along the loop length and a steady flow of plasma along the loop axis in
the presence of thermal conductivity and compressive viscosity. The MHD equations are
perturbed and linearized in the presence of viscosity, thermal conductivity, and background
velocity of plasma. The linearized MHD equations were solved by applying the appropriate
initial values and boundary conditions analytically and numerically using McCormack’s
method. The physical quantities such as damping time, damping quality and period of
oscillations for different values of positive (flow along to the direction of magnetic field)
and negative (flow opposite to the direction of magnetic field) of Mach numbers at different
temperatures are calculated. The results of this study show that:

• Flow leads to the period of oscillation and the damping quality of propagating slow waves
decreases and increases, respectively, with increasing magnitude values of positive
Mach numbers
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Figure 3: Temporal evolution of the perturbed velocity in the presence of viscosity for a
segment of loop located at z=0.4 as function of dimensionless time are plotted for different
temperatures, 2MK (first row panels), 4MK (second row panels), 6MK (third row panels).
The black, green, red, and blue lines indicate the values of Mach numbers 0, 0.2, 0.4, and
0.6, respectively. Solid and dashed lines correspond to positive and negative Mach numbers
respectively.

Table 1: The magnitude of the physical quantities such as estimated damping times, period
of oscillation, damping qualities in the presence of compressive viscosity, are written for the
first harmonic oscillation mode for different values of Mach number and temperatures(T0 =
2,3,4 and 6 MK).

T0(MK) ε M P(min) τd(min) Dp = τd/P
M ≥ 0 M ≤ 0 M ≥ 0 M ≤ 0 M ≥ 0 M ≤ 0

0 62.09 62.09 1250.20 1250.20 19.87 19.87
2 0.001 ± 0.2 64.03 65.87 1000.03 714.00 15.90 10.98

± 0.4 74.01 75.18 454.87 384.00 6.09 5.10
± 0.6 101.05 99.00 277.23 217.00 2.77 2.22

0 44.20 44.20 833.04 833.04 18.93 18.93
4 0.003 ± 0.2 46.12 46.97 625.02 368.00 13.50 7.83

±0.4 52.03 52.91 313.06 163.00 5.90 4.77
±0.6 69.14 68.22 166.40 156.00 2.39 2.19

0 36.18 36.18 172.30 172.30 4.77 4.77
6 0.007 ± 0.2 38.20 37.73 156.70 138.00 4.10 4.32

± 0.4 43.76 42.91 116.81 100.00 2.69 2.38
± 0.6 57.02 53.18 89.20 56.00 1.56 1.09
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Figure 4: The data of temporal evolution of the perturbed velocity in the presence of both
viscosity and thermal conductivity, are fitted by a damping cosine functions at temperatures
of 6 MK for different values of the Mach numbers 0, -0.2, -0.4, and -0.6, and fit parameters
are written in the panels.

Table 2: The magnitude of the physical quantities such as estimated damping times, period
of oscillation, damping qualities in the presence of compressive viscosity, are written for the
first harmonic oscillation mode for different values of Mach number (M=0, ± 0.2, ±0.4,
±0.6) and temperatures(T0 = 2,3,4 and 6 MK).

T0(MK) dc M P(min) τd(min) Dp = τd/P
M ≥ 0 M ≤ 0 M ≥ 0 M ≤ 0 M ≥ 0 M ≤ 0

0 62.89 62.89 416.00 416.00 6.61 6.61
2 0.040 ± 0.2 65.35 65.35 357.00 312.00 5.72 4.77

± 0.4 75.18 75.18 277.00 227.00 3.68 3.01
± 0.6 99.00 98.85 200.00 125.00 2.02 1.26

0 51.54 51.54 151.00 151.00 2.92 2.92
3 0.086 ± 0.2 53.76 53.76 142.00 125.00 2.64 2.32

±0.4 61.72 61.72 111.00 89.00 1.79 1.44
±0.6 82.64 81.96 73.00 56.00 0.88 0.68

0 44.75 44.75 98.00 98.00 2.18 2.18
4 0.153 ± 0.2 46.62 46.97 86 80.00 1.86 1.74

± 0.4 54.02 53.85 60.00 54.00 1.11 0.98
± 0.6 76.00 73.60 33.00 31.00 0.44 0.42

0 - - - - - -
6 0.344 ± 0.2 - - - - - -

± 0.4 - - - - - -
± 0.6 - - - - - -
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Table 3: The magnitude values and range of the physical quantities such as damping times,
period of oscillations, damping qualities are written for fundamental mode for different
positive and negative Mach numbers (M=0, 0.2, 0.3, 0.4, 0.6) and temperatures(T0 = 2,3,4
and 6 MK) in the presence of compressive viscosity.

T0(MK) ε M P(min) τd(min) Dp = τd/P
2 0.001 0-0.6 62-101 1250-277 19.87-2.77

0-(-0.6) 62-99 1250-217 19.87-2.22
3 0.002 0-0.6 50-74 1010-220 29.34-3.97

0-(-0.6) 49-74 1011-210 29.34-3.20
4 0.003 0-0.6 44-69 833-166 18.93-2.39

0-(-0.6) 44-68 833-156 18.93-2.19
6 0.007 0-0.6 35-57 172-75 4.79-1.31

0-(-0.6) 35-53 172-56 4.79-1.05

Table 4: The magnitude values and range of the physical quantities such as period of
oscillations, damping times, damping qualities are written for fundamental mode of slow
waves for different positive and negative Mach numbers (M=0, ± 0.2, ± 0.3, ± 0.4, ±
0.6) and temperatures( T0 = 2,3,4 and 6 MK) in the presence of thermal conductivity and
viscosity, respectively.

T0(MK) dc M P(min) τd(min) Dp = τd/P
2 0-0.6 62-99 416-200 6.61-2.02

0.040 0-(-0.6) 62-99 416-125 6.61-1.26
3 0.086 0-0.6 51-83 151-73 2.91-0.88

0-(-0.6) 51-82 151-56 2.91-0.68
4 0-0.6 44-76 98-33 2.18-0.44

0.153 0-(-0.6) 44-74 98-31 2.18-0.42
6 0.344 0-0.6 - - -

0-(-0.6) - - -

Table 5: The magnitude values and range of the physical quantities such as damping times,
damping qualities are written for the fundamental mode for different positive and negative
Mach numbers (M=0, ± 0.2,± 0.3, ± 0.4, ± 0.6) and temperatures( T0 = 2,3,4 and 6 MK)
in the presence of thermal conductivity and compressive viscosity, respectively.

T0(MK) ε dc M P(min) τd(min) Dp = τd/P
2 0.001 0.040 0-0.6 62-98 370-188 6.08-1.91

0-(-0.6) 62-97 370-121 6.08-1.24
3 0.002 0.086 0-0.6 51-81 138-71 2.70-0.87

0-(-0.6) 51-83 138-54 2.70-0.65
4 0.003 0.153 0-0.6 45-77 89-29 1.97-0.38

0-(-0.6) 44-73 89-28 1.97-0.37
6 0.007 0.344 0-0.6 - - -

0-(-0.6) - - -
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• The period of oscillation and the damping quality of propagating slow waves increases and
decreases, respectively, with increasing magnitude values of negative Mach numbers. In
other words, the propagation of the waves in the opposite direction of the background
velocity of plasma makes the damping quality of the oscillations stronger. The values
of the Mach numbers (positive and negative) have no effect on the damping time of the
oscillations. The values of Mach numbers only change the period of the oscillations of
the propagating slow waves.

• The physical quantities of standing slow magneto-acoustic waves in the solar coronal
loops are varied due to the combined effects of steady flow and viscosity with positive
and negative Mach numbers. By increasing magnitude values of positive (negative)
Mach numbers of flow from 0 to 0.6 and temperature from 2 to 6 MK, the period of
oscillations increases from 60% to 63%(52 % to 60%), damping time decreases from
22% to 43%(17 % to 32 %) and damping quality decrease from 14% to 27%(11% to
22%),respectively(see table 3).

• The physical quantities of standing slow waves in coronal plasma loop in the presence of
thermal conductivity and a steady flow, by increasing Mach numbers from 0 to 0.6
and temperature from 2 to 6 MK, respectively, the period of oscillations increases from
57% to 69%(46% to 63%), damping time decreases from 32% to 48%(30% to 31 % )
and damping quality decreases from 20% to 30%(19% to 19.5 % ), respectivly (see
table 4).

• For slow magneto-acoustic waves in a flowing coronal plasma loop in the presence of com-
pressive viscosity and thermal conductivity, by increasing magnitude values of Mach
numbers from 0 to 0.6 and temperature from 2 to 6 MK, the period of oscillations in-
creases from 57% to 71%,(55% to 63%) damping time decreases from 32% to 50% (31%
to 33%)and damping quality decreases from 19% to 31%(18.5% to 23%), respectively
(see table 5).

• As the Mach numbers increase, the dampness of the slow standing waves changes from
a weak damping state (Dp > 2) to a strong damping (Dp < 2) and the values of the
physical quantities calculated correspond to the observational results (see, e.g., [30,
26, 18]). The results of this study in the absence of thermal conductivity correspond
to the numerical results of Kumar et al. (2016)[35], who investigated the propagation
of slow waves in a flowing viscous coronal plasma.

• In general, the results of this study show that the background velocity of viscous plasma
in the presence of thermal conductivity, significantly changes the physical quantities
of slow magneto-acoustic waves. As a result, the background velocity is an effective
factor in the damping of slow waves and should be considered along with other factors
such as compressive viscosity, thermal conductivity, gravitational stratification and
radiation in theoretical models.
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