The investigation of the Newtonian collisional viscous shear dusty plasma system in the hydrodynamic regime: Using fluid model

Authors

Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr. Mofatteh Avenue, Tehran 15614, Iran

Abstract

The fluid description is employed to investigate the instability of Newtonian viscous shear dusty plasma system in hydrodynamic regime, taking into account both viscosity and collision effects. Describing the equilibrium configuration in the presence of the binary collision terms between dust grains and neutral particles and using the local approximation method, the dispersion relation is obtained by applying the generalized hydrodynamic equation to find the spatial dependence of the initial velocity in equilibrium state. Analyzing the obtained dispersion relation shows that the main factor of free energy source to arise the instability of the system is due to the viscous force. While the collision effect plays a stabilizing role for the system by reducing the growth rate of the instability of the Newtonian strongly coupled dusty plasma system in the hydrodynamic regime.

Keywords


[1] UssenovY. A., Ramazanov T. S., Dzhuma gulova K. N., and Dosbolayen M. K., 2014, EPL, 105, 15002

[2] Whipple E. C., Northrop T. G., and Mendis D. A., 1985, J. Geophys. Res., [Oceans] 90, 7405

[3] Whipple E. C., 1981, Rep. Prog. Phys., 24, 1197

[4] Mendis D. A., and Rosenberg M., 1994, Rev. Astron. Astrophys., 32, 419

[5] Angelis U.de, 1992, Phys. Scr., 45, 465

[6] Goertz C. K., 1989, Rev. Geophys., 27, 271

[7] Horanyi M., Houpis H. L.F., and Mendis D. A., 1988, Astrophys. Space Sci., 144, 215

[8] TsytovichV. N., Morfill G. E., Bingham R., and Angelis U. de, 1990, Comments Plasma Phys. Control. Fusion, 13, 153

[9] Thomas H., Morfill G. E., DemmelV., Goree J., Feuerbacher B., and Mohlmann D., 1994, Phys. Rev. Lett., 73, 652

[10] Rosenberg M., Kalman G., 1997, Physical Review E, 56, 7166

[11] Gruzinov A., 2008, arXiv preprint arXiv: 0803.1182 magnetic fields, cosmic rays, and emission from first principles?

[12] Pesceli H. L., Rasmussen J. J., and Thomsen K., 1984, Phys. Rev. Lett., 52, 2148

[13] Ikezi H., 1986, Phys. Fluids, 29, 1764

[14] Jana S., Banerjee D., and Chakrabarti N., 2015, Physics of Plasmas, 22, 083704

[15] Nunomura S., Misava T., Ohno N., and Takamura S., 1999, Phys. Rev. Lett., 83, 1970

[16] Mishra A., KawP. K., Sen A., 2000, Physics of Plasmas, 7, 3188

[17] FrenkelY., Kinetic Theory of Liquids (Clarendon, Oxford), 1946

[18] ShuklaP. K., Mamun A. A., 2001, IEEE Transaction on plasma Science., 29, 221

[19] KawP. K., 2001, Phys. Plasmas, 8, 1870

[20] El-Awady EI, Djebli M., 2012, Astrophys Space Sci., 342, 105

[21] Banerjee D., Janaki M. S., Chakrabarti N., and Chaudhuri M., 2010, New J. Phys., 12, 123031

[22] Jana S., Banerjee D., and Chakrabarti N., 2015, Physics of Plasma, 22, 083704

[23] FengY., Goree J., and Liu B., 2012, Physical Review E, 85(6), 066402