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Abstract. A quantum mechanic approach is presented for Cherenkov radiation of
a moving atom in uniaxial and biaxial anisotropic medium. A moving particle in a
medium emits Cherenkov radiation when its speed is larger than the phase velocity of
light in the medium. The electromagnetic field is quantized in the anisotropic media,
using maxwell and related constitute equations, phenomenologically. The Cherenkov
radiation for a moving charged particle in the anisotropic medium with arbitrary real
permittivity tensor is obtained. The dielectric structure can be changed the Cherenkov
radiation. For uniaxial media, we give a close form of the Cherenkov radiation for
arbitrary dipole alignment. In this manner, the Cherenkove radiation of the biaxial
media is calculated.. It is shown that Cherenkov radiation in an isotropic medium can
be obtained from the form of an anisotropic medium.
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1 Introduction

Cherenkov radiation is one of the problems in light- matter interaction that can be opened
new ideas in quantum electrodynamic. A moving particle in a medium emits Cherenkov
radiation when its speed be larger than the phase velocity of light in the medium [1]. The
Cherenkov radiation is the radiation with a continuous spectrum and specific angular distri-
bution. The Cherenkov radiation was observed experimentally by Cherenkov, and the first
formulation of this radiation was presented by Ginzburg and frank [2].
The Cherenkov effect has been used in different systems since the first discovery and leads to
discoveries in high energy particle physics, cosmic ray physics, astrophysics, nonlinear phase-
matched system [3, 4] to biomedical imaging[5], etc [6, 7, 8]. Discoveries in the Cherenkov
effect, such as backward Cherenkov radiation [9], is observed in metamaterials [10], photonic
crystals [11] and graphene [12]. This new wide range of applications is attracted by more
scientists to study the theory of Cherenkov radiation [13, 14].
A neutral moving particle with constant velocity emits because of the fluctuating dipol mo-
ment. The energy of radiation in the neutral particle is determined by a change in the
kinetic energy of the particle, and this comes from p-polarized electromagnetic waves. It
has to mention that two types of radiation are possible if the particle has an internal degree
as freedom. In particular, an explicit expression for the Cherenkov radiation in general
anisotropic media has not been presented, while for isotropic media, this is a well studied
problem.
The anisotropic media cannot be described by a scalar permittivity and permeabilitty and
they have different responses to the external electric and magnetic fields according to the
direction. Therefore, the permittivity and the permeabilitty have tensorial forms in the
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anisotropic media. Anisotropic media are in one of two forms, uniaxial or biaxial, depend-
ing on whether they have a single optical axis or more than one.
Metamaterials and photonic crystals are received more attention because of their optical
properties. These materials have negative permittivity and permeability. The studies show
that the properties of negative refraction can occure in some uniaxially anisotropic media
[15]. The optical properties of uniaxially anisotropic media are essential for many applica-
tions, such as liquid crystals. Other kind of media is biaxially anisotropic media that behave
differently than isotropic and anisotropic media in interaction with light. The biaxial mate-
rials are twofold, one natural media with biaxial properties and another handmade biaxial
materials like left-hand materials. Because of the compelet application of these types of
optical materials, there is an interest in studying the light radiation in anisotropic media.
In this paper, we consider a particle of mass m and charge e moving in an anisotropic medium
in which the media is charactrized with arbitrary real permittivity tensor. We quantize the
electromagnetic field inside the medium and use this to obtain the Cherenkov radiation.
For uniaxial media, we give a close form of the Cherenkov radiation for arbitrary dipole
alignment. In this manner, the Cherenkove radiation of the biaxial media is calculated.
The paper is organized as follows: In section II, we present the phenomenological quan-
tization of the electromagnetic field in the presence of an anisotropic media. In section
III, we use this to drive the Cherenkov radiation for an moving charged particle in the
anisotropic medium with arbitrary real permittivity tensor. In Section IV, the close form
of the Cherenkov radiation is obtained for the uniaxial medium and the biaxial media. A
conclusion is presented in section V.

2 Quantum electrodynamic

An anisotropic medium in the presence of the electromagnetic field is considered. The elec-
tromagnetic response of the medium is characterized by electric permittivity and magnetic
permeability. By assuming that the permeability of the medium is unit, the anisotropic
dielectric medium is described by a permittivity matrix ¯̄ε. In the following, the system is
considered in a coordinate in which ¯̄ε is diagonal. So

¯̄ε =

 εx 0 0
0 εy 0
0 0 εz

 (1)

We use the macroscopic maxwell equations and constitution relations to describe the propag-
itation of the electromagnetic waves in the medium. The maxwell’s equations are

∇.B(r, t) = 0, (2)

∇.D(r, t) = 0 (3)

∇×E(r, t) = −∂B(r, t)

∂t
(4)

∇×H(r, t) =
∂D(r, t)

∂t
(5)

E is the electric field, D is the displacement field, B is the magnetic flux density and H is
the magnetic field. The constitution relations are

D(r, t) = ε0¯̄εE(r, t) + PN (r, t) (6)

B(r, t) = µ0H(r, t) (7)
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P̂N is the noise polarization operator associated with electric loss due to material absoption
and µ0 is the permeability of free space. The wave equation for the electric field is obtained
by the maxwell equations,as follows

∇×∇×E(r, t) + µ0¯̄ε
∂2E(r, t)

∂t2
=
∂2PN (r, t)

∂t2
(8)

Here, the electric field is defined in terms of the vector potential as ∂
∂tA(r, t). So, the

vector potential equation is

∇×∇×A(r, ω)− ω2
kλ

¯̄εA(r, ω) = µ0ω
2
kλPN (r, ω) (9)

where A(r, ω) =
∫
dtA(r, t)eiωkλt. We quantize the system by introducing the canonical

bosonic creation and annihilation operators â†kλ and âkλ that satisfy the commutation rela-
tion as follows

[âkλ, â
†
k′λ′ ] = δ(k − k′)δλλ′ (10)

So, the noise polarization can be described in terms of the bosonic operators as

P̂N (r, ω)→

√
~ωkλ

2(2π)3ekλ.¯̄εekλ
â†kλ, (11)

Where ekλ = Ekλ/ |Ekλ| are eigenvectors of the electric field. So, the vector potential
operator can be written as follows

Â(r, t) =

∫
d3k

∑
λ

ekλ

√
~ωkλ

2(2π)3ekλ.¯̄εekλ

1

ωkλ
(12)

×(âkλe
i(k.r−ωkλt) + â†kλe

i(k.r−ωkλt)),

and the electric field is

Ê(r, t) =

∫
d3k

∑
λ

ekλ

√
~ωkλ

2(2π)3ekλ.¯̄εekλ
(13)

×(âkλe
i(k.r−ωkλt) + â†kλe

i(k.r−ωkλt)),

the magnetic field can be obtained easily . It can be seen that in an anisotropic medium,
frequency is dependent on the polarization and the diraction of k. It can be showen that
the Hamiltonian of the system consists of the medium and electromagnetic field, which is
diagonal in terms of ladderar operators [16].

3 Cherenkov radiation

In this section, the radiation intensity of the moving particle is calculated. Consider a
charged particle moving at velocity V in the presence of the anisotropic dielectric media. The
Hamiltonian of the free charged particle, the total field ( an interacting system consists of an
electromagnetic field and anisotropic dielectric medium is named total field) and interaction
of the charge particle and total field, is as follows

H = Hp +Hf +Hint, (14)
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where

Hp =
p̂2

2m
, (15)

Hf =
1

2

∫
d3r[Ê(r, t).D̂(r, t) + Ĥ(r, t).B̂(r, t)] (16)

=

∫
d3k

∑
λ

~ωkλ(â†kλâkλ +
1

2
),

Hint = − q

m
P̂.Â(r, t), (17)

where P̂ is the momentum operator of the moving particle. The Hamiltonian of the in-
teraction is written in the dipol approximation. The eigenstate of the momentum of the
particle, before the emission of the photon is |q〉, and after the emission is |q − k〉. |{0}〉 is
the vacuum state of the total field and |{1kλ}〉 is the excited state of the total field with

â†kλ |{0}〉 = |{1kλ}〉. The eigenstate of the combined system is the direct producte of the
eigenstates of the particle and field. The frequencies of the particle before and after emission

are respectively ωA =
|Eq|
~ and ωB =

|Eq−k|
~ where ω̃A = ωB − ωA.

In this step, the transient probability amplitude of the system from the initial to the final
state is obtained.

Γq→q−k =
2π

~
|〈1k| 〈q − k|Hint |q〉 |0〉|2 δ(ωkλ − ω̃A) (18)

The Dirac δ function displays the conservation of energy. To calculate the Cherenkov radi-
ation intensity of the moving atom in an anisotropic dielectric medium, multiply Transient
probability amplitude by ~ω and integrate over k and ω, as follows

dW

dt
=

∫
d3k

∫
dω~ωΓq→q−k (19)

by substituting (17) in (18) and using (19), we have

dW

dt
=

~
8π2

∫
d3k

∑
λ

∣∣∣P̂.ekλ∣∣∣2
ekλ.¯̄εekλ

δ(ωkλ − ω̃A) (20)

Where the momentum of the particle is p = (p1, p2cosφ, p2sinφ).

4 Examples

4.1 Uniaxial media

An essential class of the anisotropic medium is the uniaxial media where the permitivity of
the medium in two directions is the same. Uniaxial anisotropic media have a single optic axis
that defines a unique direction in which light of all polarizations propagates with the same
refractive index. For all other directions, waves analyze into two orthogonally polarized
elements with different refractive indices. One element is the ordinary wave because it
propagates in the usual way. Its refractive index is independent of the direction of the wave
vector k, and energy flows in the same direction as k. The other element is the extraordinary
wave. Its refractive index varies with the angle between k and the optic axis [17].

¯̄ε = diag(ε1, ε2, ε2) (21)
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The eigenvectors of the electric field in uniaxial media are as follows [18]

eko =

 0
−k3
k2

 (22)

and

eke =

 −ε2(k22 + k23)
ε1k1k2
ε1k1k3

 (23)

with corresponding frequencies

ωko =
ck

no
=

k

µ0ε2
, , ωke =

ck

ne
=

√
k.¯̄εk

µ0ε1ε2k2
k, (24)

where no and ne are the ordinary and extraordinary refractive indices [17]. The media
with no < ne are named positive uniaxial and with no > ne are named negative uniaxial.

It has to mention the ne(θ) = ε
−1/2
0 (cos2θ/ε2 + sin2θ/ε1)−1/2 is the refractive index of

the extraordinary wave varies with θ. θ is angle k and x-direction. ne is an extremum
of ne(θ). To obtain the Cherenkov radiation, we choose φ = 0 for momentum orientation
without losing the generality. By substituting dk = nλdωkλ/c, in sperical coordinates k =
k(cosθ, sinθcosφ, sinθsinφ), we have

dW

dt
=

ω̃2
A

8~π2

∫ 2π

0

dφ

∫ π

0

dθ
∑
λ

(
nλ
c

)3
|P.ekλ|2

ekλ.¯̄εekλ
sinθ (25)

The Cherenkov radiation of the ordinary refractive indices for ωk0 = ck
n0

= k√
µ0ε2

is as

follows
dWo

dt
=
p22ω̃

2
A

8π2

∫ 2π

0

dφ

∫ φ

0

dθ
sin3θ

ε2
(
√
µ0ε2)3 (26)

where the p1 does not contribute in this part of the Cherenkov radiation.

dWo

dt
=
p22ω̃

2
Aµ

3/2
0 ε

1/2
0

4π

√
ε2 (27)

In the extraordinary waves, all parts of the momentum are contributed; so, for ωke we have

dWe

dt
=

ω̃2
A

8π2

∫ 2π

0

dφ

∫ π

0

dθ
(µ0ε1ε2)3/2sinθ

ε1ε2(ε2sin2θ + ε1cos2θ)5/2
(28)

×[p22ε
2
1cos

2θcos2φ+ p21ε
2
2sin

2θ]

=
ω̃2
A

3π
µ
3/2
0 (

p22ε1 + 4p21ε2
4
√
ε2

)

So the total Cherenkov radiation is as follows

dW

dt
=
dWo

dt
+
dWe

dt
=
ω̃2
Aµ

3/2
0

3π
(
ε1 + 3ε2

4
√
ε2

p22 +
√
ε2p

2
1) (29)

According to the above relation, for a particle with momentum parallel to the ε1 axis, the
Cherenkov radiation is similar to the Cherenkov radiation in isotropic media. Also, in the
case that ε1 = ε2, the relation (29) reduces to the cherenkove radiation isotropic media.
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4.2 Biaxial media

The propagation of light in biaxial media is more complicated than other media. In biaxial
media all three elements of the dielectric tensor, that presented by diagonal matrix, are
different [19].

¯̄ε =

 ε1 0 0
0 ε2 0
0 0 ε3

 (30)

The eigenvectors are

ek± =

 k1/(ε1 − εk)
k2/(ε2 − εk)
k3/(ε3 − εk)

 (31)

and angular frequencies are

ωk± =
ck

n±
=

k
√
µ0εk±

(32)

with

εk± =
2ε1ε2ε3
tk ± sk

, (33)

tk =
1

k2
k.¯̄ε(Tr¯̄εI− ¯̄ε)k, sk =

√
t2k −

4

k2
ε1ε2ε3k.¯̄εk (34)

With these relations, the integration over k can be performed similarly to the uniaxial media.
So,

dW

dt
=

ω̃2
A

8π2

∫ 2π

0

dφ

∫ π

0

dθ
∑
λ±

|p.ekλ|2

ekλ − ¯̄εekλ
(µ0εk)3/2sinθ. (35)

5 Conclusion

We drive the quantized electromagnetic field operators for a system consist of a moving
atom in an anisotropic media to calculate the Cherenkove radiation in uniaxial and biaxial
media. It is obvious that the anisotropic nature of the medium does not change Cherenkov
angle.
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