• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login ▼
    • Login
    • Register
  • Persian
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
Iranian Journal of Astronomy and Astrophysics
Articles in Press
Current Issue
Journal Archive
Volume Volume 4 (2017)
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 3 (2016)
Volume Volume 2 (2015)
Volume Volume 1 (2014)
mohammadi, M., Olamaei, A. (2017). Soliton-like Solutions of the Complex Non-linear Klein-Gordon Systems in 1 + 1 Dimensions. Iranian Journal of Astronomy and Astrophysics, 4(1), 57-68. doi: 10.22128/ijaa.2017.108
Mohammad mohammadi; Ali Reza Olamaei. "Soliton-like Solutions of the Complex Non-linear Klein-Gordon Systems in 1 + 1 Dimensions". Iranian Journal of Astronomy and Astrophysics, 4, 1, 2017, 57-68. doi: 10.22128/ijaa.2017.108
mohammadi, M., Olamaei, A. (2017). 'Soliton-like Solutions of the Complex Non-linear Klein-Gordon Systems in 1 + 1 Dimensions', Iranian Journal of Astronomy and Astrophysics, 4(1), pp. 57-68. doi: 10.22128/ijaa.2017.108
mohammadi, M., Olamaei, A. Soliton-like Solutions of the Complex Non-linear Klein-Gordon Systems in 1 + 1 Dimensions. Iranian Journal of Astronomy and Astrophysics, 2017; 4(1): 57-68. doi: 10.22128/ijaa.2017.108

Soliton-like Solutions of the Complex Non-linear Klein-Gordon Systems in 1 + 1 Dimensions

Article 6, Volume 4, Issue 1, Spring 2017, Page 57-68  XML PDF (2399 K)
DOI: 10.22128/ijaa.2017.108
Authors
Mohammad mohammadiorcid 1; Ali Reza Olamaei2
1Physics Department, Persian Gulf University, Bushehr 75169, Iran.
2Jahrom University, Jahrom 74135-111, Iran
Abstract
In this paper, we present soliton-like solutions of the non-linear complex Klein-Gordon systems in 1+1 dimensions. We will use polar representation to introduce three different soliton-like solutions including, complex kinks (anti-kinks), radiative profiles, and localized wave-packets. Complex kinks (anti-kinks) are topological objects with zero electrical charges. Radiative profiles are objects that move at the speed of light and therefore, have a zero rest mass. They can be created in kink-anti-kink collisions and vice versa. Localized wave packet solutions are non-topological objects for which wave and particle behavior are reconciled in a classical way. For localized wave packet solutions, the trivial initial phase imposes an uncertainty on the collision fates.
Keywords
complex; non-linear; Klein-Gordon; soliton; uncertainty; kink; radiative-profile; wave-packet
References
[1] R. Rajaraman, Solitons and Instantons (North Holland, Elsevier, Amsterdam, 1982).

[2] A. Das, Integrable Models (World Scienti_c, 1989).

[3] G. L. Lamb, Jr., Elements of Soliton Theory (John Wiley and Sons, USA, 1980).

[4] P. G. Drazin and R. S. Johnson, Solitons: an Introduction (Cambridge University Press, 1989).

[5] D. K. Campbell and M. Peyrard, Phys. D 19, 165 (1986).

[6] D. K. Campbell and M. Peyrard, Phys. D 18, 47 (1986).

[7] D. K. Campbell, J. S. Schonfeld, and C. A. Wingate, Physica D 9, 1 (1983).

[8] M. Peyrard and D. K. Campbell (1983), Physica D 9, 33 (1983).

[9] R. H. Goodman and R. Haberman, Siam J. Appl. Dyn. Syst. 4, 1195 (2005).

[10] M. Mohammadi and N. Riazi, Prog. Theor. Phys 126, 237 (2011).

[11] S. Hoseinmardi and N. Riazi, Int. J. Mod. Phys. A 25, 3261 (2010).

[12] V. A. Gani and A. E. Kudryavtsev, Phys. Rev. E 60, 3305 (1999).

[13] C. A. Popov, Wave Motion 42, 309 (2006).

[14] M. Peyravi, A. Montakhab, N. Riazi, and A. Gharaati, Eur. Phys. J. B 72, 269 (2009).

[15] T.D. Lee and G.C. Wick, Phys. Rev. D9 2291 (1974).

[16] R. Friedberg, T. D. Lee and A. Sirlin Phys. 13, 2739 (1976).

[17] R. Friedberg and T.D. Lee, Phys. Rev. D15 1694 (1977)

[18] J. Werle. Physics Letters. 71B, 368 (1977).

[19] Werle, J.: Acta Phys. Pol. B12, 601 (1981).

[20] S. Coleman, Nucl. Phys. B 262(2) 263-283 (1985).

[21] T.D. Lee and Y. Pang, Phys. Rep. 221(5) 251-350 (1992).

[22] N. Riazi, Int. J. Theor. Phys.50, 3451 (2011).

[23] R. Abazari and S. Jamshidzadeh, Optik vol.126 1970-1975 (2015).

[24] M. Mohammadi, N. Riazi, Prog. Theor. Exp. Phys, 023A03 (2014).

Statistics
Article View: 40
PDF Download: 93
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.